Nontrivial topology in a kagome superconductor ($K\text{V}_3\text{Sb}_5$) probed by torque magnetometry up to 45T

Funding Grants: K. Shrestha, T. Nguyen, D. Miertschin (Killgore Research Center at WTAMU, Welch #AE-0025); G.S. Boebinger (NSF DMR-2128556)

Topological materials represent a novel class of materials that holds promise for diverse applications in the development of powerful and efficient electronics. They possess highly conducting charge carriers that are both robust and insensitive to non-magnetic impurities, resulting in significantly enhanced efficiency compared to traditional conducting materials. Recently discovered Kagome compounds, $AV_3\text{Sb}_5$ ($A = K, Cs, and Rb$) exhibit multiple electronic orders, such as charge density wave, superconductivity, and non-trivial band topology; providing a suitable platform for interplay among these orders. A deeper understanding of CDW and SC in $AV_3\text{Sb}_5$ requires a thorough knowledge of the Fermi surface (FS), the physical construct that describes the energy and momentum of all of the highest energy electrons in the material. Quantum oscillation measurements are one of the most effective methods to study the Fermi surfaces of materials and the magnitude of quantum oscillations increases exponentially with higher magnetic fields.

MagLab users studied the FS of $K\text{V}_3\text{Sb}_5$ in the 45T hybrid magnet at temperatures down to 0.32K. Magnetic torque was measured using a miniature piezo-resistive torque magnetometer. To map the FS shape, the sample was rotated with respect to the applied field direction. The sample was then maintained at a fixed angle during field sweeps and this process was repeated for a number of temperatures. The torque signal up to 45T shows highly resolved oscillations with 14 frequencies ranging from 33T to 2149T, nine of which had not been previously reported. Angular dependence measurements of the dHvA oscillations and the Berry phase calculations showed that $K\text{V}_3\text{Sb}_5$ possesses a quasi-2D Fermi surface with non-trivial topology. Understanding Fermi surface properties is crucial for understanding the charge density wave phase, the superconducting phase, and the nontrivial topology present in $AV_3\text{Sb}_5$ as well as the interplay among these three phenomena.

Facilities and instrumentation used: 45T DC hybrid magnet system (Cell 15).