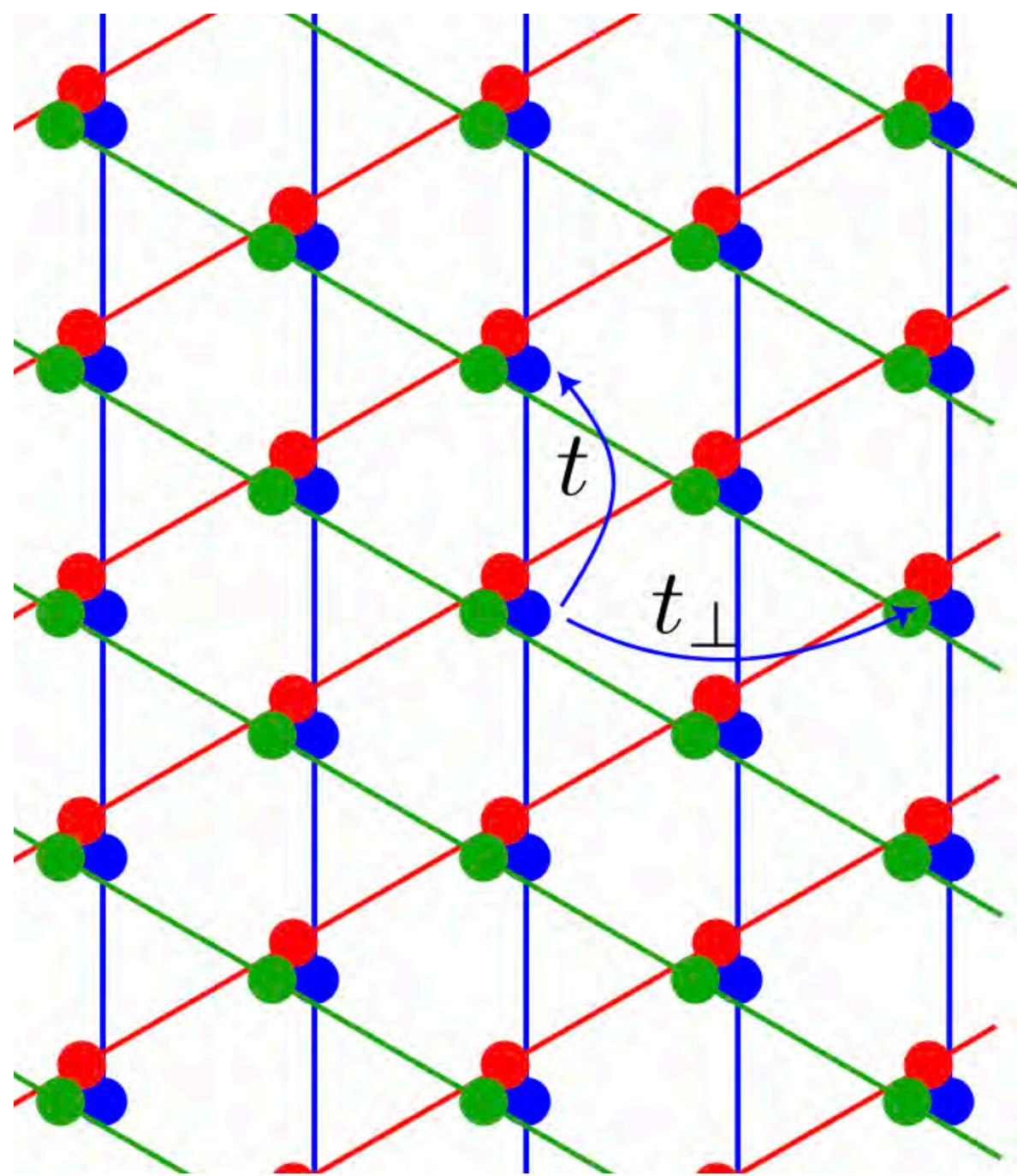


M-Point Moiré Materials II: Electron Correlations and Sign-free Quantum Monte Carlo Techniques



Siddharth Parameswaran
University of Oxford

Collaborators

Dumitru Călugăru

Konstantinos Vasiliou

Oxford

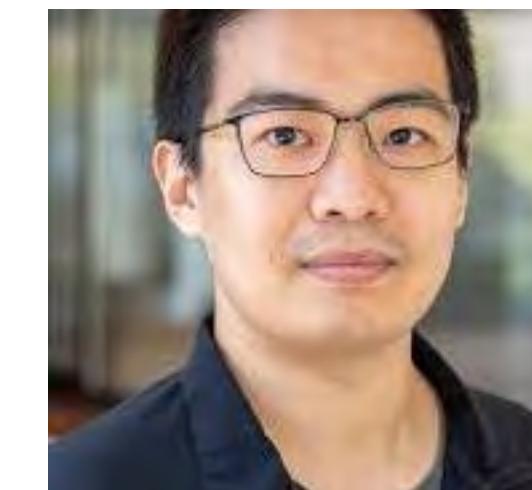
Werner Krauth

Oxford/ENS

Johannes Hofmann

MPI-PKS Dresden

+discussions with Haoyu Hu, Andrei Bernevig



Division of Topics

Lecture I: Basic Principles of Moiré Reconstruction applied to M-point Materials

[mostly adapted from Calugaru et al *Nature* **643**, 376 (2025) and its 100+ page supplementary material]

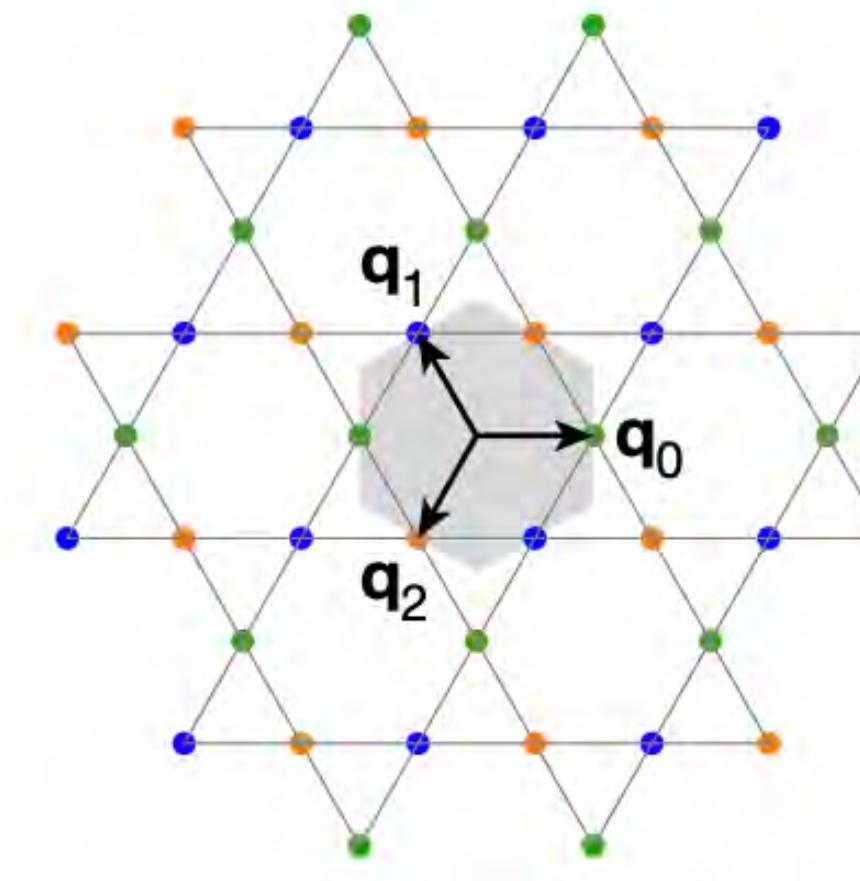
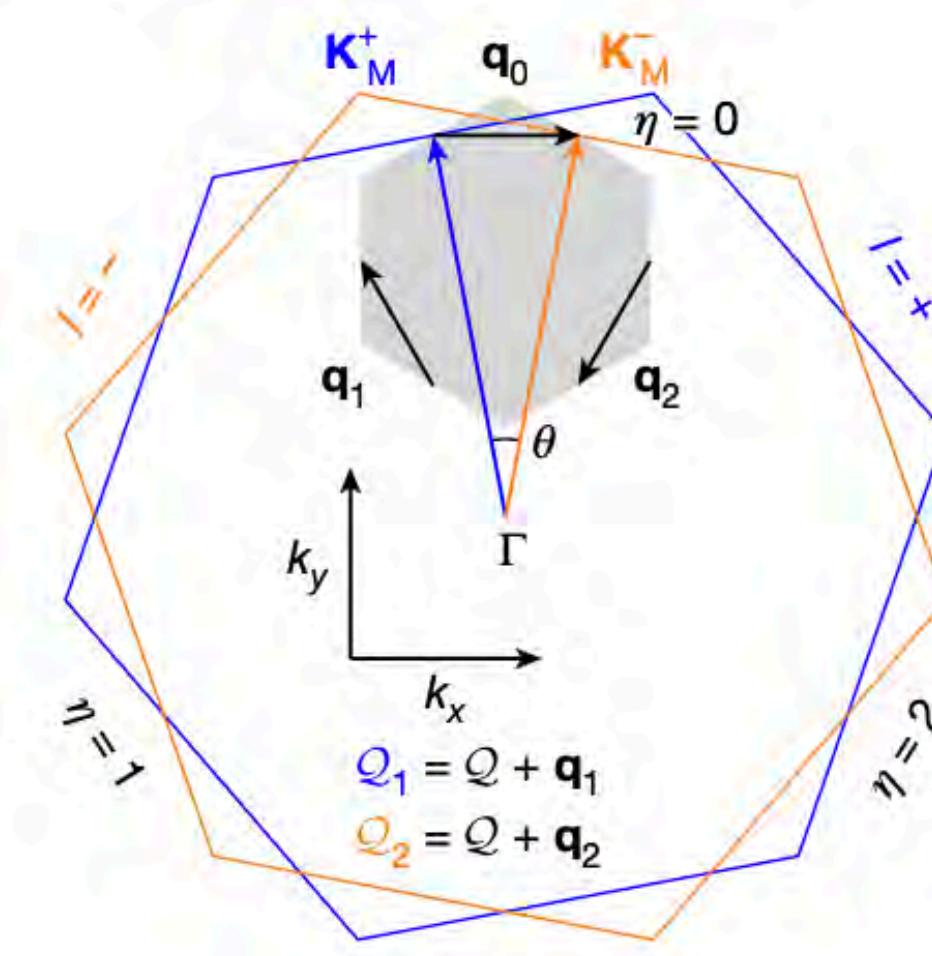
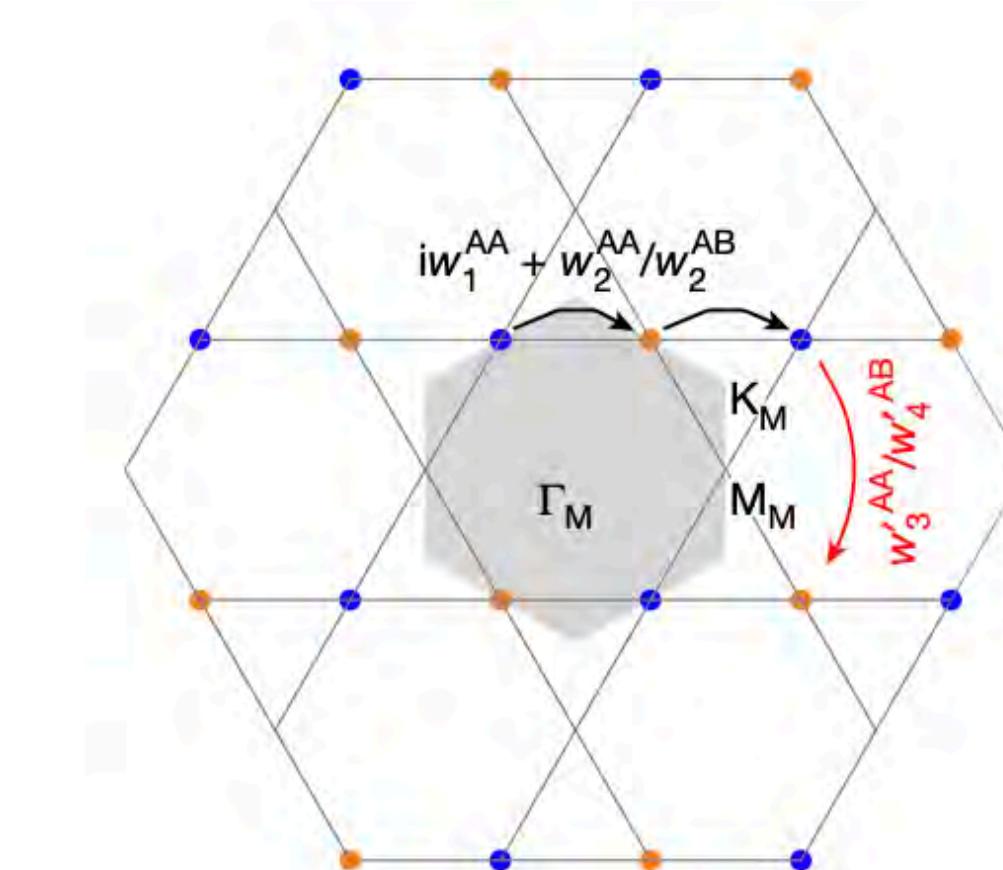
Lecture 2: Sign-Free Quantum Monte Carlo for (some) M-point Materials

[mostly adapted from M.-R. Li, ..., SAP, ..., H. Hu 2508.10098 + work in progress]

Recap of Lecture 1: M-Point Moiré Platforms

Moiré reconstruction \leftrightarrow “momentum space hopping problem” (cf. Bistritzer-MacDonald)

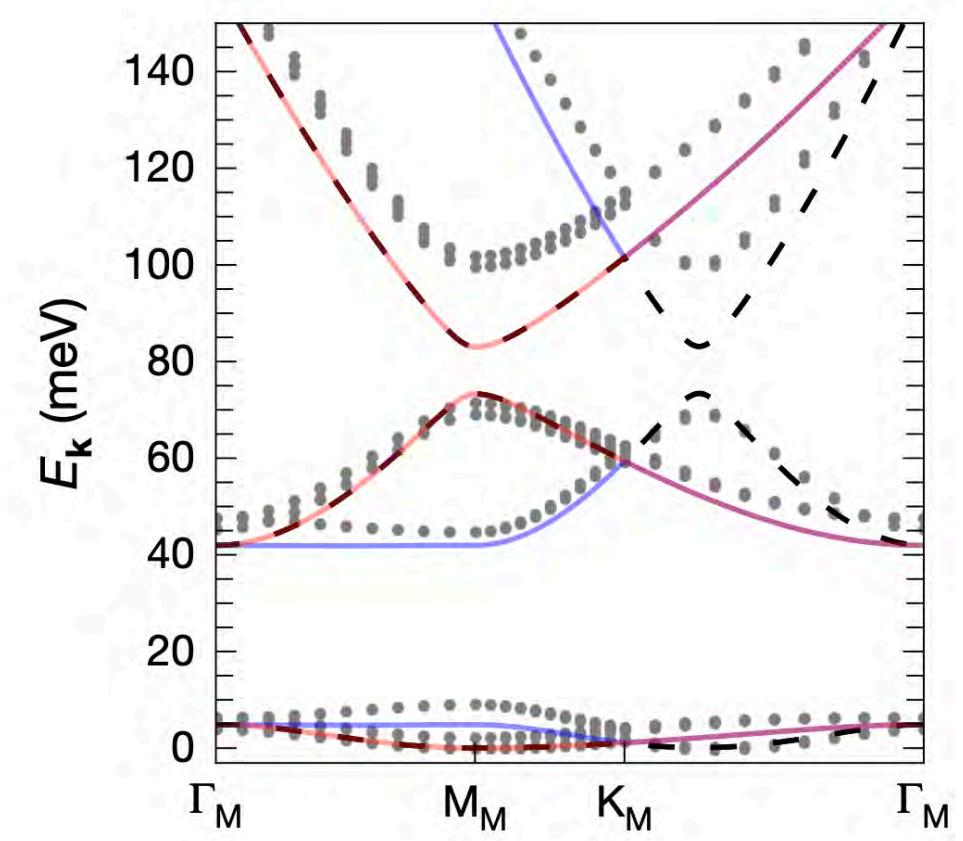
Homobilayers w/ low-energy electrons in each layer at M-point \Rightarrow momentum-space kagomé lattice
(e.g. SnSe₂ ZrS₂)



Layers break inversion so AA/AB stacking differ

In each valley, M-point moiré potential only involves 2 of 3 k -space kagomé sublattices

Emergent k -space nonsymmorphic symmetry \tilde{M}_z can enforce quasi-1D behavior
(eg. AA-stacked *t*-SnSe₂)



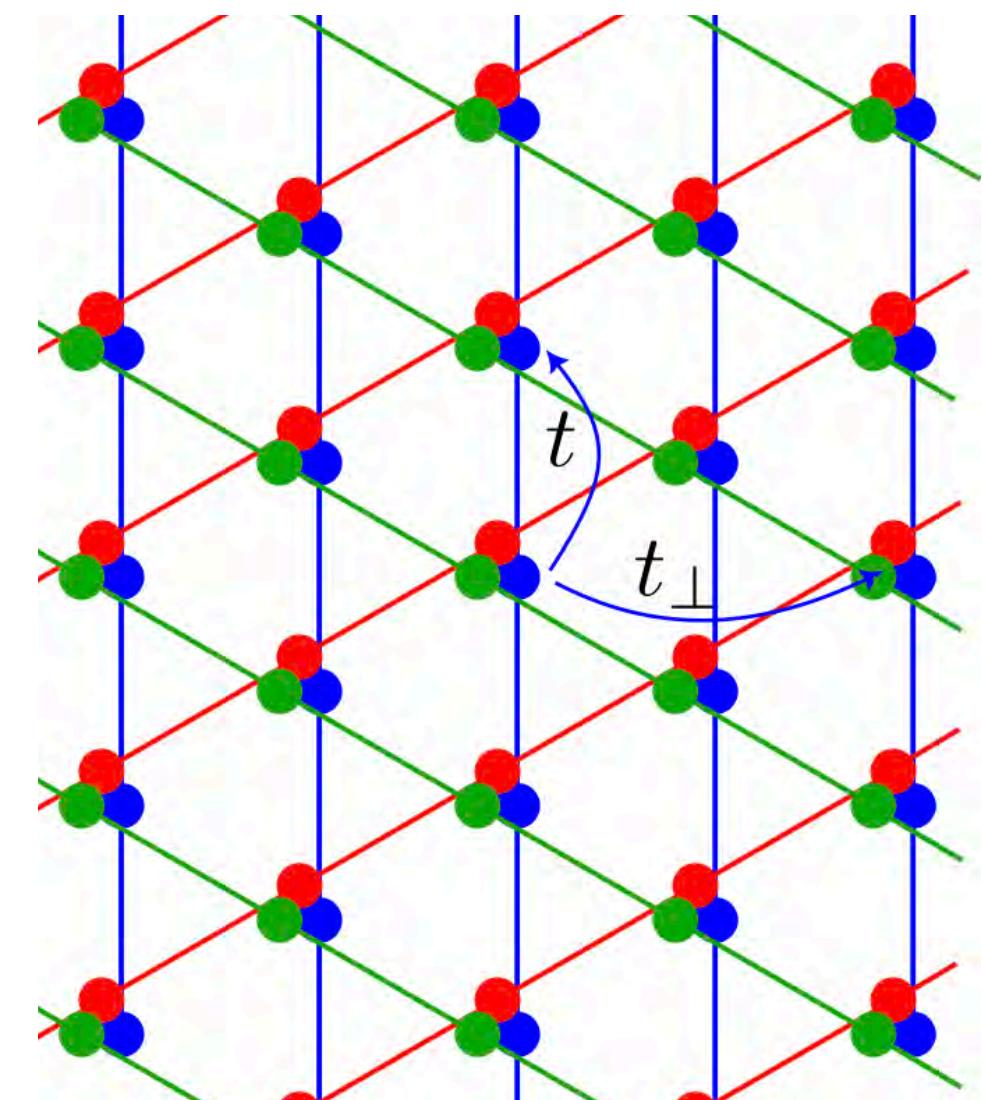
[Calugaru et al *Nature* 643, 376 (2025) + ask Dumitru!]

Emergent Quasi-1D Physics in M -Point Moiré Systems

Focus on quasi-1D AA stacking e.g. $t\text{SnSe}_2$ at $\theta \approx 3.89^\circ$

1 Wannier orbital/valley \times 3 valleys \times spin \Rightarrow 6 states/site, triangular lattice

PHS maps $\nu \leftrightarrow 6 - \nu$



[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098 + work in progress]

Emergent Quasi-1D Physics in M -Point Moiré Systems

Focus on quasi-1D AA stacking e.g. $t\text{SnSe}_2$ at $\theta \approx 3.89^\circ$

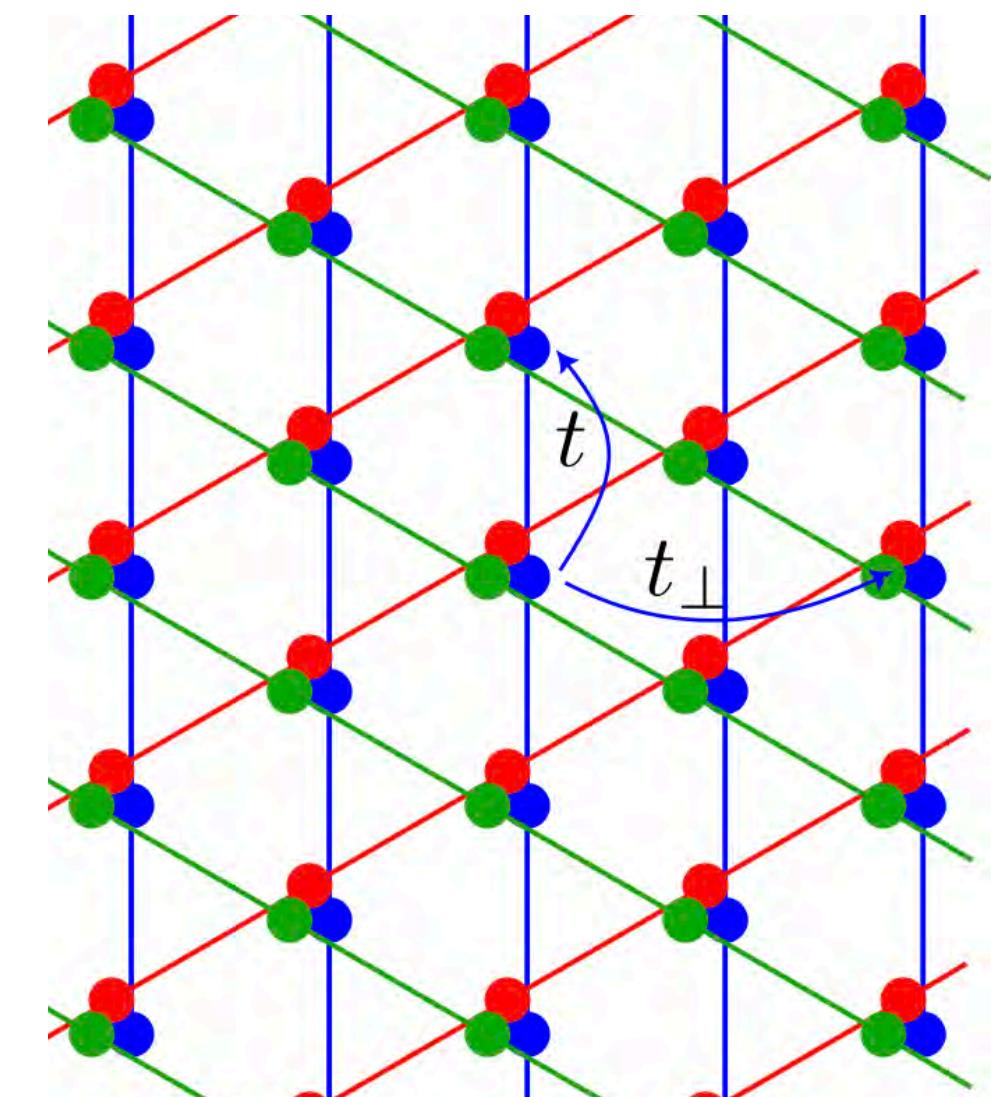
1 Wannier orbital/valley \times 3 valleys \times spin \Rightarrow 6 states/site, triangular lattice

PHS maps $\nu \leftrightarrow 6 - \nu$

Dispersion: **orbitally-selective 1D hopping t**

Leading 2d kinetic term: **2nd-neighbor intravalley t_\perp**

(1st neighbor vanishes b/c approx. symmetry)



[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098 + work in progress]

Emergent Quasi-1D Physics in M -Point Moiré Systems

Focus on quasi-1D AA stacking e.g. $t\text{SnSe}_2$ at $\theta \approx 3.89^\circ$

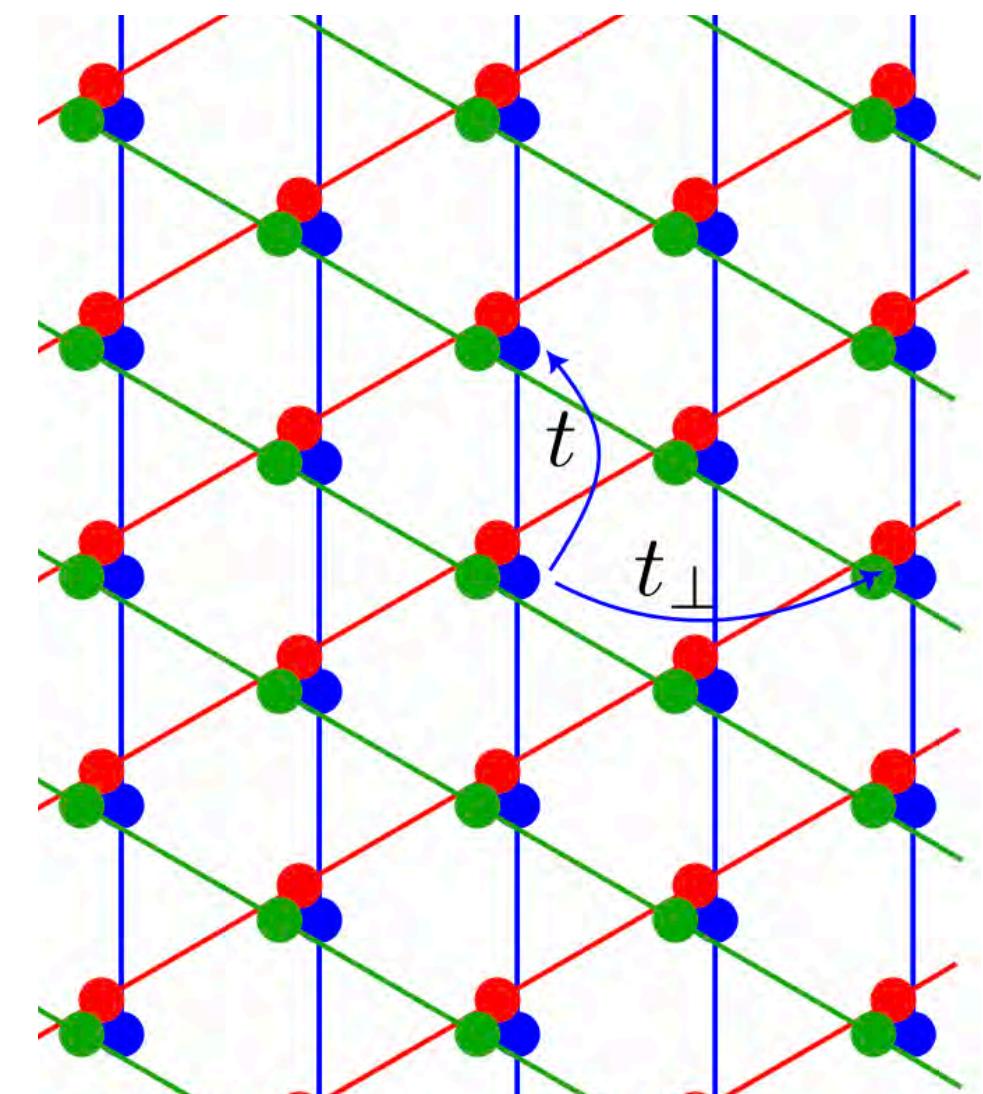
1 Wannier orbital/valley \times 3 valleys \times spin \Rightarrow 6 states/site, triangular lattice

PHS maps $\nu \leftrightarrow 6 - \nu$

Dispersion: **orbitally-selective 1D hopping t**

Leading 2d kinetic term: **2nd-neighbor intravalley t_\perp**

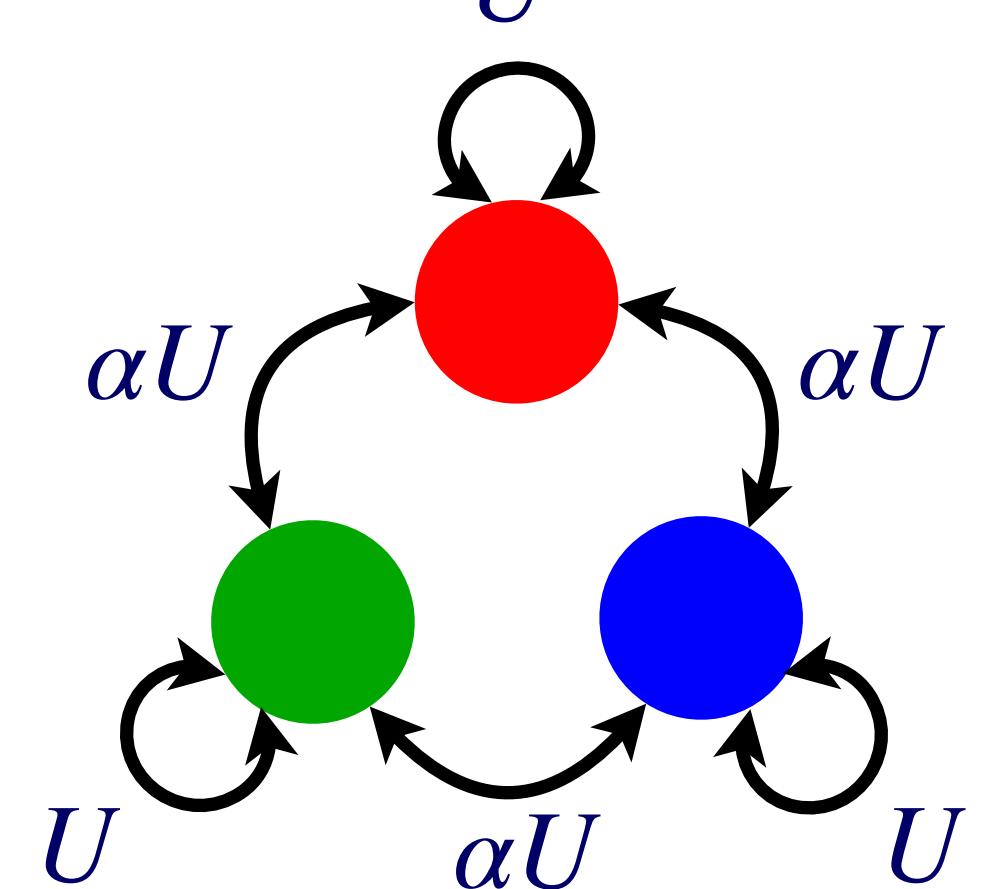
(1st neighbor vanishes b/c approx. symmetry)



Interactions: On-site Hubbard U + nearest-neighbour V (fully 2D)

Orbital offsets \Rightarrow anisotropies in U, V (opp. sign for U, V)

- only retain U anisotropy



[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098 + work in progress]

Emergent Quasi-1D Physics in M -Point Moiré Systems

Focus on quasi-1D AA stacking e.g. $t\text{SnSe}_2$ at $\theta \approx 3.89^\circ$

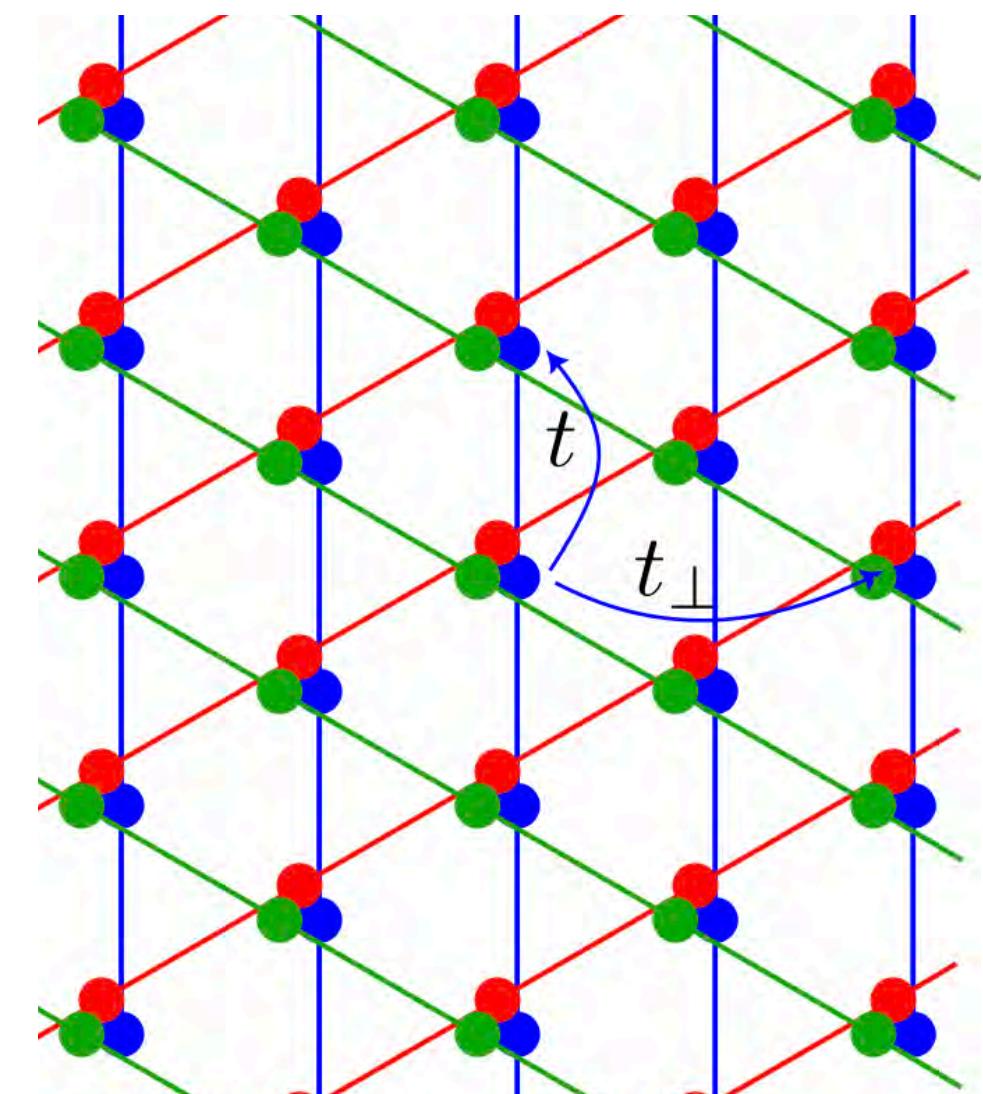
1 Wannier orbital/valley \times 3 valleys \times spin \Rightarrow 6 states/site, triangular lattice

PHS maps $\nu \leftrightarrow 6 - \nu$

Dispersion: **orbitally-selective 1D hopping t**

Leading 2d kinetic term: **2nd-neighbor intravalley t_\perp**

(1st neighbor vanishes b/c approx. symmetry)

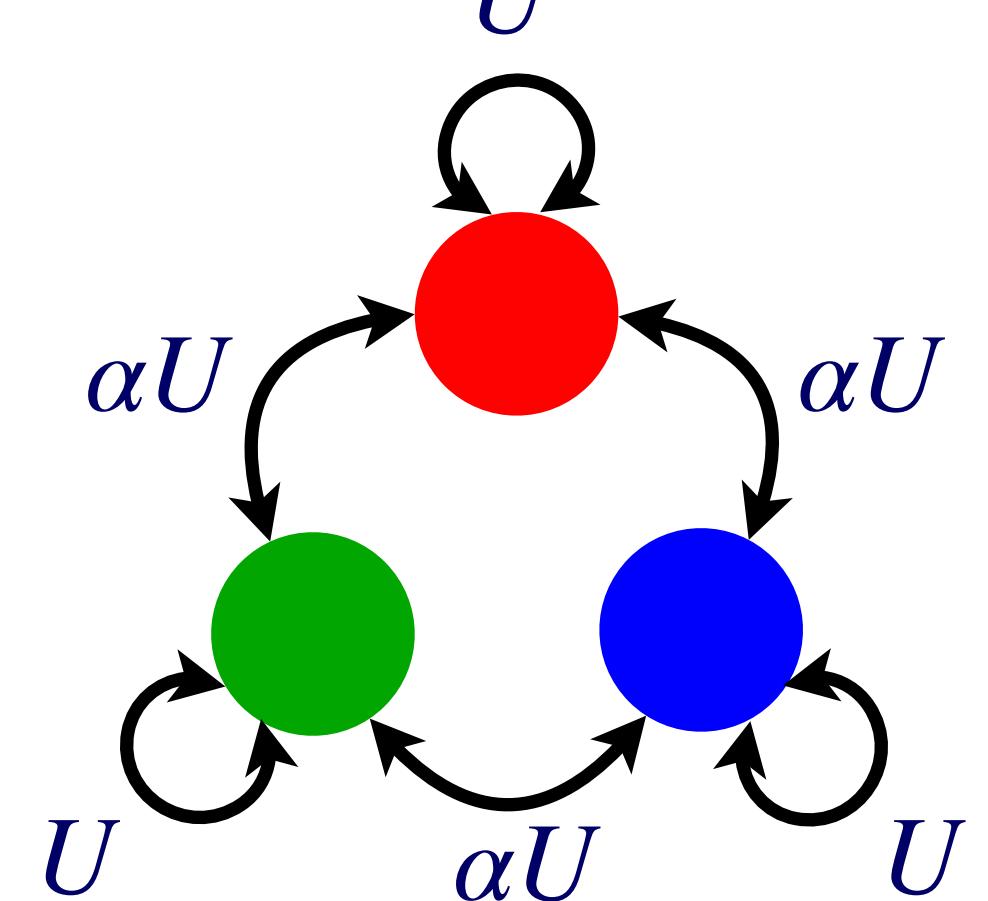


Interactions: On-site Hubbard U + nearest-neighbour V (fully 2D)

Orbital offsets \Rightarrow anisotropies in U, V (opp. sign for U, V)

- only retain U anisotropy

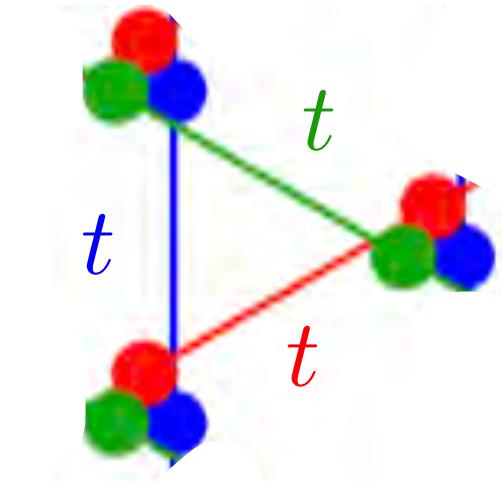
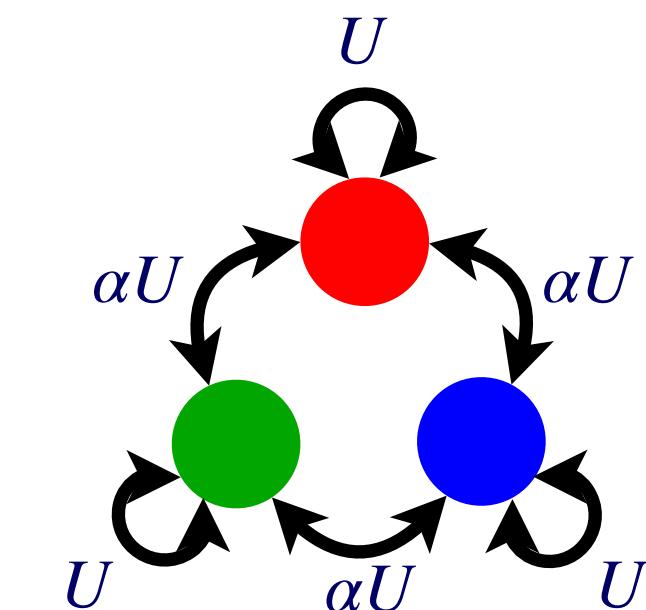
$\alpha = 1$: on-site terms **$U(6)$ -symmetric, only broken by hopping**



[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098 + work in progress]

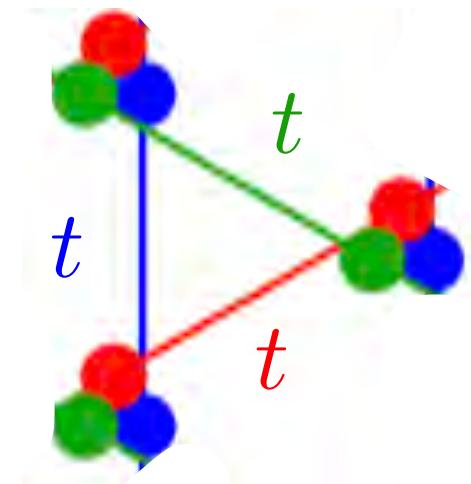
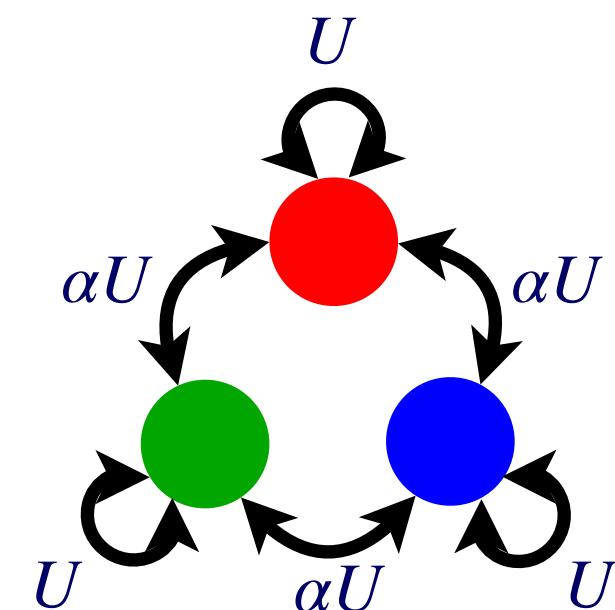
The Hamiltonian

$$H = - \sum_{\langle ij \rangle, \eta, \sigma} t_\eta c_{i, \eta, \sigma}^\dagger c_{j, \eta, \sigma} + U \sum_{i, \eta, \eta'} \{(1 - \alpha) \delta_{\eta \eta'} + \alpha\} n_{i\eta} n_{i\eta'} + H_V + H_\perp$$



The Hamiltonian

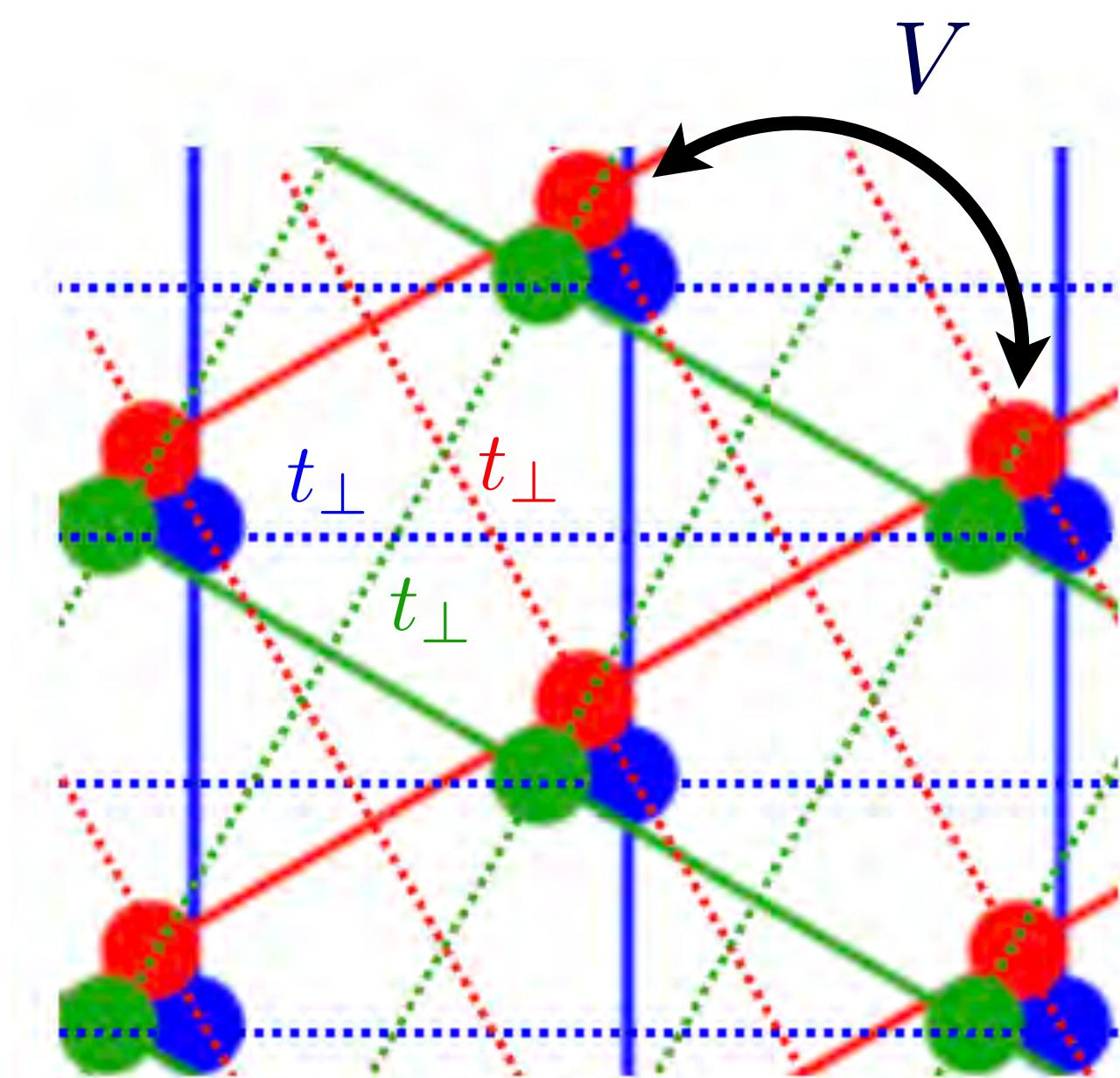
$$H = - \sum_{\langle ij \rangle, \eta, \sigma} t_\eta c_{i, \eta, \sigma}^\dagger c_{j, \eta, \sigma} + U \sum_{i, \eta, \eta'} \{(1 - \alpha) \delta_{\eta \eta'} + \alpha\} n_{i\eta} n_{i\eta'} + H_V + H_\perp$$



$$H_V = \sum_{\langle i, j \rangle, \eta, \sigma} V n_{i, \eta, \sigma} n_{j, \eta, \sigma} \quad (\text{ignore anisotropies})$$

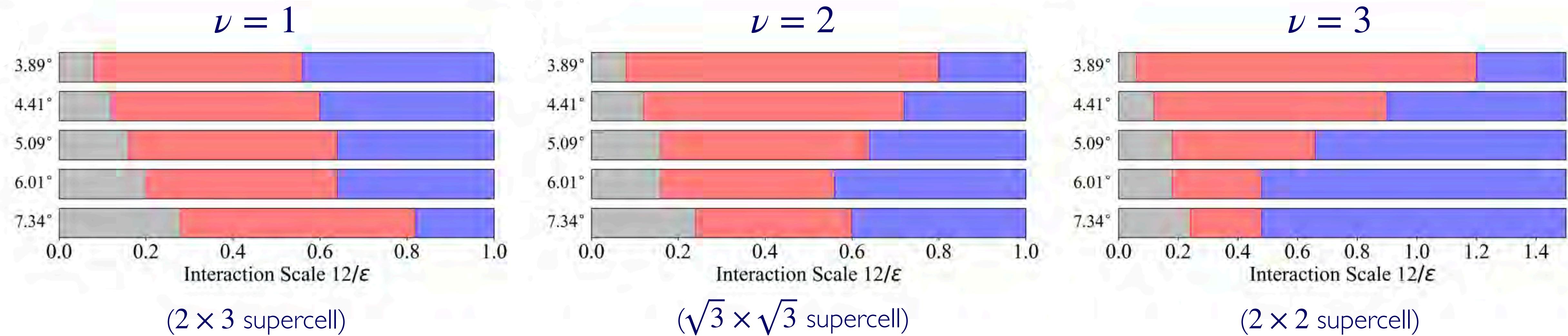
$$H_\perp = - \sum_{\langle\langle ij \rangle\rangle, \eta, \sigma} t_{\perp, \eta} c_{i, \eta, \sigma}^\dagger c_{j, \eta, \sigma}$$

“weak” 2nd nbr hopping: each valley \rightarrow 2x2d rectangular lattices



First Pass: Hartree-Fock

Momentum- and **real-** space Hartree-Fock in continuum model + projected Coulomb interaction



Qualitative Picture:

[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

Strong-Coupling at Integer Fillings

AF super exchange at $O(t^2/U)$ breaks $U(6) \rightarrow SU(2) \times SU(2) \times SU(2)$

Exact results for $V = 0$ by mapping energetics to \otimes (spin chains of different lengths)

$\nu = 1$ case

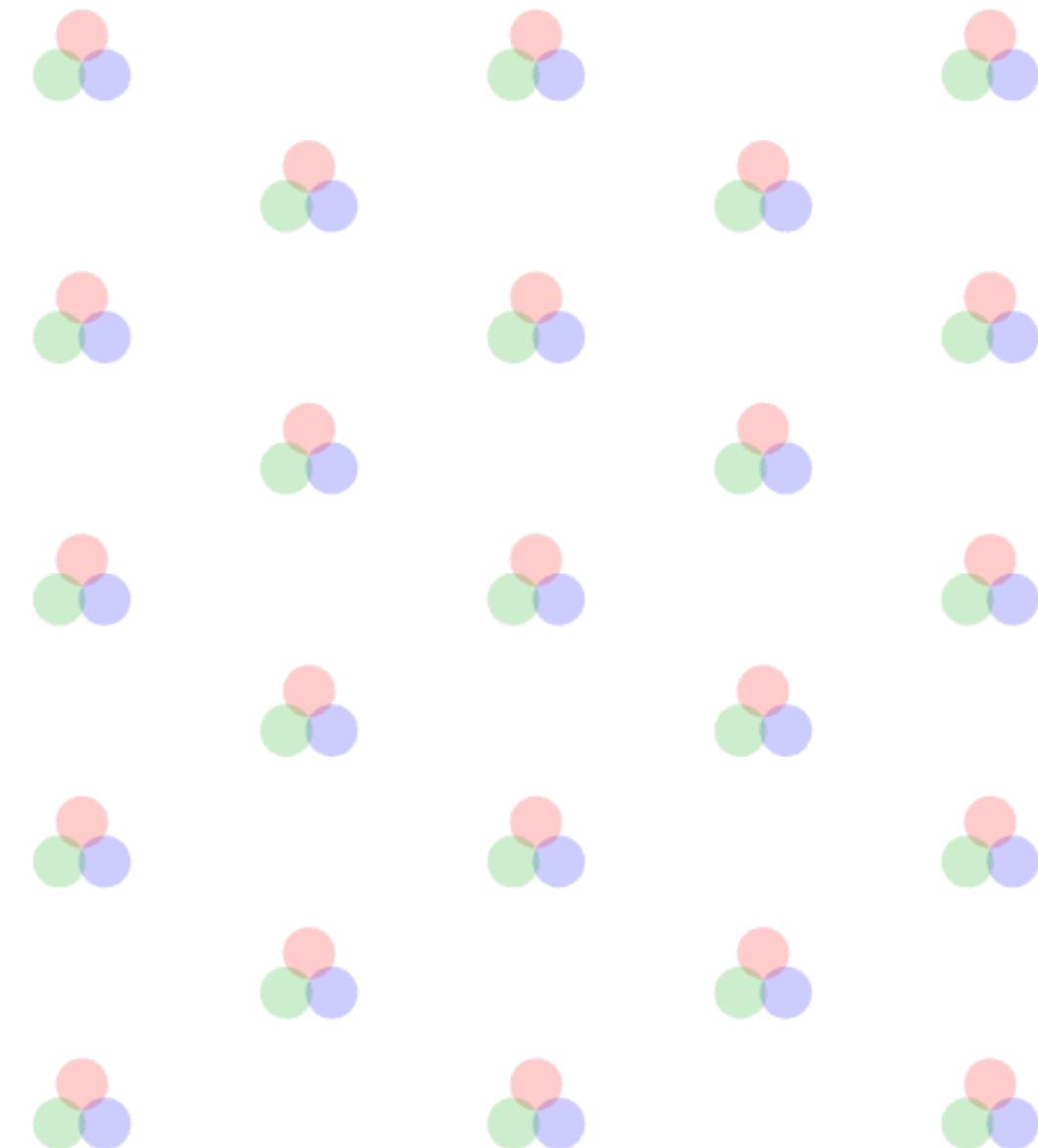
[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

Strong-Coupling at Integer Fillings

AF super exchange at $O(t^2/U)$ breaks $U(6) \rightarrow SU(2) \times SU(2) \times SU(2)$

Exact results for $V = 0$ by mapping energetics to \otimes (spin chains of different lengths)

$\nu = 1$ case



Step 1: Start with lattice model for all valleys

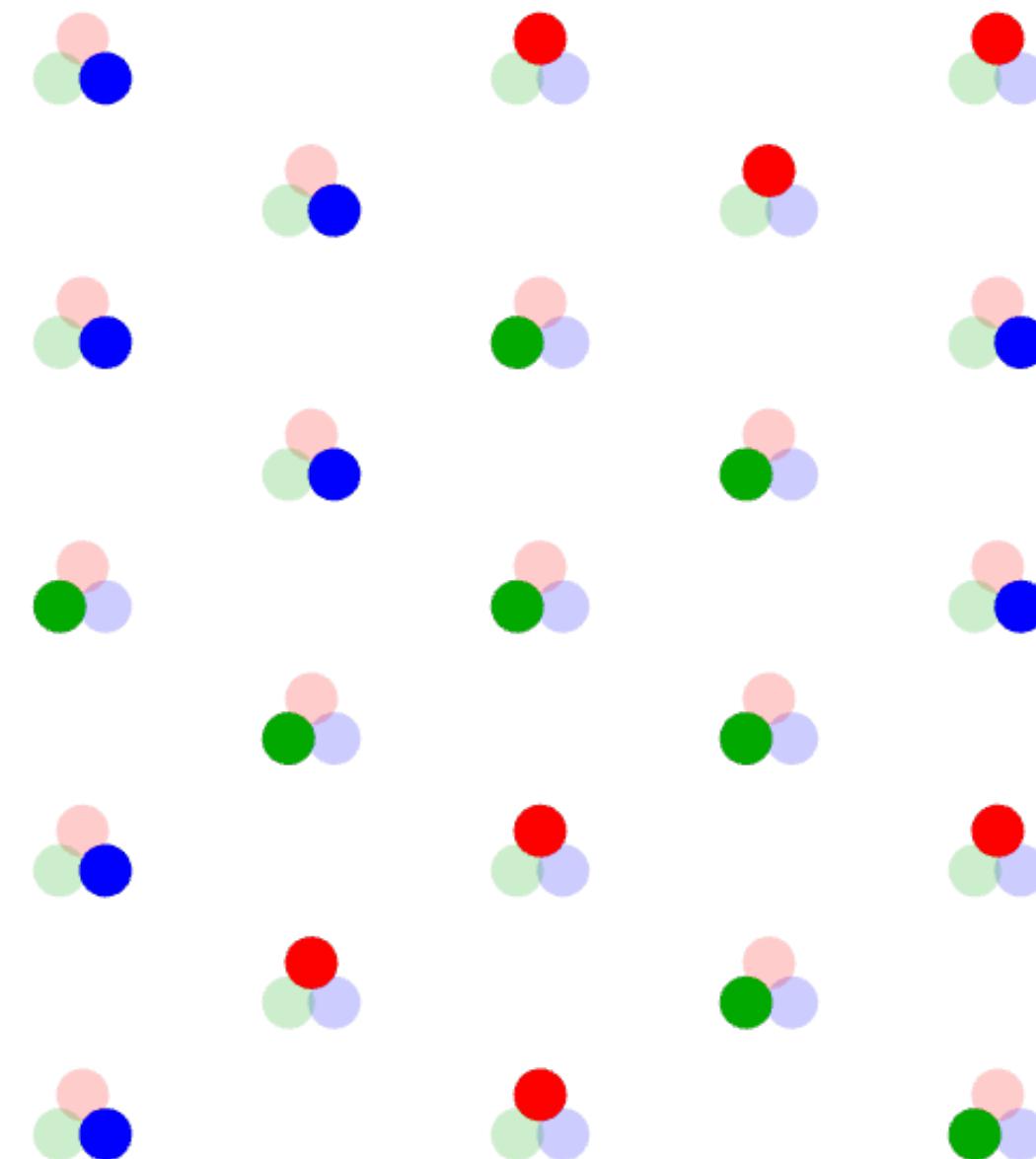
[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

Strong-Coupling at Integer Fillings

AF super exchange at $O(t^2/U)$ breaks $U(6) \rightarrow SU(2) \times SU(2) \times SU(2)$

Exact results for $V = 0$ by mapping energetics to \otimes (spin chains of different lengths)

$\nu = 1$ case



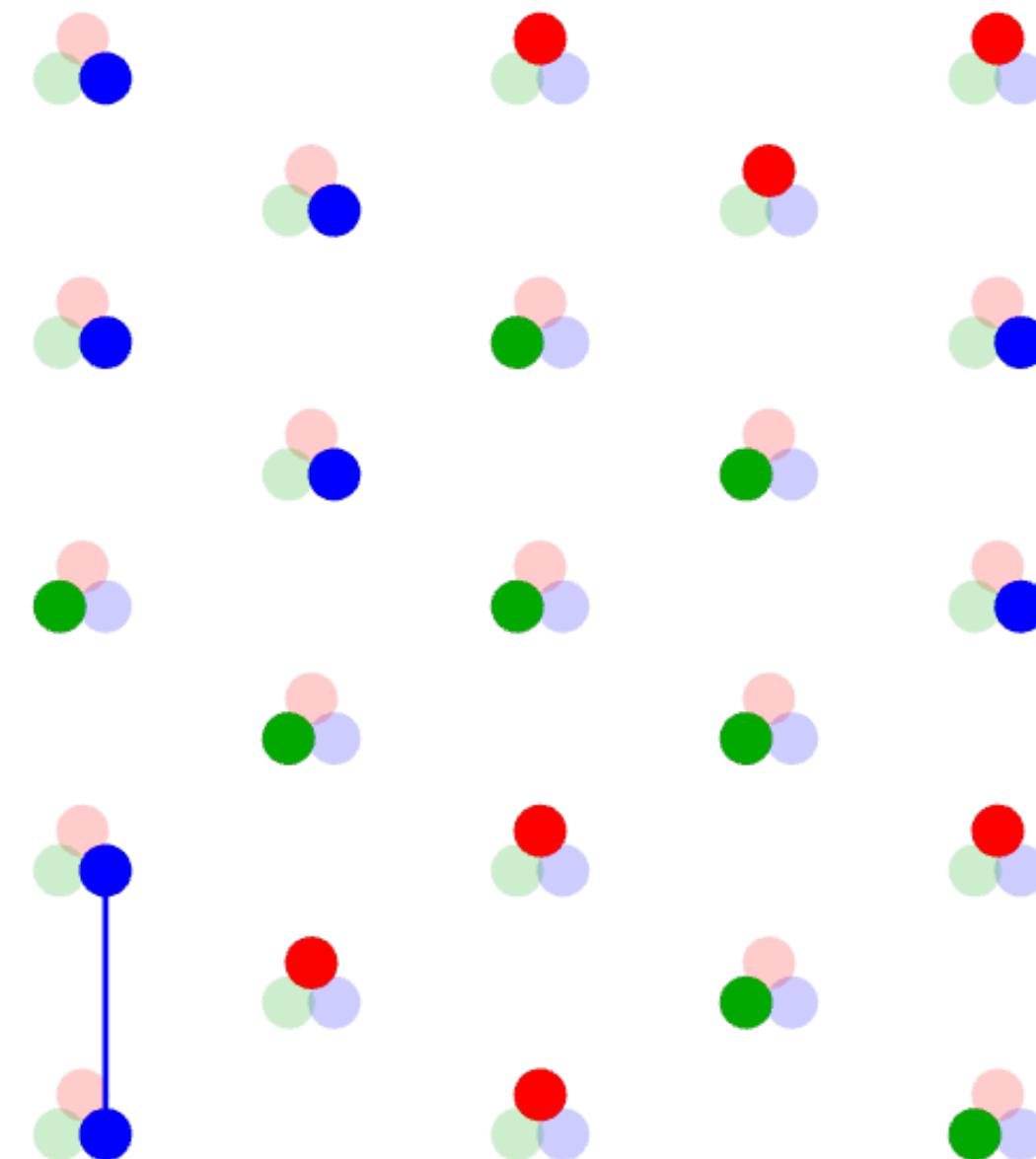
[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

Strong-Coupling at Integer Fillings

AF super exchange at $O(t^2/U)$ breaks $U(6) \rightarrow SU(2) \times SU(2) \times SU(2)$

Exact results for $V = 0$ by mapping energetics to \otimes (spin chains of different lengths)

$\nu = 1$ case



Step 3: consider strong-coupling effective Hamiltonian
(usual Hubbard \rightarrow Heisenberg AF, but valley-selective — cf. $\eta_{\langle ij \rangle}$)

$$H_{\text{eff}} = -\frac{4t^2}{U} \sum_{\langle ij \rangle} \mathcal{P}_{\nu=1} \left[\mathbf{S}_{i,\eta_{\langle ij \rangle}} \cdot \mathbf{S}_{j,\eta_{\langle ij \rangle}} + \frac{1}{4} n_{i\eta_{\langle ij \rangle}} n_{j,\eta_{\langle ij \rangle}} \right] \mathcal{P}_{\nu=1}$$

\Rightarrow 1d AF valley-selective coupling that tracks valley anisotropy

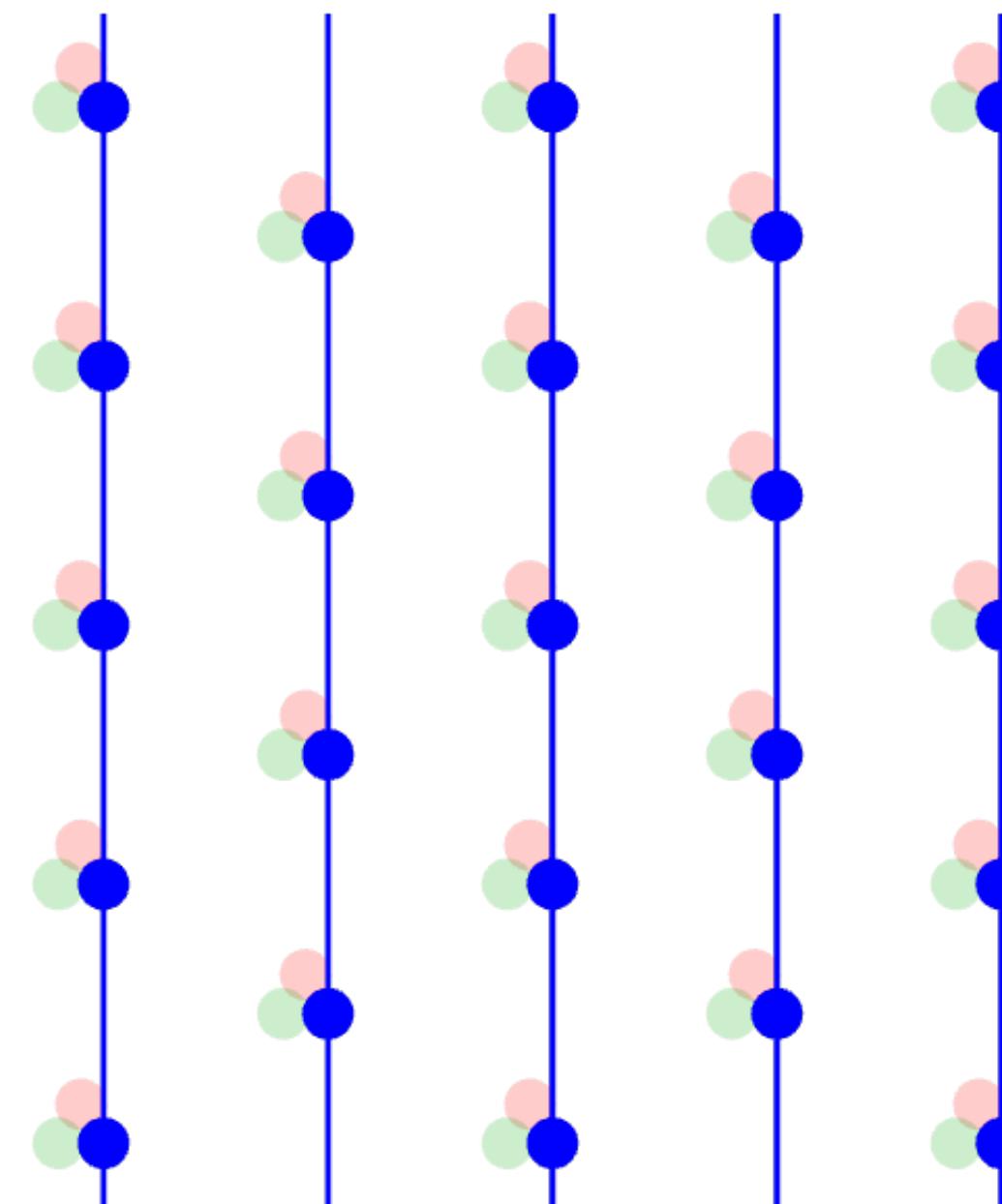
[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

Strong-Coupling at Integer Fillings

AF super exchange at $O(t^2/U)$ breaks $U(6) \rightarrow SU(2) \times SU(2) \times SU(2)$

Exact results for $V = 0$ by mapping energetics to \otimes (spin chains of different lengths)

$\nu = 1$ case



Step 4: determine optimum valley configuration

Since H_{eff} is valley-selective, if we change valley, spin chains “end”
⇒ calculate energy by linking “connected” sites

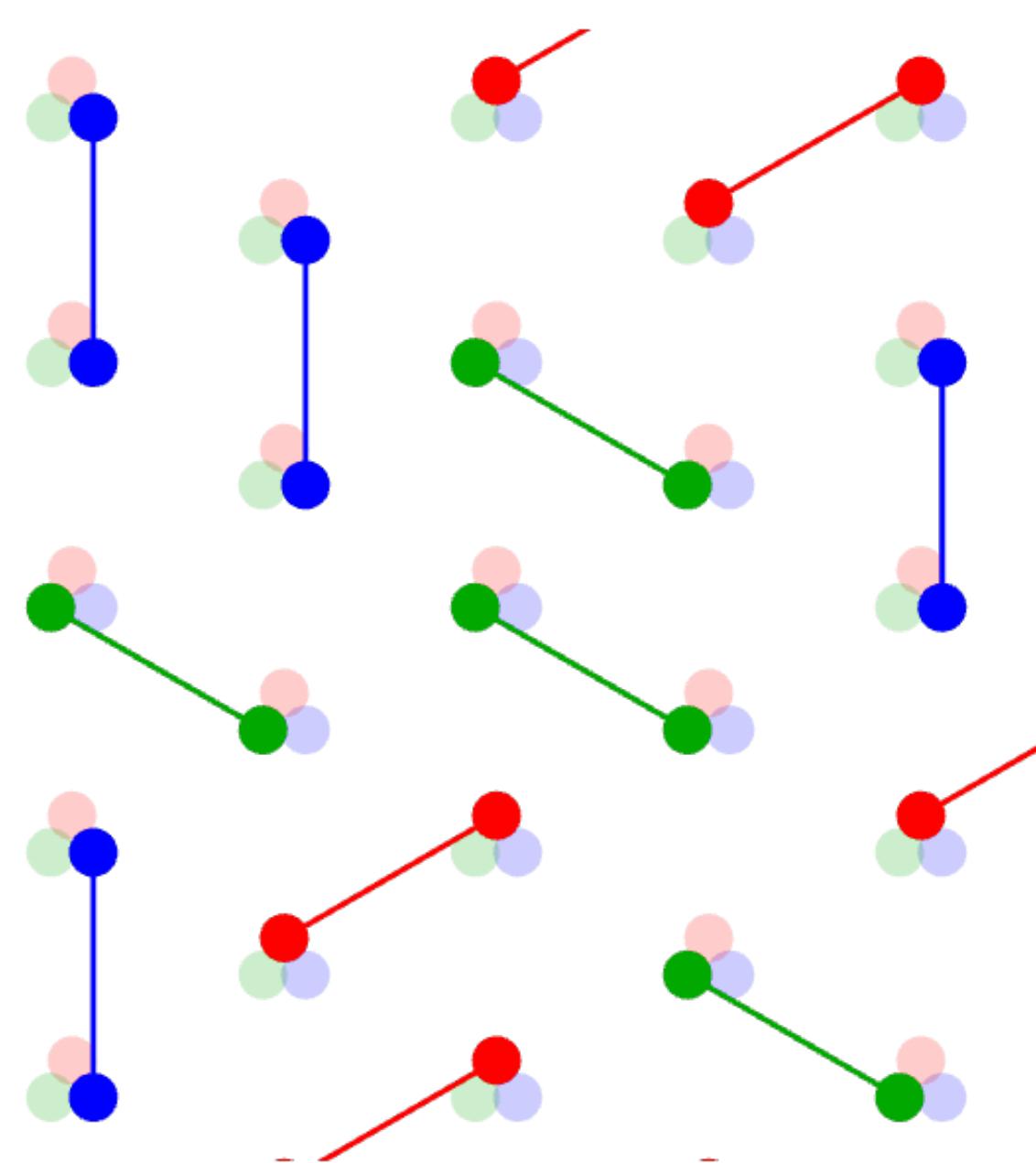
[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

Strong-Coupling at Integer Fillings

AF super exchange at $O(t^2/U)$ breaks $U(6) \rightarrow SU(2) \times SU(2) \times SU(2)$

Exact results for $V = 0$ by mapping energetics to \otimes (spin chains of different lengths)

$\nu = 1$ case



Result: “dimerize” since $\min_L \frac{E(L)}{L}$ is at $L = 2$ for Heisenberg AF

“classical dimer solid” with no-turn rule

extensive degeneracy ($S_{T=0} \approx 0.307Nk_B$)

(needs some work to compute!)

[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

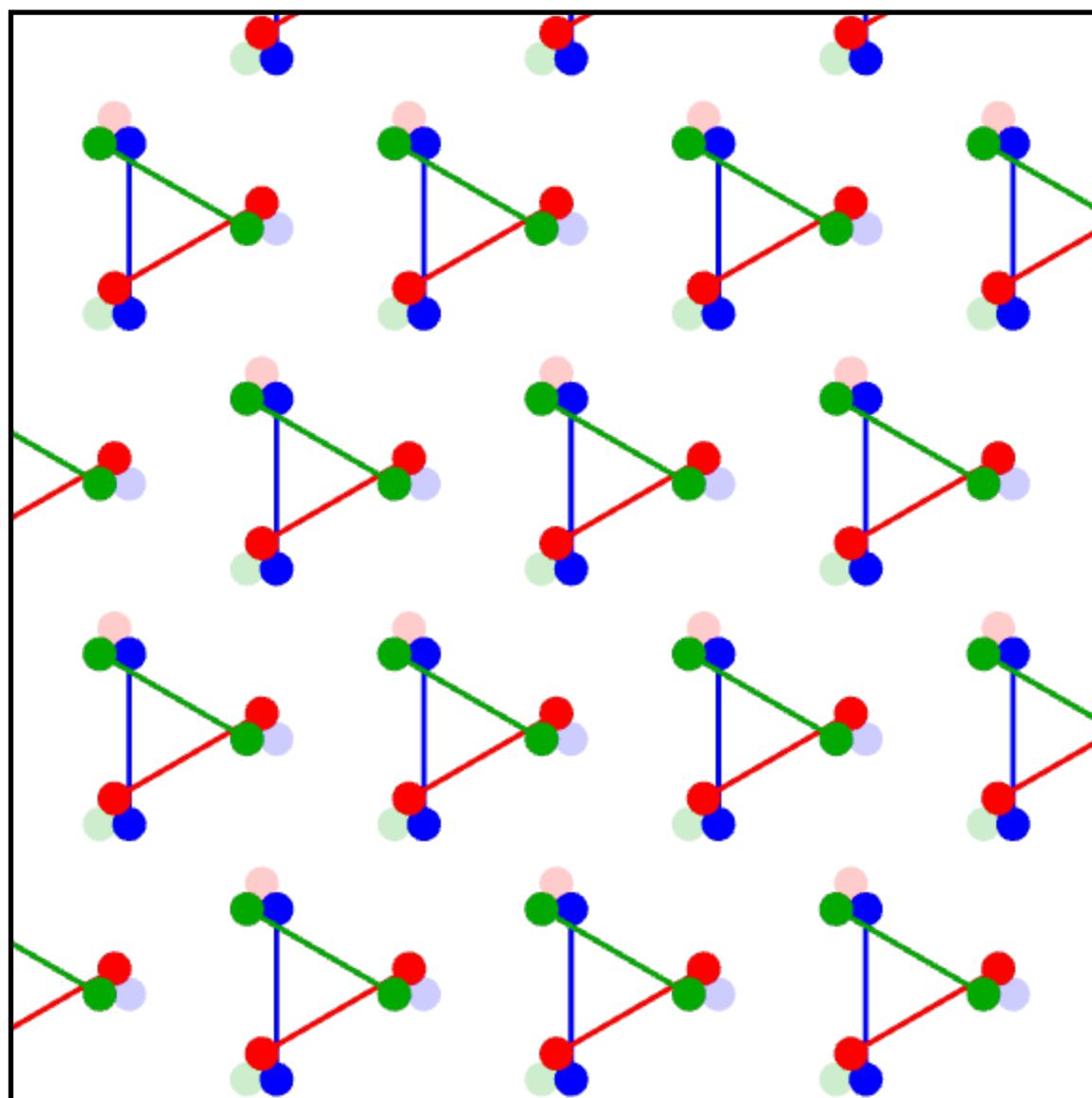
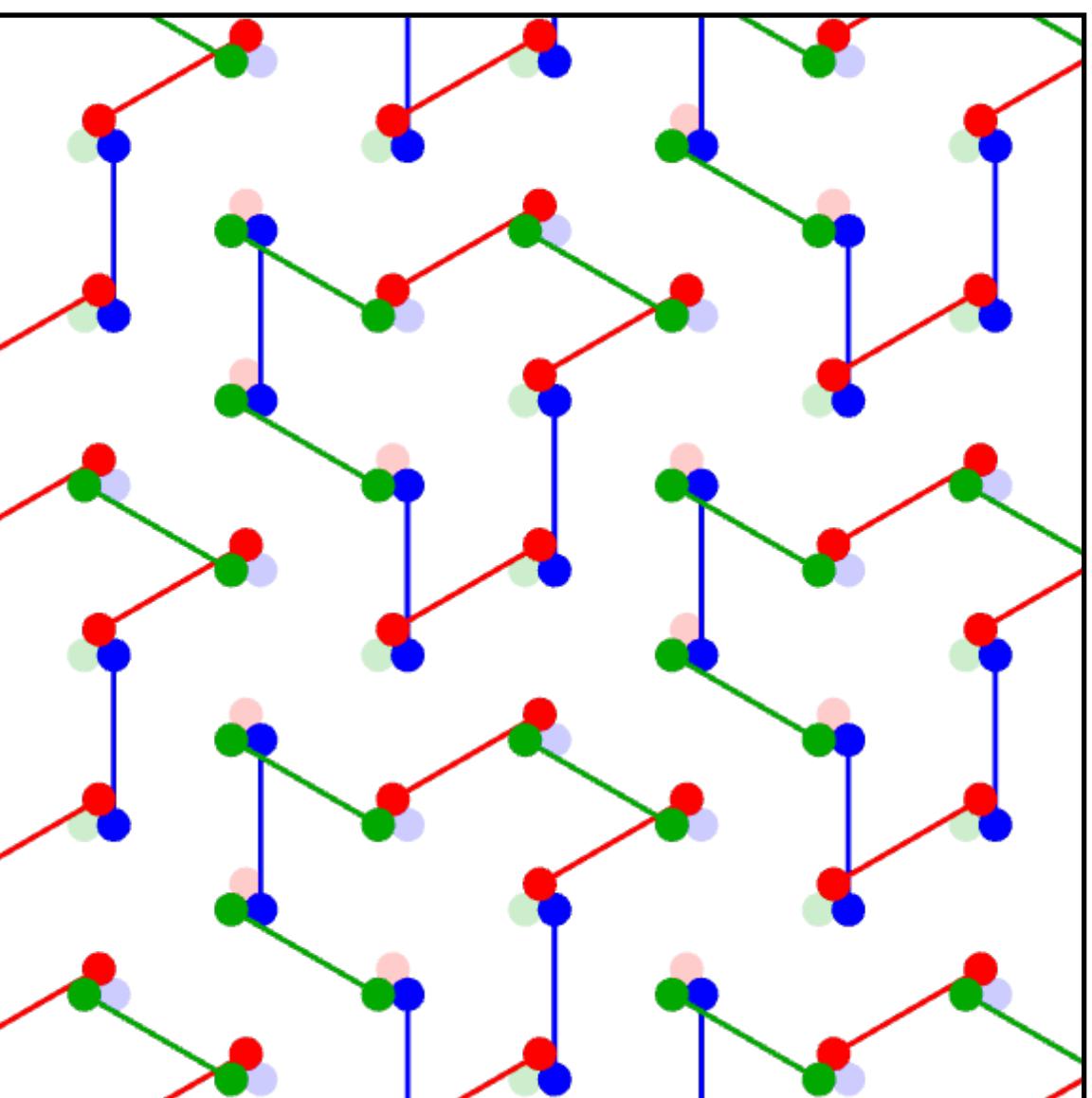
Strong-Coupling at Integer Fillings

AF super exchange at $O(t^2/U)$ breaks $U(6) \rightarrow SU(2) \times SU(2) \times SU(2)$

Exact results for $V = 0$ by mapping energetics to \otimes (spin chains of different lengths)

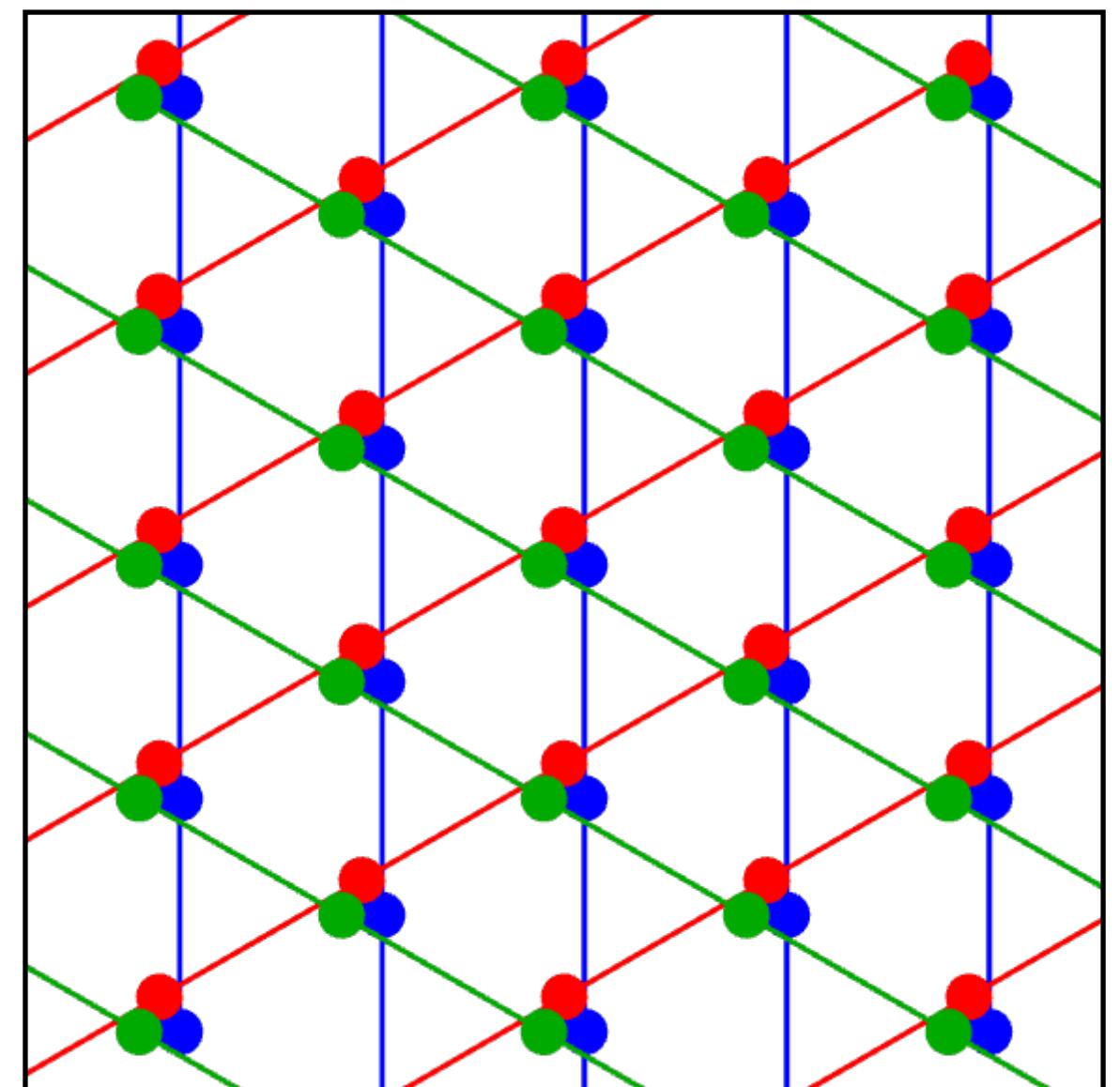
$\nu = 2$ case

similar logic to $\nu = 1$ but now get 2 distinct VBS states



$\nu = 3$ case

just get 3 sets of Heisenberg chains

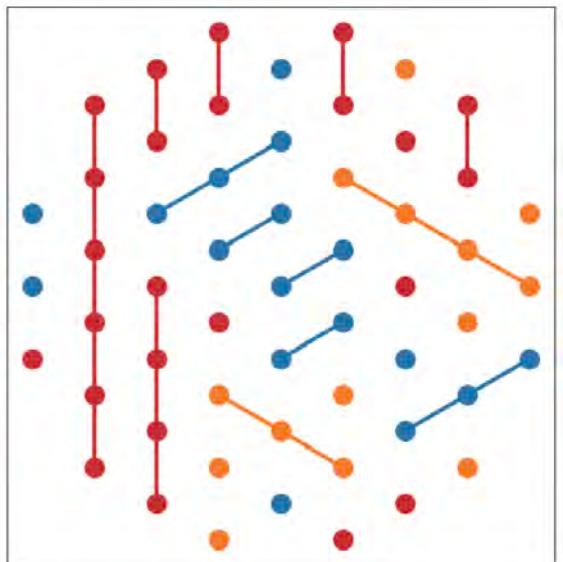


[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

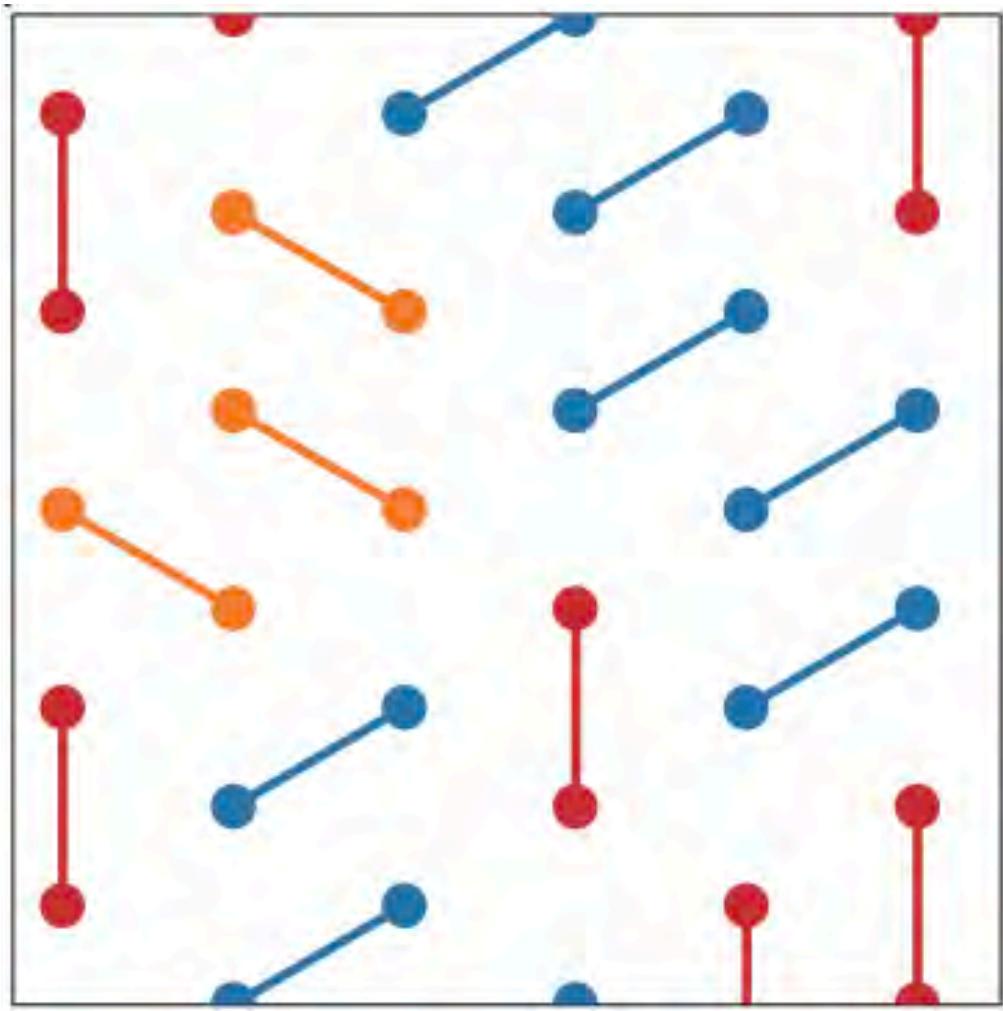
Strong-Coupling Model at Integer Fillings: Summary

AF super exchange at $O(t^2/U)$ breaks $U(6) \rightarrow SU(2) \times SU(2) \times SU(2)$

Exact results for $V = 0$ by mapping energetics to \otimes (spin chains of different lengths)

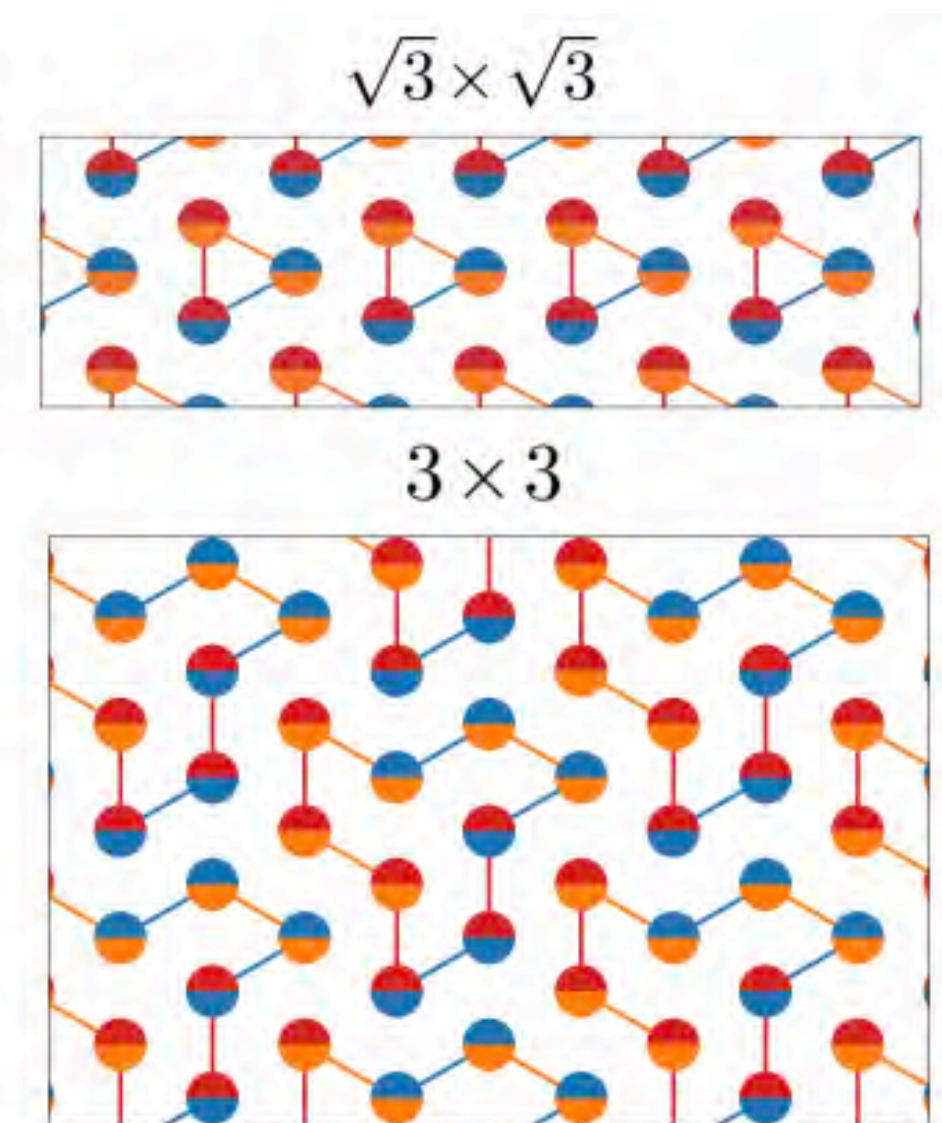


$\nu = 1$



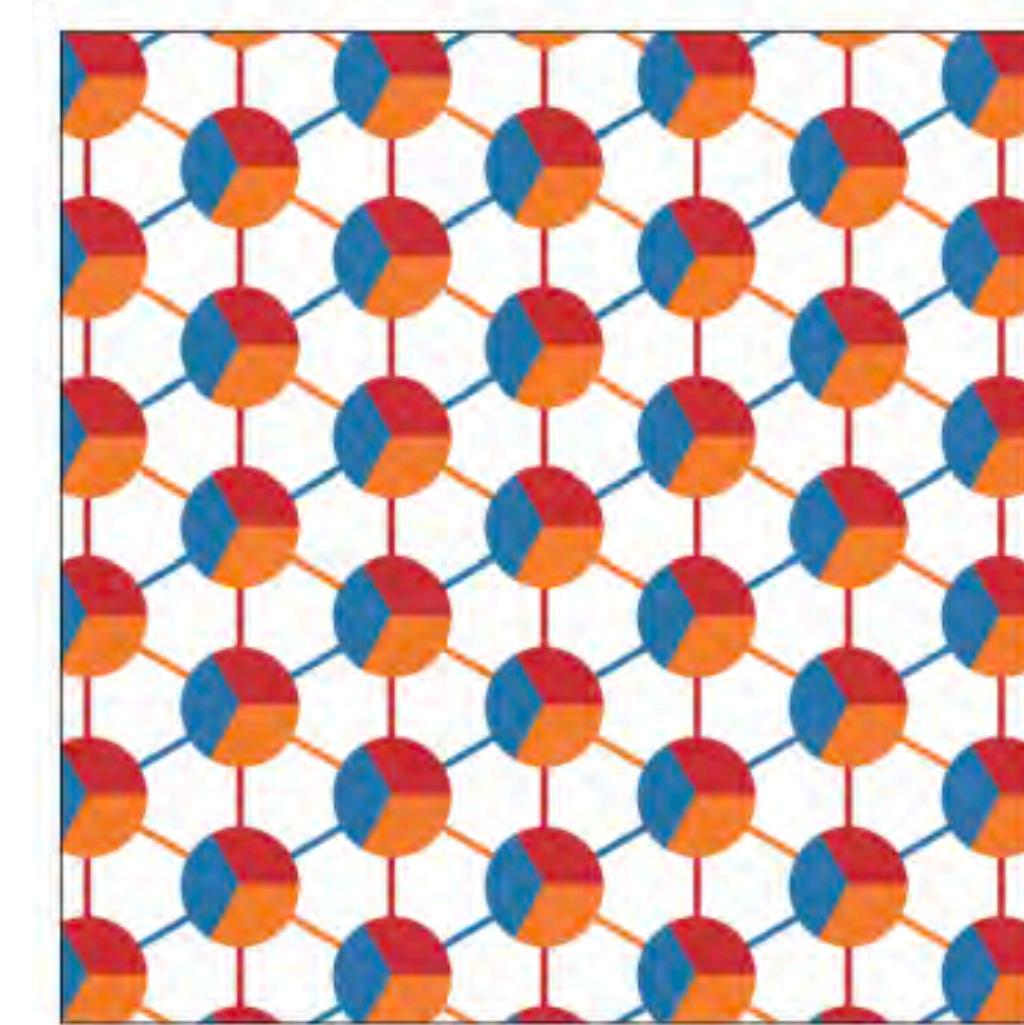
disordered classical dimer solid
w/ ‘forced turn’ rule

$\nu = 2$



two types of
degenerate VBS

$\nu = 3$



stacked-chain-state
(quantum-disordered spins)

[M.-R. Li, ..., SAP, ..., H. Hu 2508.10098]

As is often the case, intermediate coupling is likely to be interesting

Can we do *controlled* calculations away from strong/weak coupling?
(rest of this talk)

As is often the case, intermediate coupling is likely to be interesting

Can we do *controlled* calculations away from strong/weak coupling?
(rest of this talk)

Possibly useful pictures to keep in mind:

“crossed sliding Luttinger liquids”

[R. Mukhopadhyay, C.L. Kane, and T. Lubensky, *PRB* **63**, 081103 (2001); *PRB* **64**, 045120 (2001)]

multi-orbital Hubbard with anisotropic hopping (à la Kugel-Khomskii)

mixed-dimensional Hubbard model

[see e.g., A. Bohrdt et al, *Nature Physics* **18**, 651 (2022)]

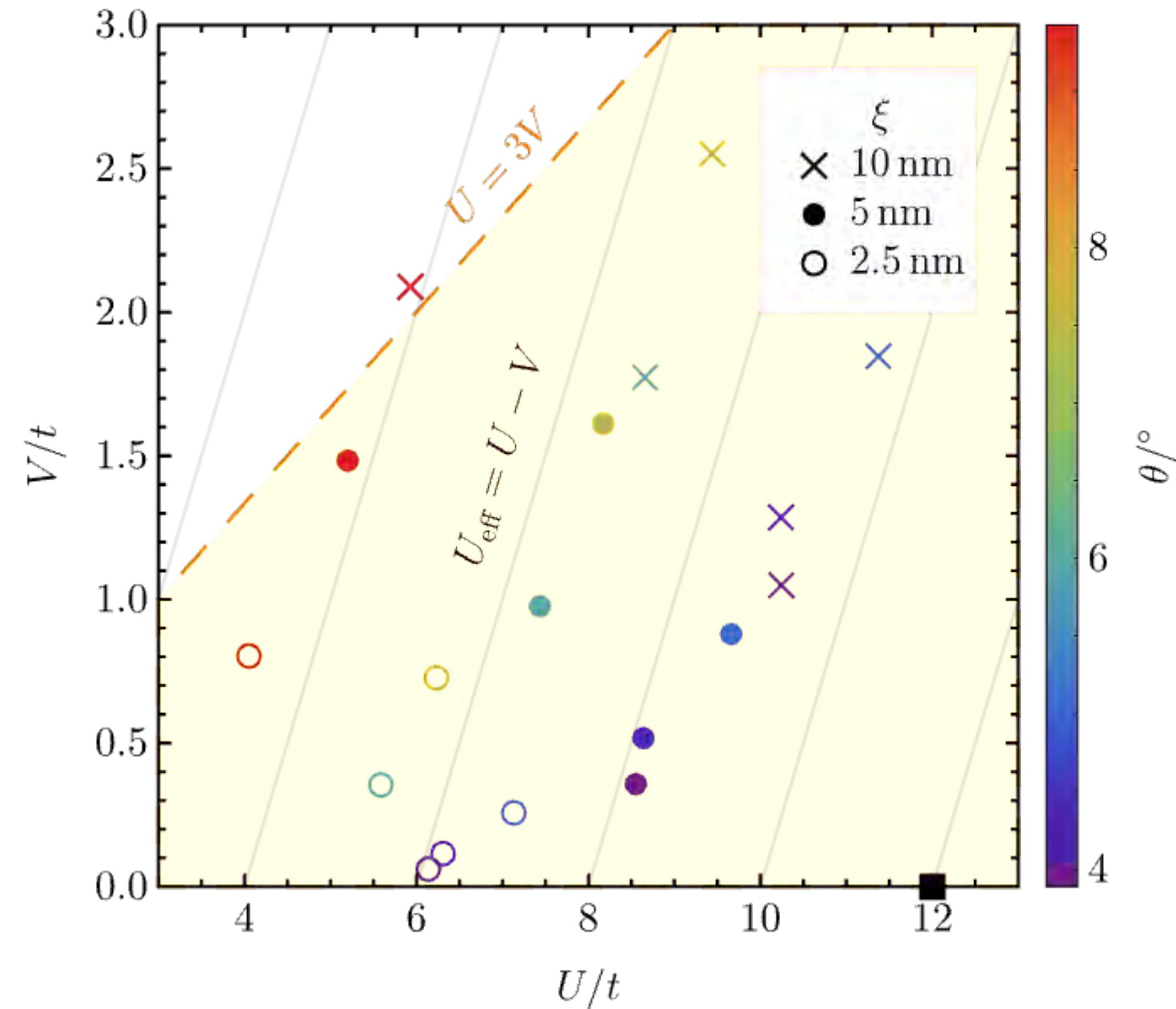
Aside: How strong is “strong coupling”?

Extended Hubbard with $U, V \approx$ on-site Hubbard with $U^* \approx U + \frac{1}{2} \sum_{i \neq j} V_{ij} \frac{\partial_{U^*} \langle n_{i\sigma} n_{j\sigma'} \rangle^*}{\sum_l \partial_{U^*} \langle n_{l\uparrow} n_{l\downarrow} \rangle^*} \approx U - V$

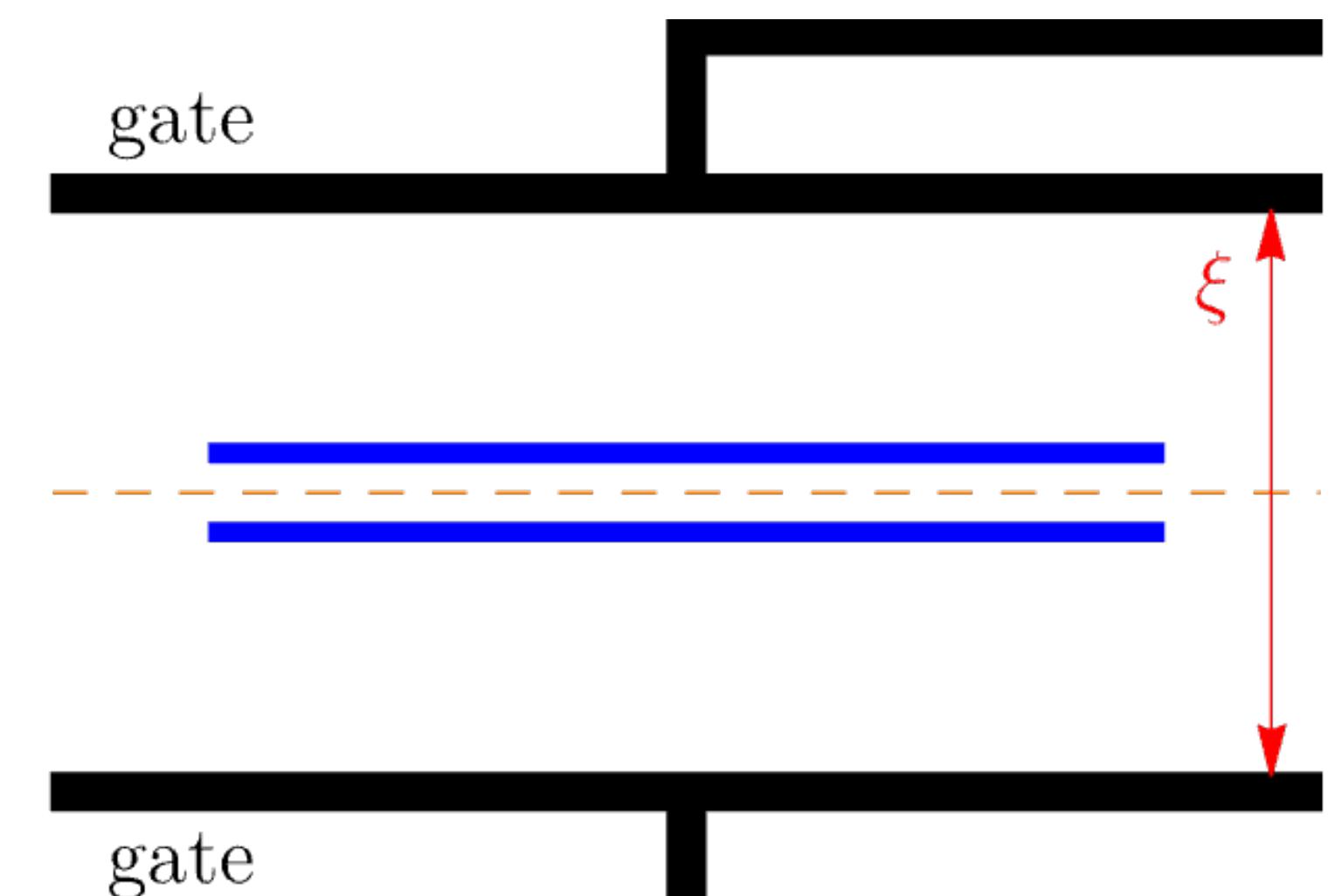
[M. Schüler et al *PRL* **111**, 036601 (2013)]

Aside: How strong is “strong coupling”?

Extended Hubbard with $U, V \approx$ on-site Hubbard with $U^* \approx U + \frac{1}{2} \sum_{i \neq j} V_{ij} \frac{\partial_{U^*} \langle n_{i\sigma} n_{j\sigma'} \rangle^*}{\sum_l \partial_{U^*} \langle n_{l\uparrow} n_{l\downarrow} \rangle^*} \approx U - V$

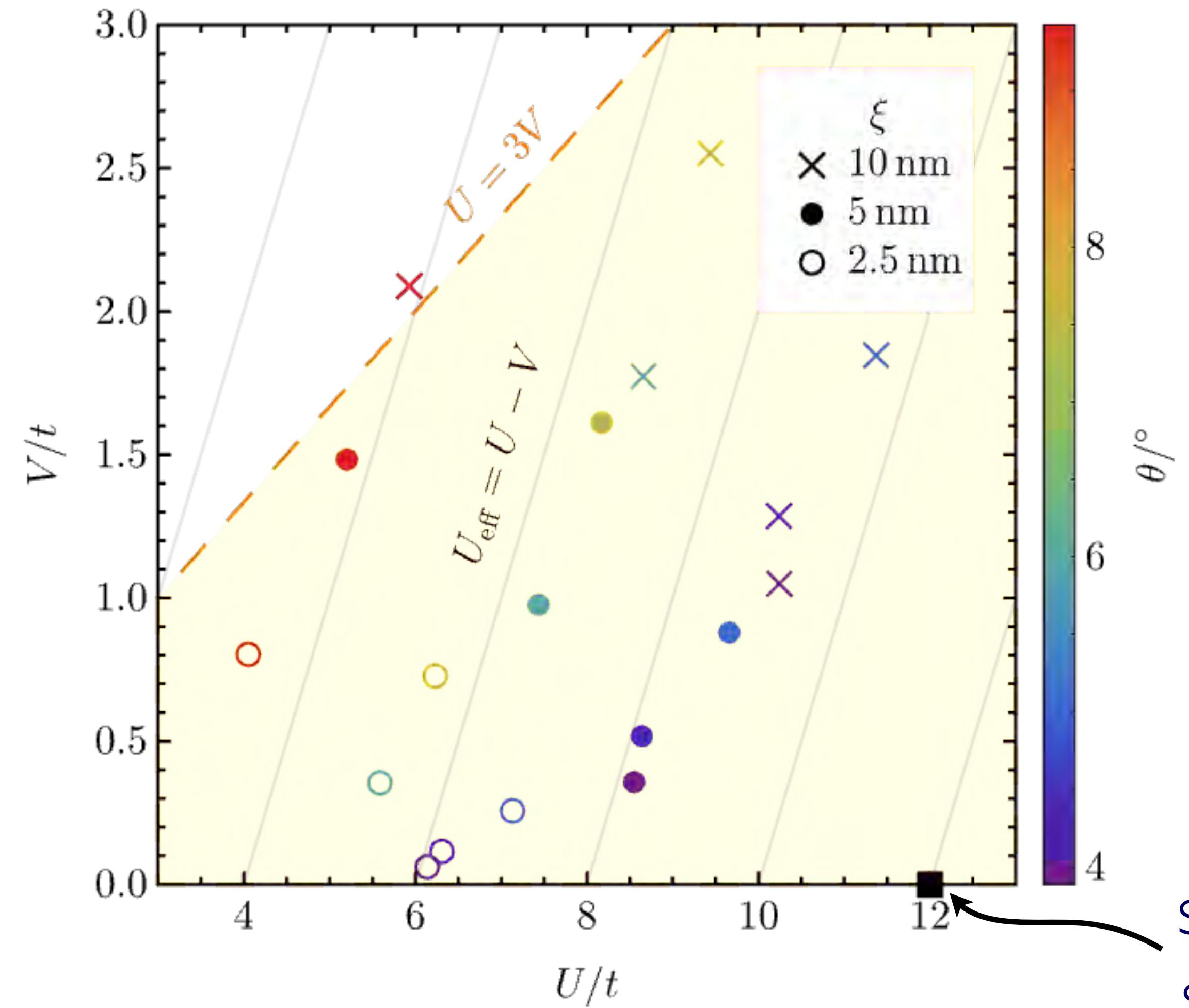


[M. Schüler et al *PRL* **111**, 036601 (2013)]

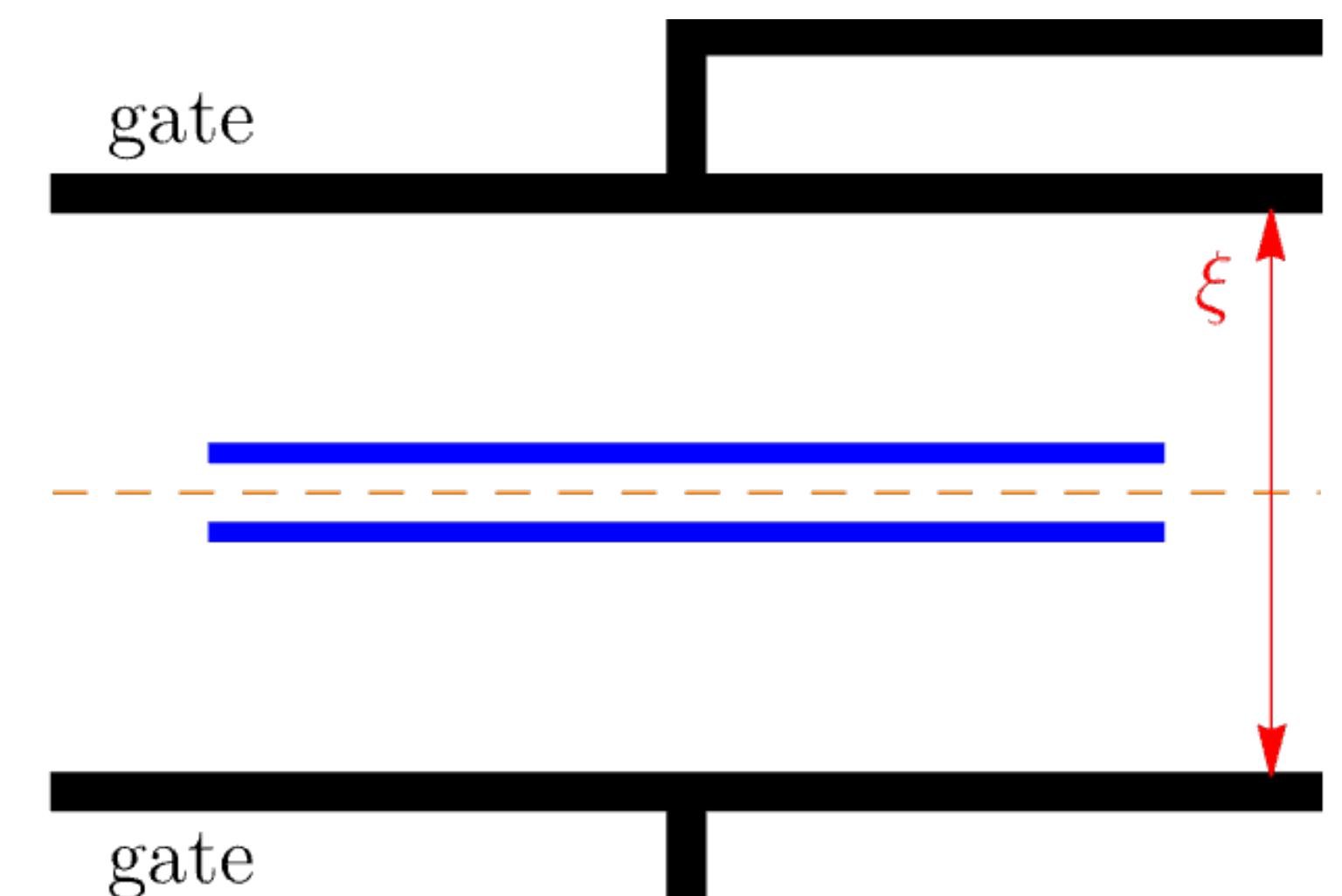


Aside: How strong is “strong coupling”?

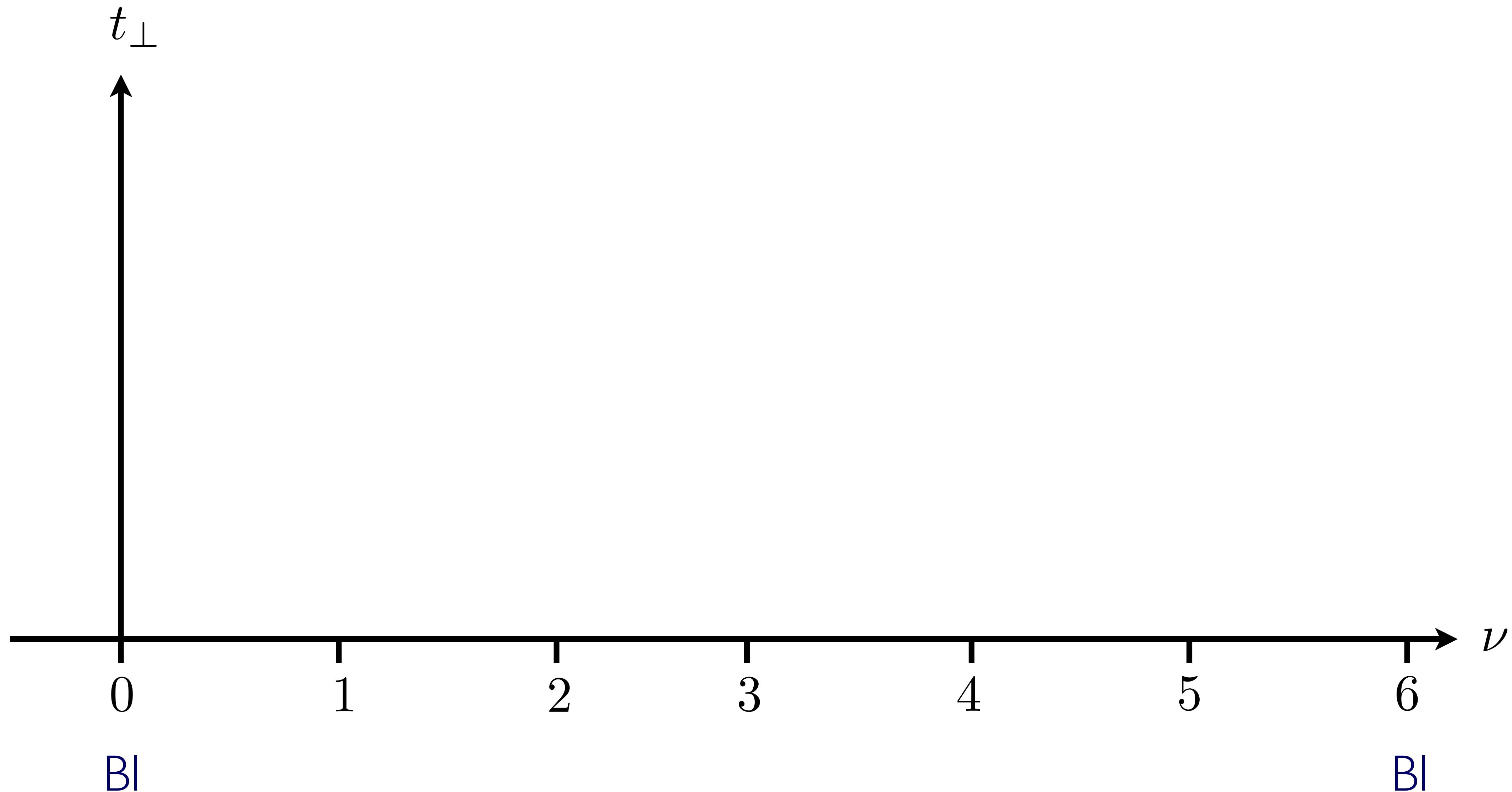
Extended Hubbard with $U, V \approx$ on-site Hubbard with $U^* \approx U + \frac{1}{2} \sum_{i \neq j} V_{ij} \frac{\partial_{U^*} \langle n_{i\sigma} n_{j\sigma'} \rangle^*}{\sum_l \partial_{U^*} \langle n_{l\uparrow} n_{l\downarrow} \rangle^*} \approx U - V$



[M. Schüler et al *PRL* **111**, 036601 (2013)]

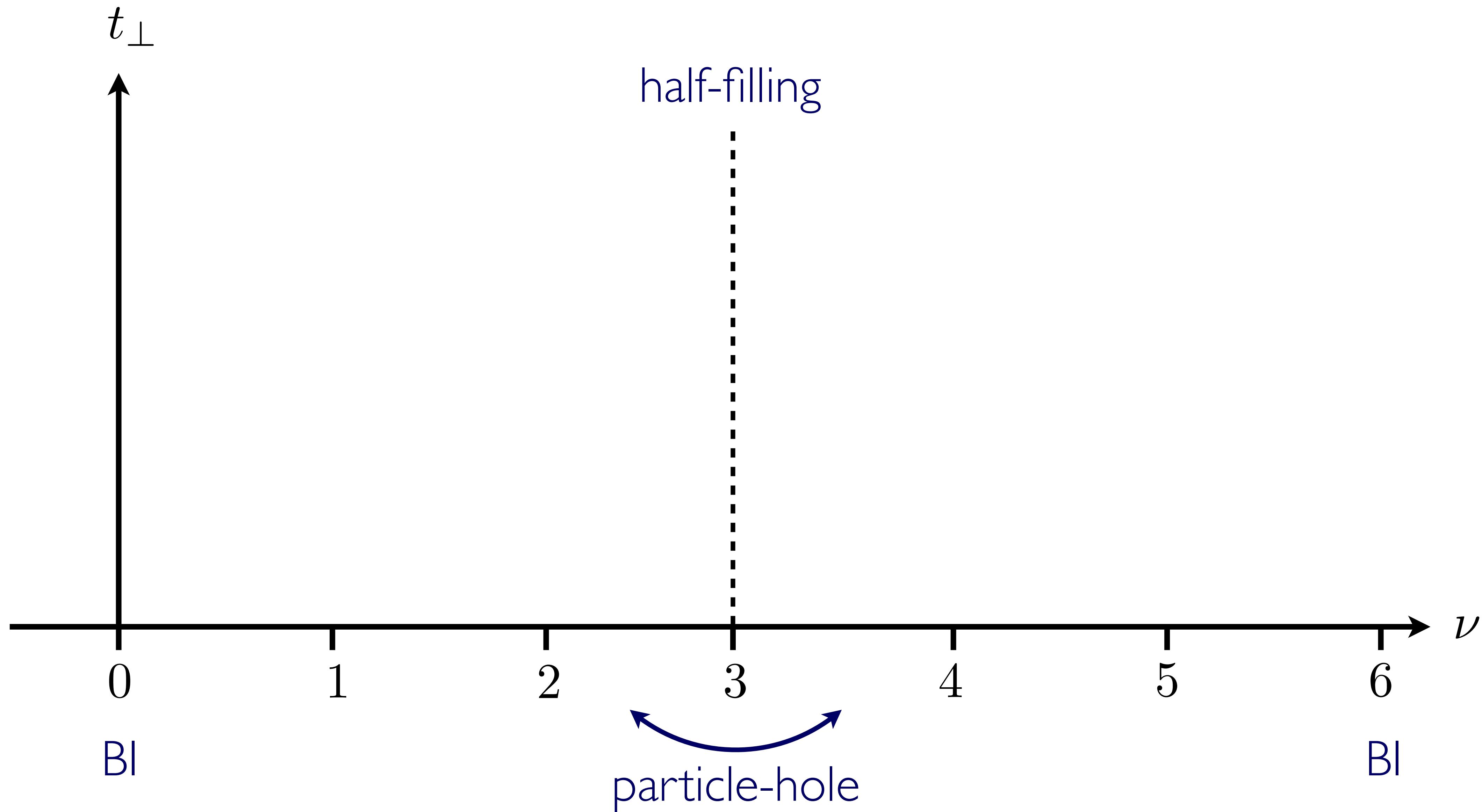


Controlled Calculations at Intermediate Coupling?



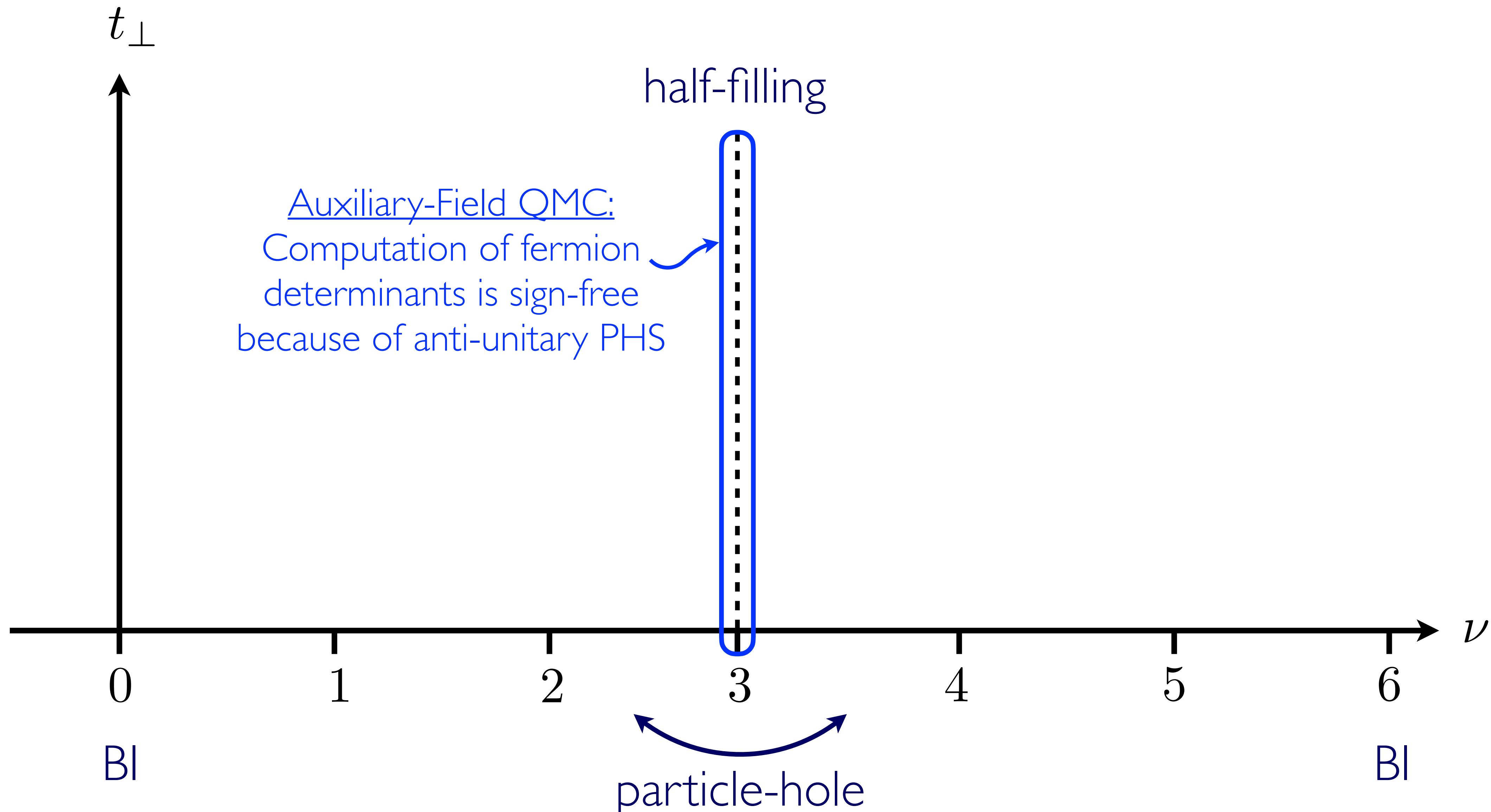
*some minor constraints on U, V, α

Controlled Calculations at Intermediate Coupling?



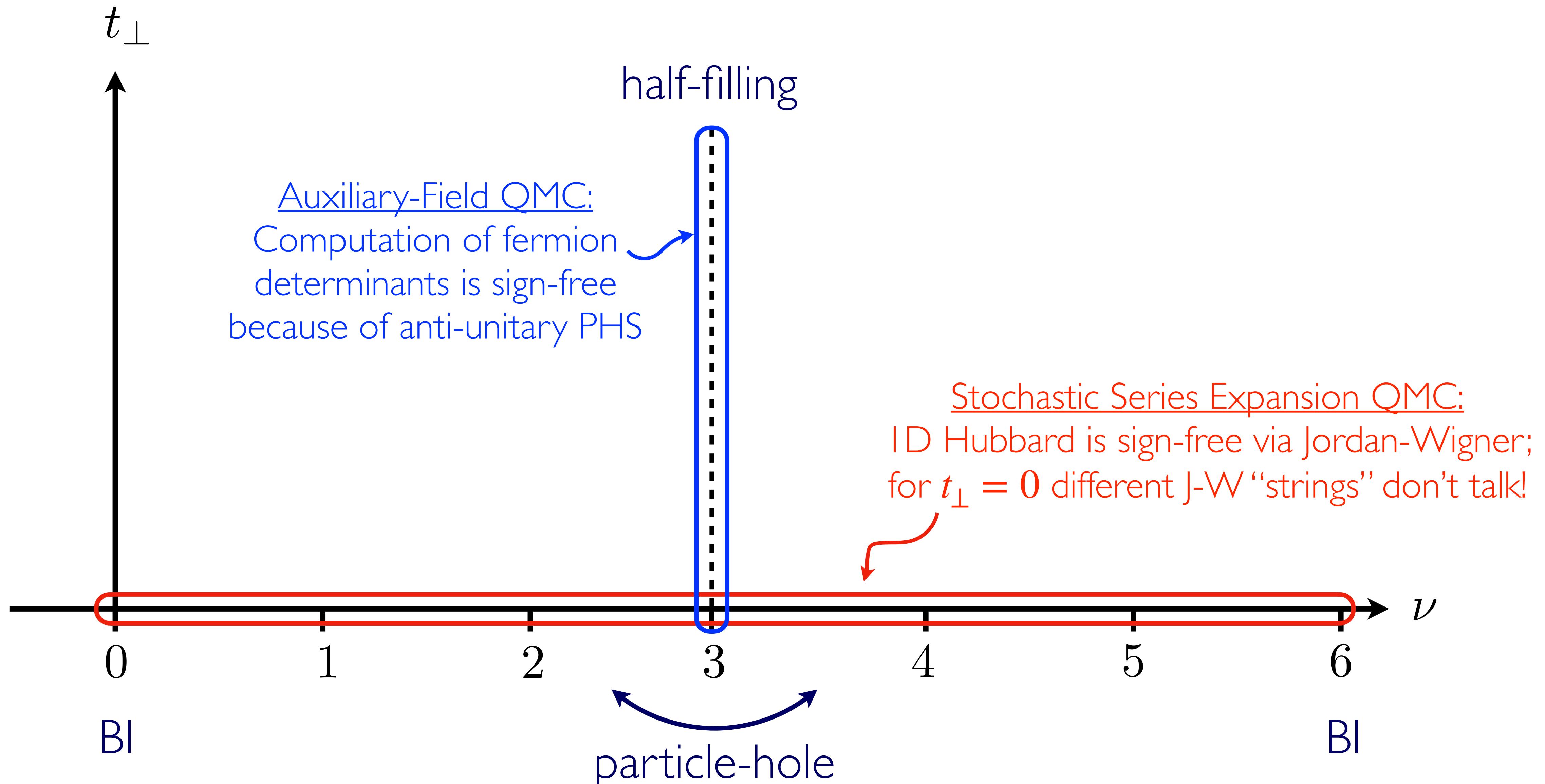
*some minor constraints on U, V, α

Controlled Calculations at Intermediate Coupling?



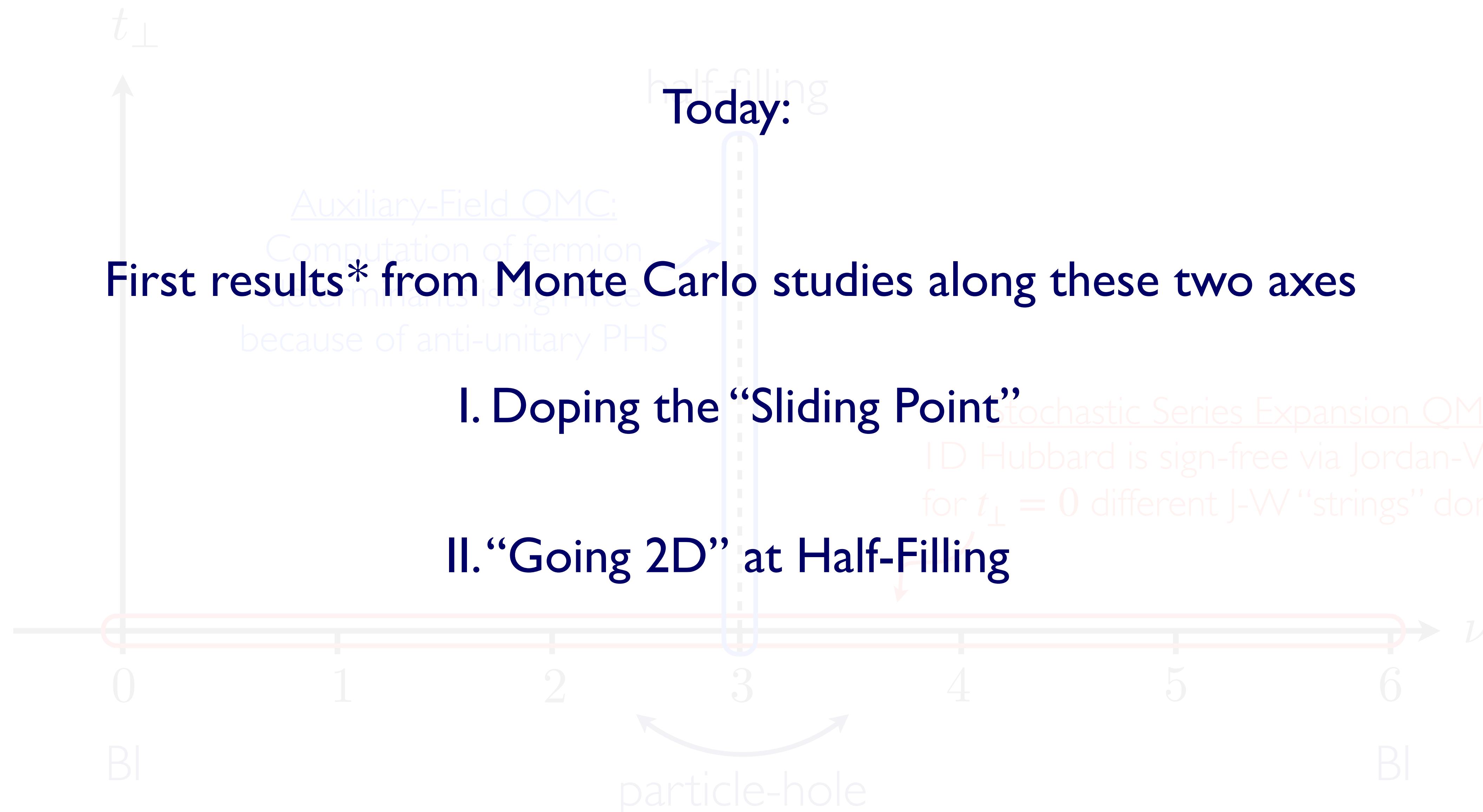
*some minor constraints on U, V, α

Controlled Calculations at Intermediate Coupling?



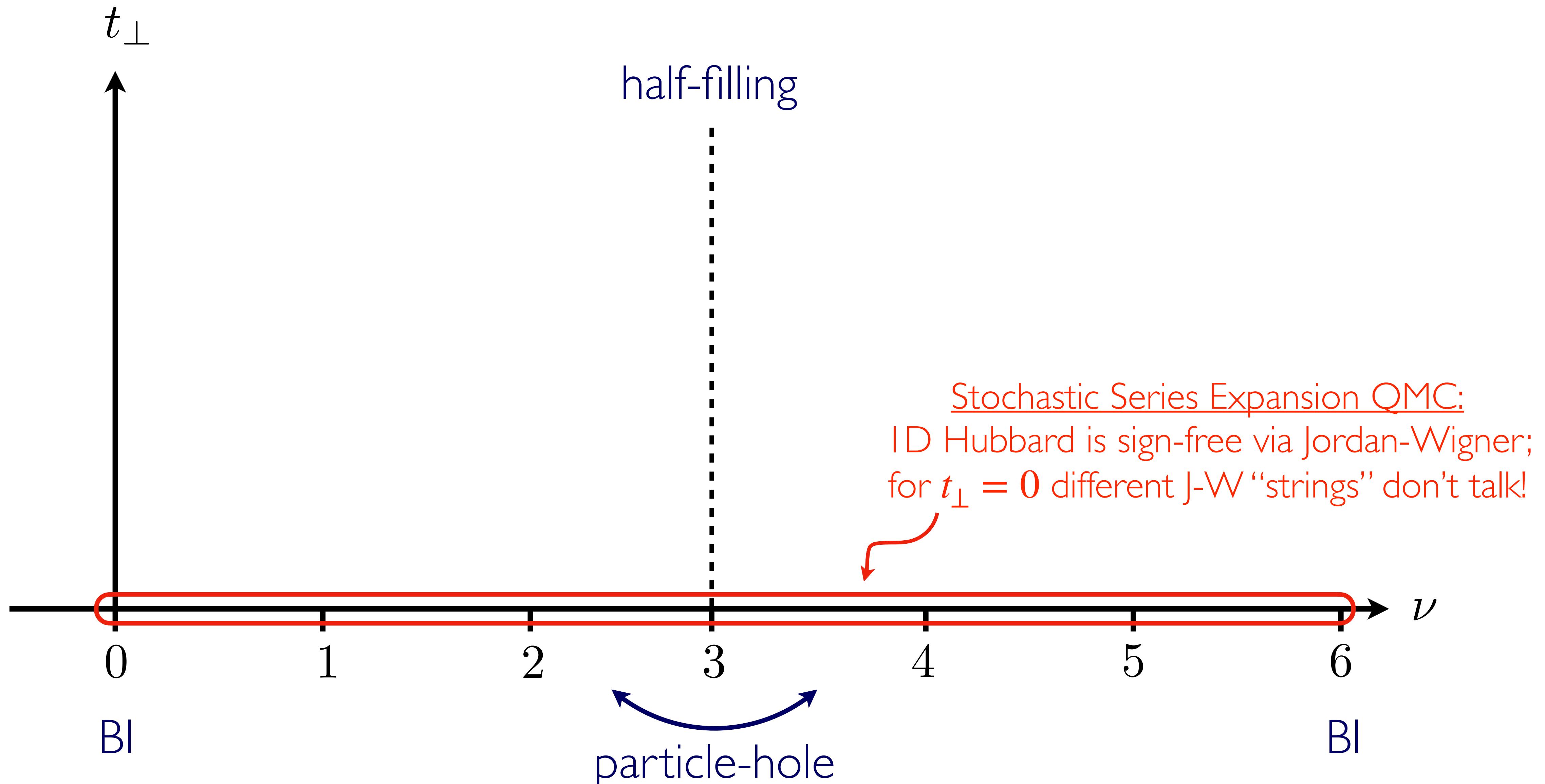
*some minor constraints on U, V, α

Controlled Calculations at Intermediate Coupling?



*Disclaimer: this is work in progress, so final story might be more refined

I. Doping the “Sliding Point”



*some minor constraints on U, V, α

Method: Stochastic Series Expansion w/ Directed-Loop Updates

P. Sengupta, A.W. Sandvik, D.K. Campbell, Phys. Rev. B **65**, 155113 (2002)

Method: Stochastic Series Expansion w/ Directed-Loop Updates

$$Z = \text{Tr}[e^{-\beta H}] = \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \langle \alpha | (-H)^n | \alpha \rangle$$

P. Sengupta, A.W. Sandvik, D.K. Campbell, Phys. Rev. B **65**, 155113 (2002)

Method: Stochastic Series Expansion w/ Directed-Loop Updates

$$Z = \text{Tr}[e^{-\beta H}] = \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \langle \alpha | (-H)^n | \alpha \rangle = \frac{1}{L} \sum_{S_L} \frac{\beta^n (L-n)!}{L!} \prod_{l=0}^{L-1} \langle \alpha_{l+1} | (-H_{a_l, b_l}) | \alpha_l \rangle$$

Method: Stochastic Series Expansion w/ Directed-Loop Updates

$$Z = \text{Tr}[e^{-\beta H}] = \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \langle \alpha | (-H)^n | \alpha \rangle = \frac{1}{L} \sum_{S_L} \frac{\beta^n (L-n)!}{L!} \prod_{l=0}^{L-1} \langle \alpha_{l+1} | (-H_{a_l, b_l}) | \alpha_l \rangle$$

Sequence of operators (“strings”)
(together w/ initial state)

$$S_L = [a_0, b_0], [a_1, b_1], \dots, [a_{L-1}, b_{L-1}]$$

Method: Stochastic Series Expansion w/ Directed-Loop Updates

$$Z = \text{Tr}[e^{-\beta H}] = \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \langle \alpha | (-H)^n | \alpha \rangle = \frac{1}{L} \sum_{S_L} \frac{\beta^n (L-n)!}{L!} \prod_{l=0}^{L-1} \langle \alpha_{l+1} | (-H_{a_l, b_l}) | \alpha_l \rangle$$

Sequence of operators (“strings”)
(together w/ initial state)

$$S_L = [a_0, b_0], [a_1, b_1], \dots, [a_{L-1}, b_{L-1}]$$

“simple enough” states
(e.g. Fock basis)

Method: Stochastic Series Expansion w/ Directed-Loop Updates

$$Z = \text{Tr}[e^{-\beta H}] = \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \langle \alpha | (-H)^n | \alpha \rangle = \frac{1}{L} \sum_{S_L} \frac{\beta^n (L-n)!}{L!} \prod_{l=0}^{L-1} \langle \alpha_{l+1} | (-H_{a_l, b_l}) | \alpha_l \rangle$$

Sequence of operators (“strings”)
(together w/ initial state)

$$S_L = [a_0, b_0], [a_1, b_1], \dots, [a_{L-1}, b_{L-1}]$$

“simple enough” states
(e.g. Fock basis)

Local Hamiltonian terms,
e.g. associated with bond b

Method: Stochastic Series Expansion w/ Directed-Loop Updates

$$Z = \text{Tr}[e^{-\beta H}] = \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \langle \alpha | (-H)^n | \alpha \rangle = \frac{1}{L} \sum_{S_L} \frac{\beta^n (L-n)!}{L!} \prod_{l=0}^{L-1} \langle \alpha_{l+1} | (-H_{a_l, b_l}) | \alpha_l \rangle$$

Sequence of operators (“strings”)
(together w/ initial state)
 $S_L = [a_0, b_0], [a_1, b_1], \dots, [a_{L-1}, b_{L-1}]$

“simple enough” states
(e.g. Fock basis)

Local Hamiltonian terms,
e.g. associated with bond b

Requirements:

- (1) No branching to superpositions
- (2) Negative (off-) diagonal: $\langle \alpha' | H_{a,b} | \alpha \rangle < 0$

Method: Stochastic Series Expansion w/ Directed-Loop Updates

$$Z = \text{Tr}[e^{-\beta H}] = \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \langle \alpha | (-H)^n | \alpha \rangle = \frac{1}{L} \sum_{S_L} \frac{\beta^n (L-n)!}{L!} \prod_{l=0}^{L-1} \langle \alpha_{l+1} | (-H_{a_l, b_l}) | \alpha_l \rangle$$

Sequence of operators (“strings”)
(together w/ initial state)

$$S_L = [a_0, b_0], [a_1, b_1], \dots, [a_{L-1}, b_{L-1}]$$

“simple enough” states
(e.g. Fock basis)

Local Hamiltonian terms,
e.g. associated with bond b

Requirements: (1) No branching to superpositions (2) Negative (off-) diagonal: $\langle \alpha' | H_{a,b} | \alpha \rangle < 0$

e.g. 1D Hubbard:

$$H_{0,b} = -1$$

$$H_{1,b} = -\frac{U}{2}(N_b^2 + N_{b+1}^2) + V N_b N_{b+1}$$

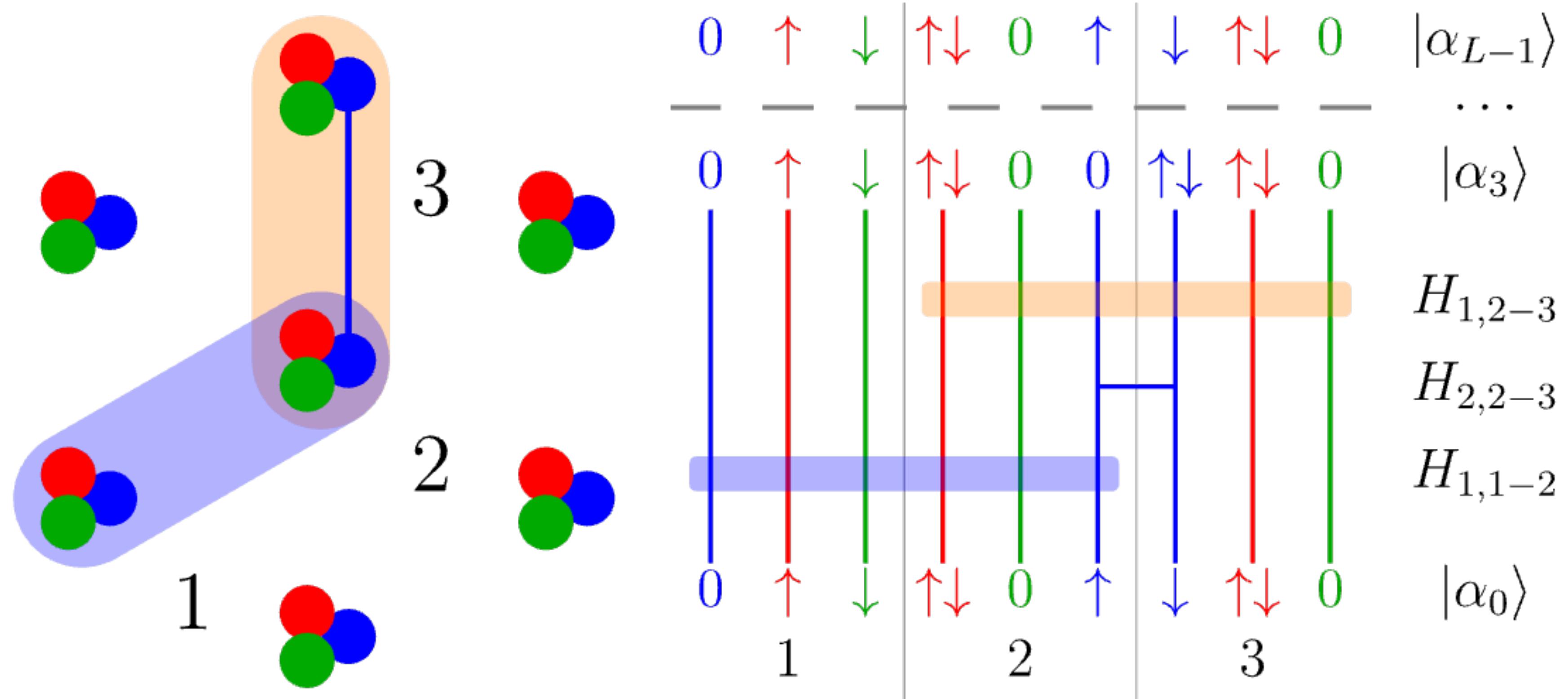
$$H_{2,b} = -t(c_{b+1,\uparrow}^\dagger c_{b,\uparrow} + \text{h.c.})$$

$$H_{3,b} = -t(c_{b+1,\downarrow}^\dagger c_{b,\downarrow} + \text{h.c.})$$

SSE for M-Point Moiré

When $t_{\perp} = 0$, fermion worldlines on different chains never cross + each chain is sign-free for SSE

Can do large-scale SSE for up to 12×12 systems (needs good basis choice* + clever updates, $O(\beta L^2)$ scaling)



*previous SSE at $U = \infty$ in different basis [S.Xu, Y.Li, C.Wu PRX **5**, 021032 (2015)] doesn't generalize; need **valley-flip** updates

Observables in SSE

Inverse compressibility: $\tilde{\chi}_c^{-1} = \frac{1}{t} \frac{d\mu}{d\nu}$

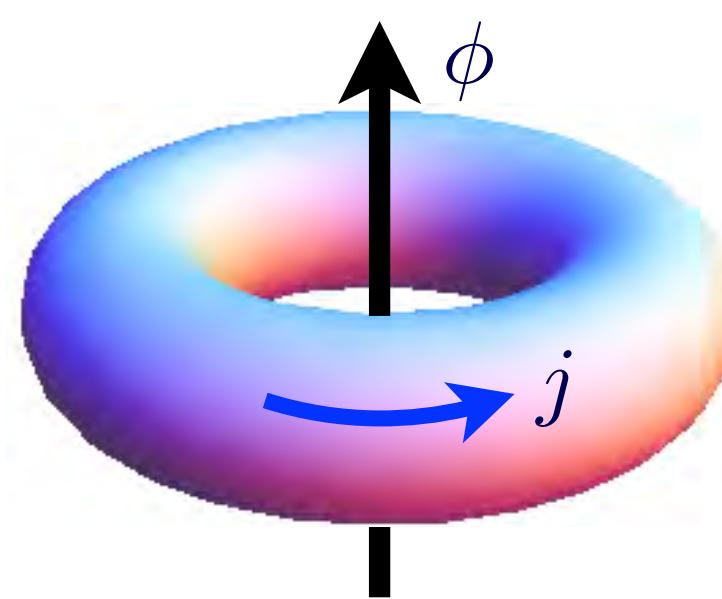
Measures energy cost for adding/removing charges

Peaks at insulating states, small in metallic states

SSE Estimator: $\tilde{\chi}_c = \frac{\beta t}{L^2} \left(\langle \hat{N}^2 \rangle - \langle \hat{N} \rangle^2 \right)$

Charge stiffness: $\tilde{\rho}_c = \frac{\partial^2 E(\phi)}{\partial \phi^2}$

[W. Kohn, Phys. Rev. **133**, A171 (1964)]



Intuitively, measures “flux response” of torus: ϕ tries to drive current

Large in metal, vanishes in Mott insulator

SSE Estimator: use “winding number” of loops

— relate to $\langle \text{difference} \rangle$ of “right”/“left” KE terms + sum over wires

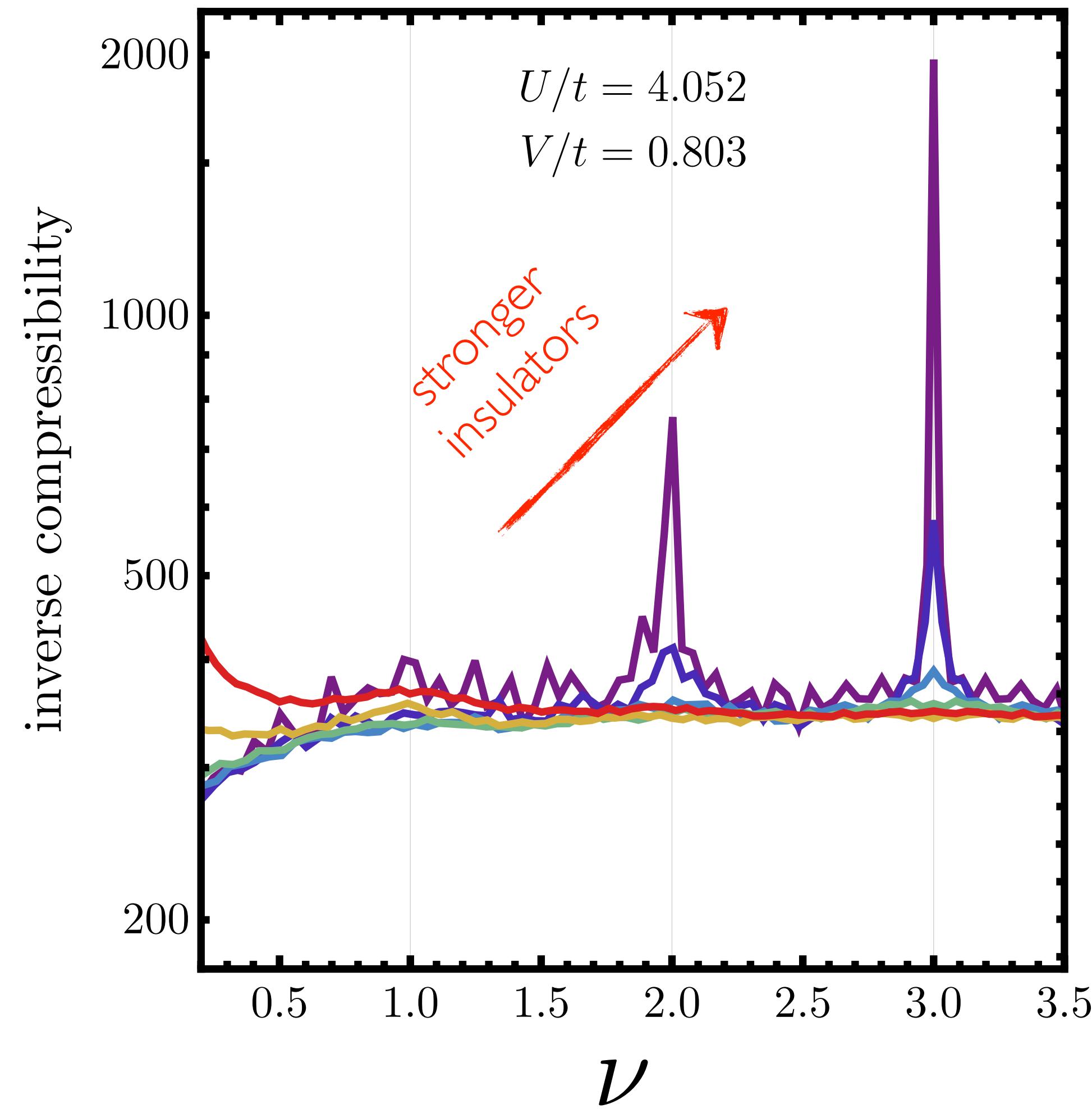
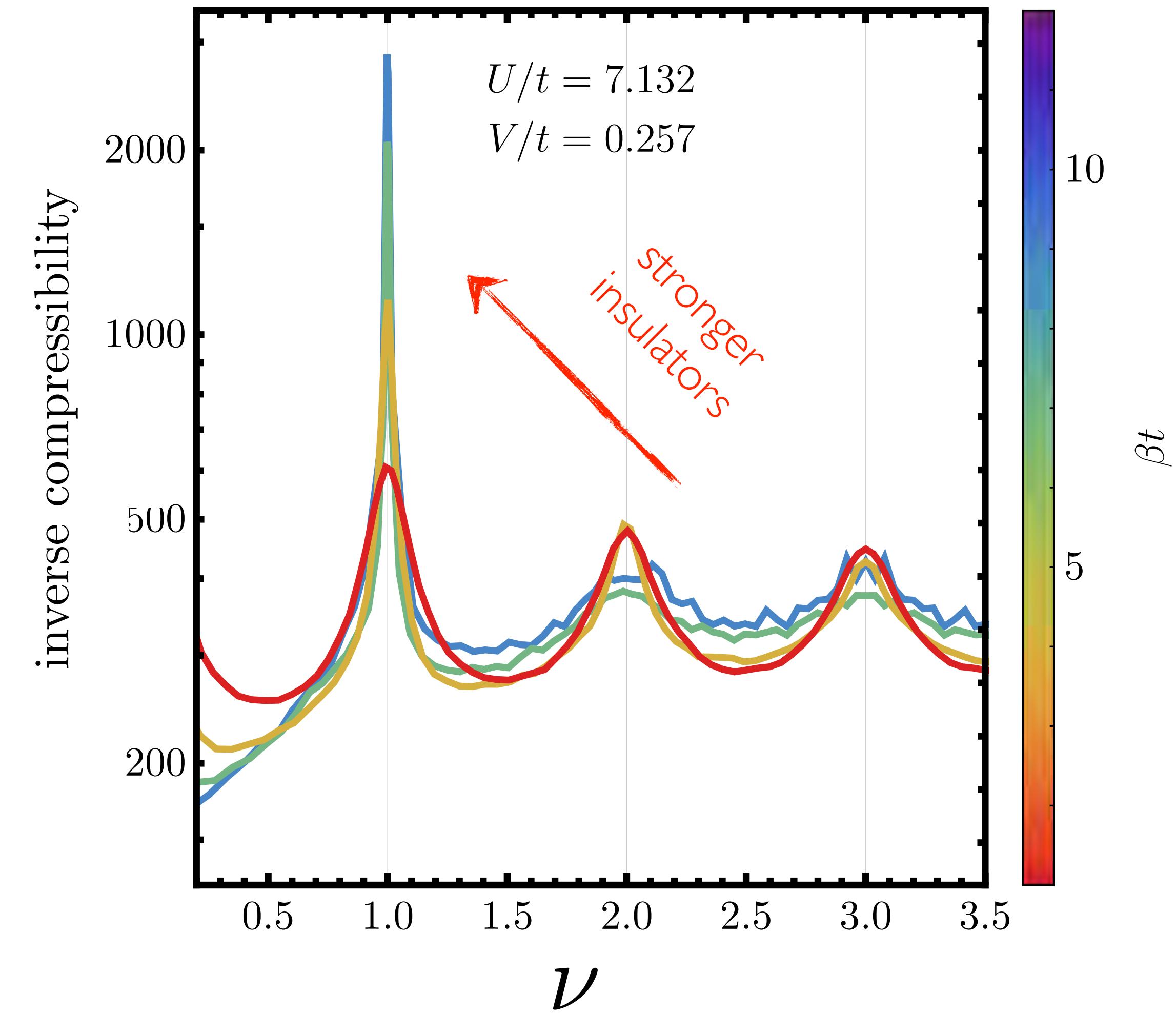
$$\rho_c = \frac{1}{\beta L^2} \sum_{\eta_1, \eta_2, s_1, s_2} (C_{3z}^{\eta_1} \delta \mathbf{R} \cdot \hat{\mathbf{x}}) (C_{3z}^{\eta_2} \delta \mathbf{R} \cdot \hat{\mathbf{x}}) \langle (N_{\eta_1, s_1}^+ - N_{\eta_1, s_1}^-) (N_{\eta_2, s_2}^+ - N_{\eta_2, s_2}^-) \rangle$$

P. Sengupta, A.W. Sandvik, D.K. Campbell, Phys. Rev. B **65**, 155113 (2002)

*in “real” 2D, distinction between charge/superfluid stiffness is subtle, but we are in quasi-1d limit

“Hierarchy Reversal”

Trend in strength of $\nu = 1, 2, 3$ correlated insulators is reversed between weak and strong coupling*



* SSE data shown here is for 6×6 systems; 12×12 also shows this but weak-coupling states shift to lower T

Bosonization & Weak-Coupling Hierarchy

Standard bosonization with charge and spin modes per species, per wire:

$$\psi_{\eta,\sigma,R/L}^j(x_\eta) \sim \frac{\kappa_{\eta\sigma}}{\sqrt{2\pi a}} e^{\pm ik_{F,\eta}x_\eta} e^{i(\theta_{\mu,\sigma}^j(x_\eta) \pm \phi_{\mu,\sigma}^j(x_\eta))}$$
$$\phi_{\eta,c}^j = \frac{\phi_{\eta,\uparrow}^j + \phi_{\eta,\downarrow}^j}{\sqrt{2}}$$
$$\phi_{\eta,s}^j = \frac{\phi_{\eta,\uparrow}^j - \phi_{\eta,\downarrow}^j}{\sqrt{2}}$$

2D coarse-graining ($j \rightarrow$ continuous): $H \sim \sum_{\eta,a=c,s} \frac{v_{\eta,a}}{2\pi} \int d^2\mathbf{r} \left[K_\eta (\nabla_\eta \theta_{\eta,a})^2 + \frac{1}{K_\eta} (\nabla_\eta \phi_{\eta,a})^2 \right] + \begin{pmatrix} \text{umklapp} \\ \text{cosines} \end{pmatrix}$

1d gradients along \mathbf{e}_η

Bosonization & Weak-Coupling Hierarchy

Standard bosonization with charge and spin modes per species, per wire:

$$\psi_{\eta,\sigma,R/L}^j(x_\eta) \sim \frac{\kappa_{\eta\sigma}}{\sqrt{2\pi a}} e^{\pm ik_{F,\eta}x_\eta} e^{i(\theta_{\mu,\sigma}^j(x_\eta) \pm \phi_{\mu,\sigma}^j(x_\eta))}$$

$$\phi_{\eta,c}^j = \frac{\phi_{\eta,\uparrow}^j + \phi_{\eta,\downarrow}^j}{\sqrt{2}}$$

$$\phi_{\eta,s}^j = \frac{\phi_{\eta,\uparrow}^j - \phi_{\eta,\downarrow}^j}{\sqrt{2}}$$

2D coarse-graining ($j \rightarrow$ continuous): $H \sim \sum_{\eta,a=c,s} \frac{v_{\eta,a}}{2\pi} \int d^2\mathbf{r} \left[K_\eta (\nabla_\eta \theta_{\eta,a})^2 + \frac{1}{K_\eta} (\nabla_\eta \phi_{\eta,a})^2 \right] + \begin{pmatrix} \text{umklapp} \\ \text{cosines} \end{pmatrix}$

1d gradients along \mathbf{e}_η

Focus on 2 specific umklapps from rewriting $\sum_i n_i^2$:

Intra-chain $2k_F$: $\mathcal{O}_\eta \sim \cos(2\phi_{\eta,c})$ — more relevant, commensurate when $2k_F\nu \in 6\mathbb{Z}$

Bosonization & Weak-Coupling Hierarchy

Standard bosonization with charge and spin modes per species, per wire:

$$\psi_{\eta,\sigma,R/L}^j(x_\eta) \sim \frac{\kappa_{\eta\sigma}}{\sqrt{2\pi a}} e^{\pm ik_{F,\eta}x_\eta} e^{i(\theta_{\mu,\sigma}^j(x_\eta) \pm \phi_{\mu,\sigma}^j(x_\eta))}$$

$$\phi_{\eta,c}^j = \frac{\phi_{\eta,\uparrow}^j + \phi_{\eta,\downarrow}^j}{\sqrt{2}}$$

$$\phi_{\eta,s}^j = \frac{\phi_{\eta,\uparrow}^j - \phi_{\eta,\downarrow}^j}{\sqrt{2}}$$

2D coarse-graining ($j \rightarrow$ continuous): $H \sim \sum_{\eta,a=c,s} \frac{v_{\eta,a}}{2\pi} \int d^2\mathbf{r} \left[K_\eta (\nabla_\eta \theta_{\eta,a})^2 + \frac{1}{K_\eta} (\nabla_\eta \phi_{\eta,a})^2 \right] + \begin{pmatrix} \text{umklapp} \\ \text{cosines} \end{pmatrix}$

1d gradients along \mathbf{e}_η

Focus on 2 specific umklapps from rewriting $\sum_i n_i^2$:

Intra-chain $2k_F$: $\mathcal{O}_\eta \sim \cos(2\phi_{\eta,c})$ — more relevant, commensurate when $2k_F\nu \in 6\mathbb{Z}$

“Triangular” $6k_F$: $\mathcal{O}_\Delta \sim \cos(2\phi_{A,c} + 2\phi_{B,c} + 2\phi_{C,c})$ — less relevant, commensurate when $6k_F\nu \in 6\mathbb{Z}$
(survives 2D sum b/c $\Delta\mathbf{Q}_{2D} = 0$)

Bosonization & Weak-Coupling Hierarchy

Standard bosonization with charge and spin modes per species, per wire:

$$\psi_{\eta,\sigma,R/L}^j(x_\eta) \sim \frac{\kappa_{\eta\sigma}}{\sqrt{2\pi a}} e^{\pm ik_{F,\eta}x_\eta} e^{i(\theta_{\mu,\sigma}^j(x_\eta) \pm \phi_{\mu,\sigma}^j(x_\eta))}$$

$$\phi_{\eta,c}^j = \frac{\phi_{\eta,\uparrow}^j + \phi_{\eta,\downarrow}^j}{\sqrt{2}}$$

$$\phi_{\eta,s}^j = \frac{\phi_{\eta,\uparrow}^j - \phi_{\eta,\downarrow}^j}{\sqrt{2}}$$

2D coarse-graining ($j \rightarrow$ continuous): $H \sim \sum_{\eta,a=c,s} \frac{\nu_{\eta,a}}{2\pi} \int d^2\mathbf{r} \left[K_\eta (\nabla_\eta \theta_{\eta,a})^2 + \frac{1}{K_\eta} (\nabla_\eta \phi_{\eta,a})^2 \right] + \begin{pmatrix} \text{umklapp} \\ \text{cosines} \end{pmatrix}$

1d gradients along \mathbf{e}_η

Focus on 2 specific umklapps from rewriting $\sum_i n_i^2$:

Intra-chain $2k_F$: $\mathcal{O}_\eta \sim \cos(2\phi_{\eta,c})$ — more relevant, commensurate when $2k_F\nu \in 6\mathbb{Z}$

“Triangular” $6k_F$: $\mathcal{O}_\Delta \sim \cos(2\phi_{A,c} + 2\phi_{B,c} + 2\phi_{C,c})$ — less relevant, commensurate when $6k_F\nu \in 6\mathbb{Z}$
(survives 2D sum b/c $\Delta\mathbf{Q}_{2D} = 0$)

Roughly: $\nu = 3 \sim$ strong “intrachain Mott state” via \mathcal{O}_η , whereas $\nu = 1,2 \sim$ weaker “inter-chain Mott” via \mathcal{O}_Δ

Strong-Coupling Hierarchy & Pomeranchuk Physics

Trend tracks the number of “fluctuation directions” that destabilize insulator: $\binom{6}{3} > \binom{6}{2} > \binom{6}{1}$

Strong-Coupling Hierarchy & Pomeranchuk Physics

Trend tracks the number of “fluctuation directions” that destabilize insulator: $\binom{6}{3} > \binom{6}{2} > \binom{6}{1}$

cf. multi-orbital DMFT
$$U_{\text{Mott}}(\nu) = 4N_{\text{orb}} \left| \int_{-\infty}^{\mu_0(\nu)} \epsilon g(\epsilon) d\epsilon \right| \Rightarrow \text{increasing } |\nu - 3| \leftrightarrow \text{decreasing } U_{\text{Mott}}(\nu)$$

[S. Florens, A. Georges, Phys. Rev. B **70**, 035114 (2004)]

Strong-Coupling Hierarchy & Pomeranchuk Physics

Trend tracks the number of “fluctuation directions” that destabilize insulator: $\binom{6}{3} > \binom{6}{2} > \binom{6}{1}$

cf. multi-orbital DMFT

$$U_{\text{Mott}}(\nu) = 4N_{\text{orb}}$$

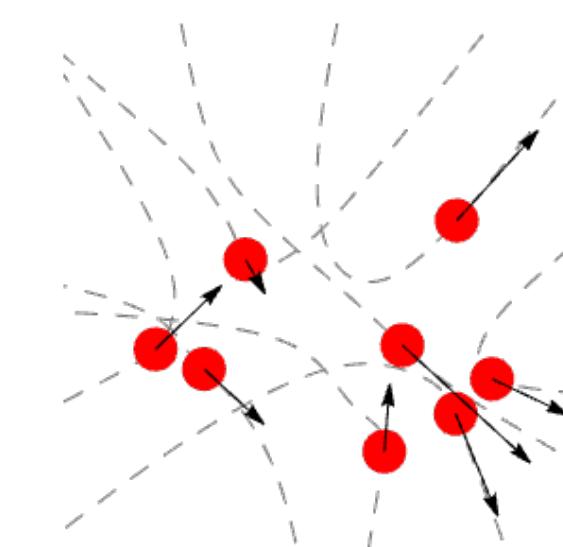
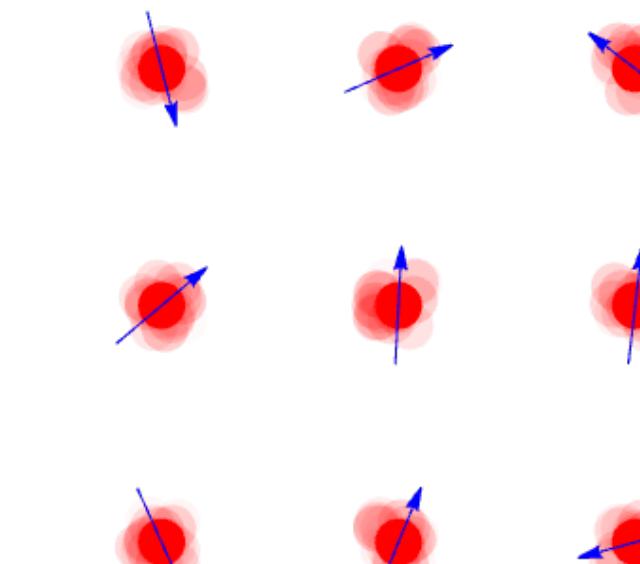
$$\left| \int_{-\infty}^{\mu_0(\nu)} \epsilon g(\epsilon) d\epsilon \right|$$

⇒ increasing $|\nu - 3| \leftrightarrow$ decreasing $U_{\text{Mott}}(\nu)$

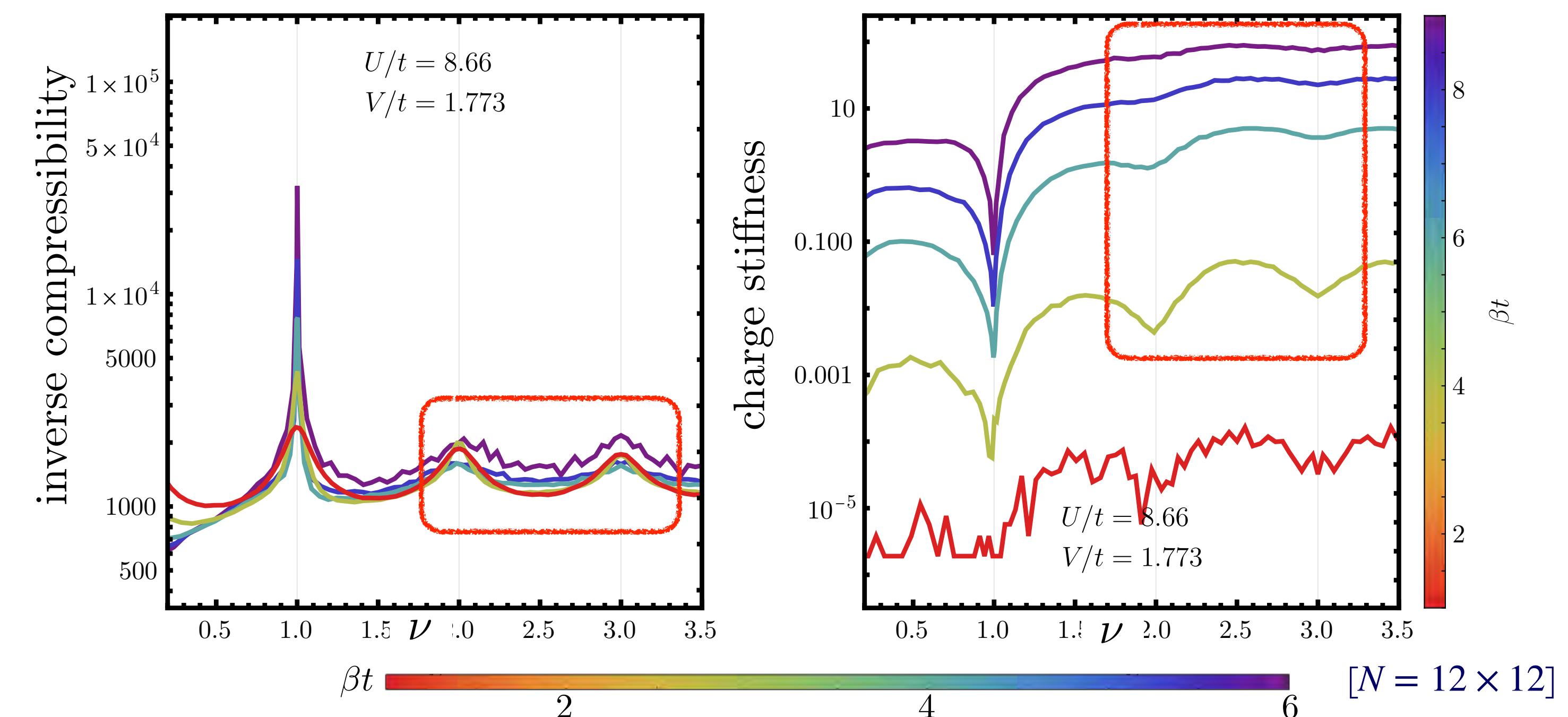
[S. Florens, A. Georges, Phys. Rev. B **70**, 035114 (2004)]

Also gives rise to “Pomeranchuk effect”: For $U_{\text{Mott}}(1) < U < U_{\text{Mott}}(2)$, $\nu = 2, 3$ are **not** insulators as $T \rightarrow 0$

Increasing T stabilizes Mott insulators at these fillings b/c of high entropy!

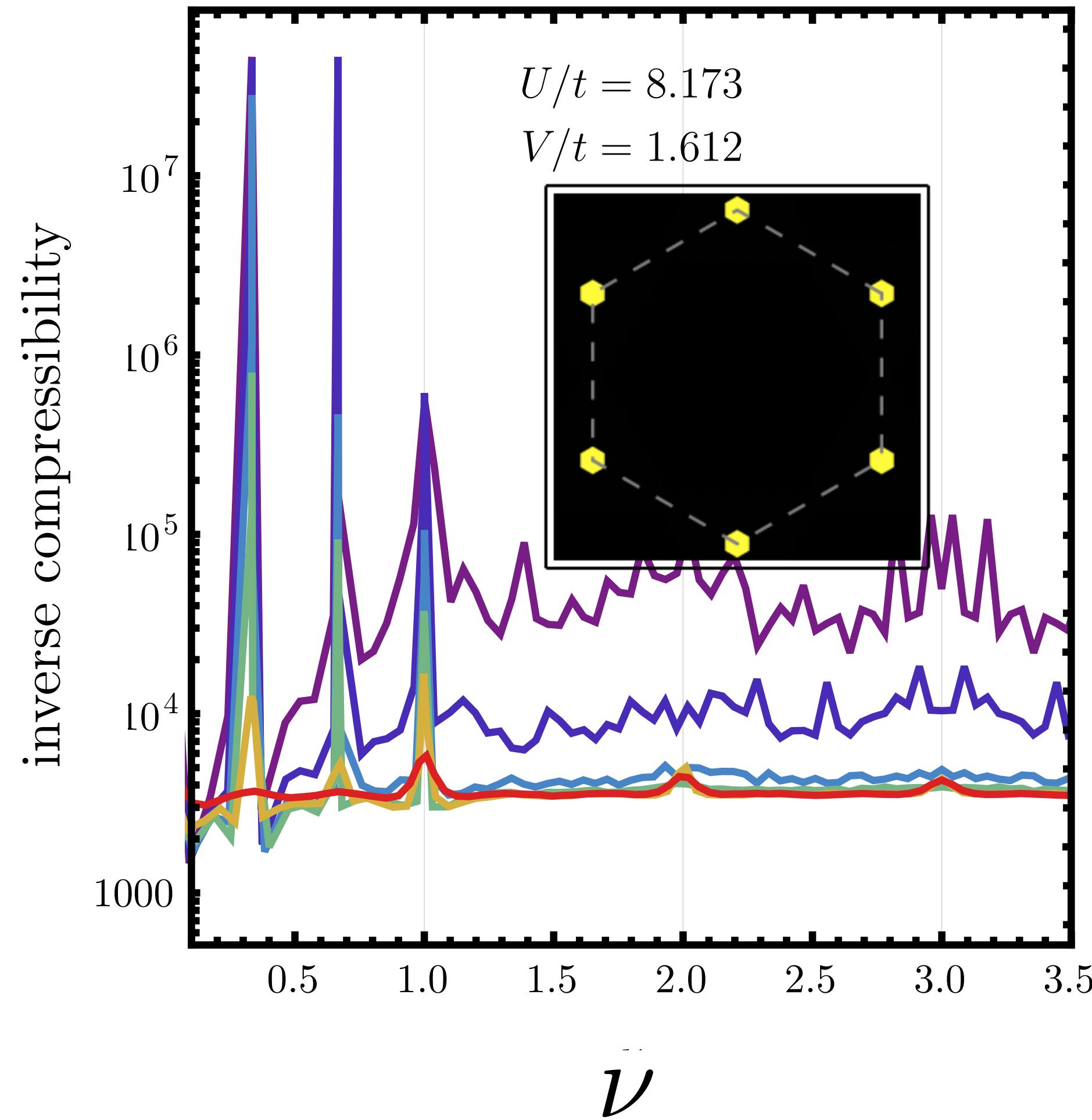
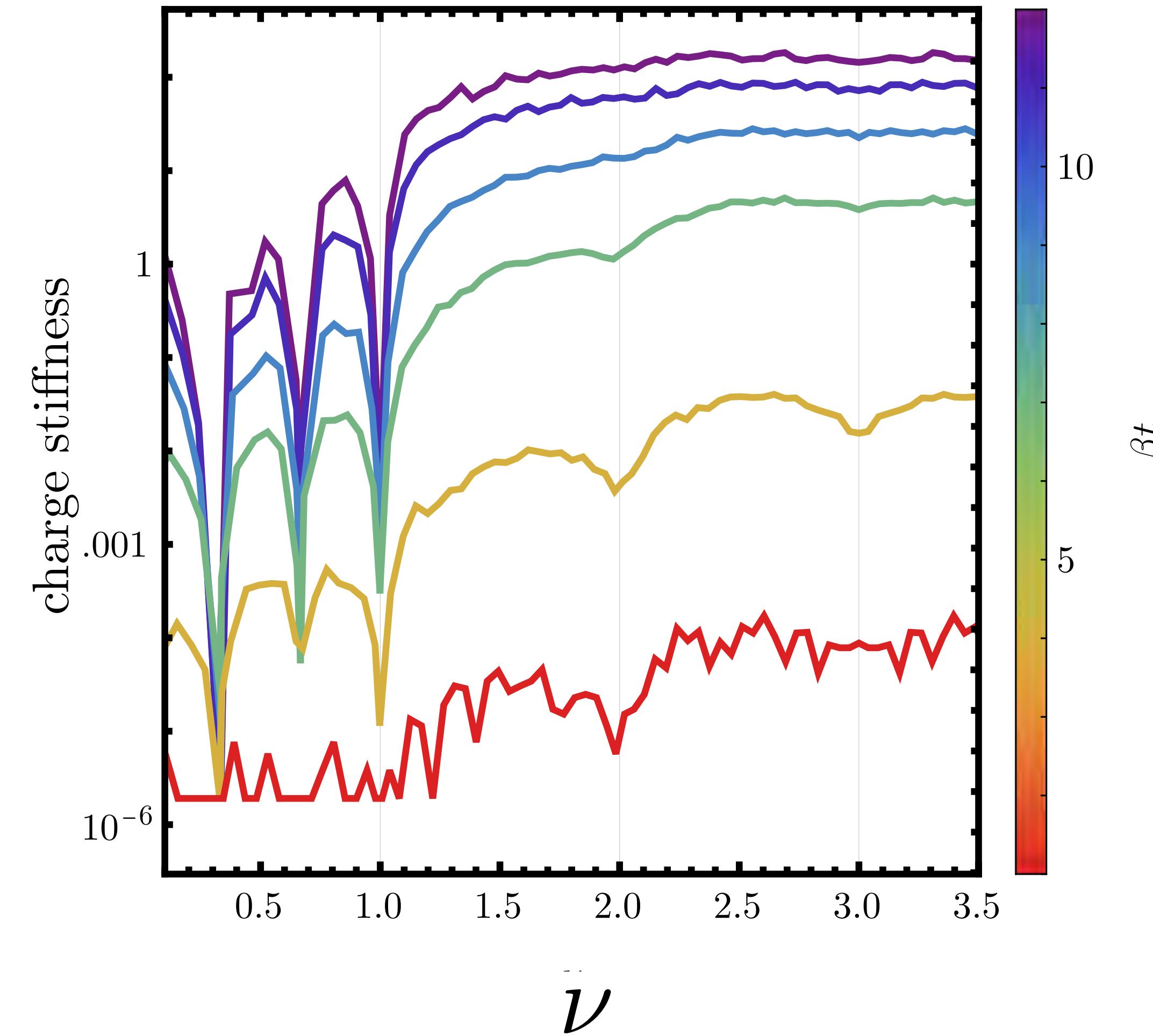


[cf. TBG: A. Rozen, et al., *Nature* **592**, 214 (2021);
Y. Saito, et al., *Nature* **592**, 220 (2021)]



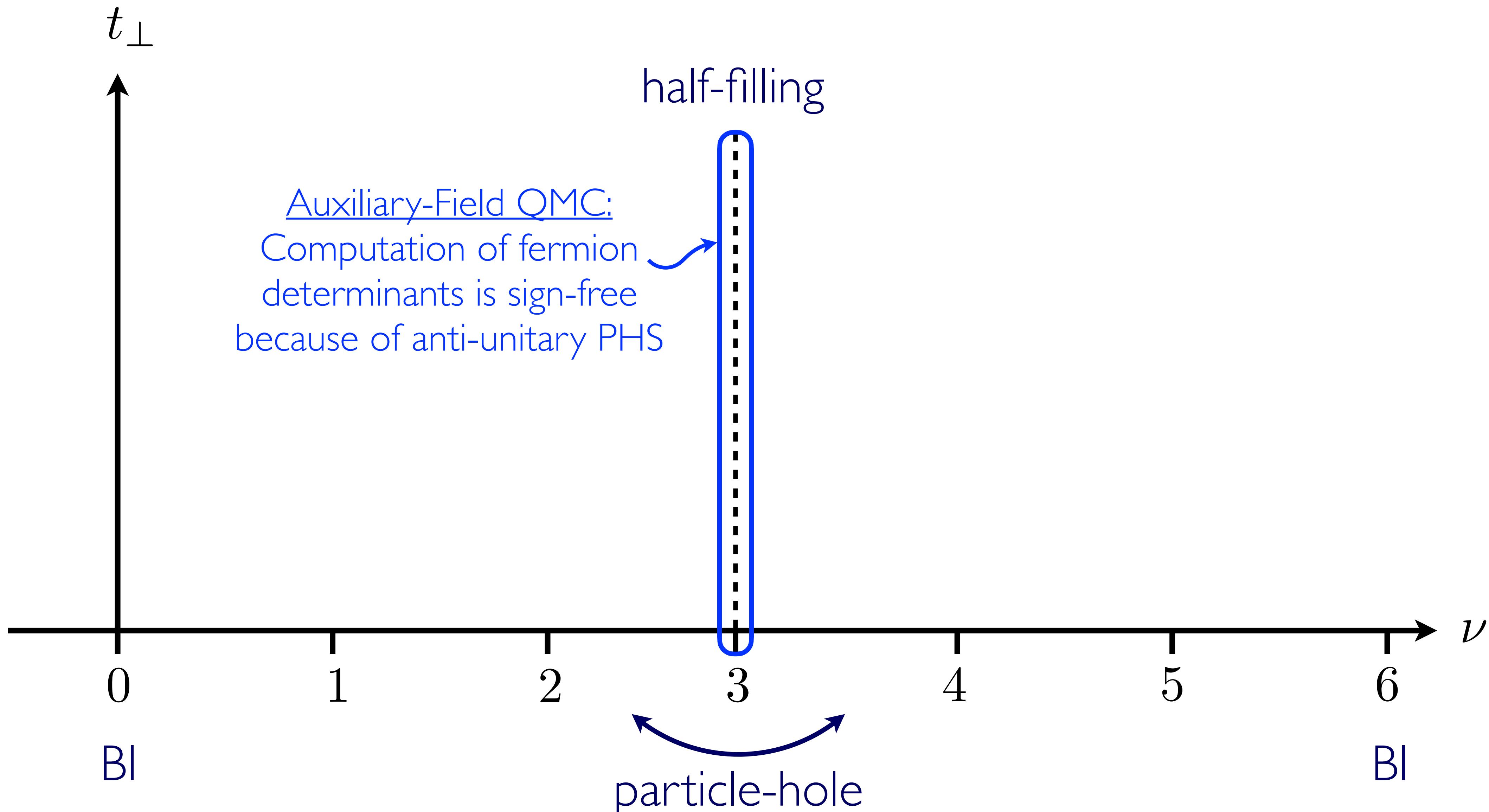
Teaser: Wigner-Mott Phases

w/ moderate V : inverse compressibility peaks at **fractional** filling $\nu \in (0,1)$ with vanishing “charge stiffness”



*SSE for 12×12 systems

II. “Going 2D” at Half-Filling



*some minor constraints on U, V, α

Method: Auxiliary-Field QMC

Basic idea: Hubbard-Stratonovich: interacting fermions \rightarrow free fermion problem $\mathcal{H}_{\mathcal{C}}$ + auxiliary field \mathcal{C}

importance-sample auxiliary field configurations: $Z = \text{Tr}[e^{-\beta H}] = \sum_{\mathcal{C}} e^{-S_0(\mathcal{C})} \times \det \mathcal{H}_{\mathcal{C}}$

if antiunitary PHS present and acts trivially on \mathcal{C} : “sign free” ($\det \mathcal{H}_{\mathcal{C}} \sim \prod_{\lambda} \lambda \lambda^* > 0$)

imaginary-time fermion Green’s functions: Wick’s theorem + sampling (complexity $O(\beta L^6)$)

Method: Auxiliary-Field QMC

Basic idea: Hubbard-Stratonovich: interacting fermions \rightarrow free fermion problem $\mathcal{H}_{\mathcal{C}}$ + auxiliary field \mathcal{C}

importance-sample auxiliary field configurations: $Z = \text{Tr}[e^{-\beta H}] = \sum_{\mathcal{C}} e^{-S_0(\mathcal{C})} \times \det \mathcal{H}_{\mathcal{C}}$

if antiunitary PHS present and acts trivially on \mathcal{C} : “sign free” ($\det \mathcal{H}_{\mathcal{C}} \sim \prod_{\lambda} \lambda \lambda^* > 0$)

imaginary-time fermion Green's functions: Wick's theorem + sampling (complexity $O(\beta L^6)$)

Our case: first write $H_{\text{int}} = \sum$ (fermion bilinear) 2 , e.g. for $\alpha = 1$:

$$\frac{U}{2} \sum_{\bullet} \hat{n}_i^2 + V \sum_{\bullet\bullet} \hat{n}_i \hat{n}_j = \frac{U - 3V}{2} \sum_{\bullet} \hat{n}_i^2 + \frac{V}{4} \sum_{\Delta} (\hat{n}_i + \hat{n}_j + \hat{n}_k)^2$$

Method: Auxiliary-Field QMC

Basic idea: Hubbard-Stratonovich: interacting fermions \rightarrow free fermion problem $\mathcal{H}_{\mathcal{C}}$ + auxiliary field \mathcal{C}

importance-sample auxiliary field configurations: $Z = \text{Tr}[e^{-\beta H}] = \sum_{\mathcal{C}} e^{-S_0(\mathcal{C})} \times \det \mathcal{H}_{\mathcal{C}}$

if antiunitary PHS present and acts trivially on \mathcal{C} : “sign free” ($\det \mathcal{H}_{\mathcal{C}} \sim \prod_{\lambda} \lambda \lambda^* > 0$)

imaginary-time fermion Green's functions: Wick's theorem + sampling (complexity $O(\beta L^6)$)

Our case: first write $H_{\text{int}} = \sum$ (fermion bilinear) 2 , e.g. for $\alpha = 1$:

$$\frac{U}{2} \sum_{\bullet} \hat{n}_i^2 + V \sum_{\bullet\bullet} \hat{n}_i \hat{n}_j = \frac{U - 3V}{2} \sum_{\bullet} \hat{n}_i^2 + \frac{V}{4} \sum_{\bullet\Delta} (\hat{n}_i + \hat{n}_j + \hat{n}_k)^2$$

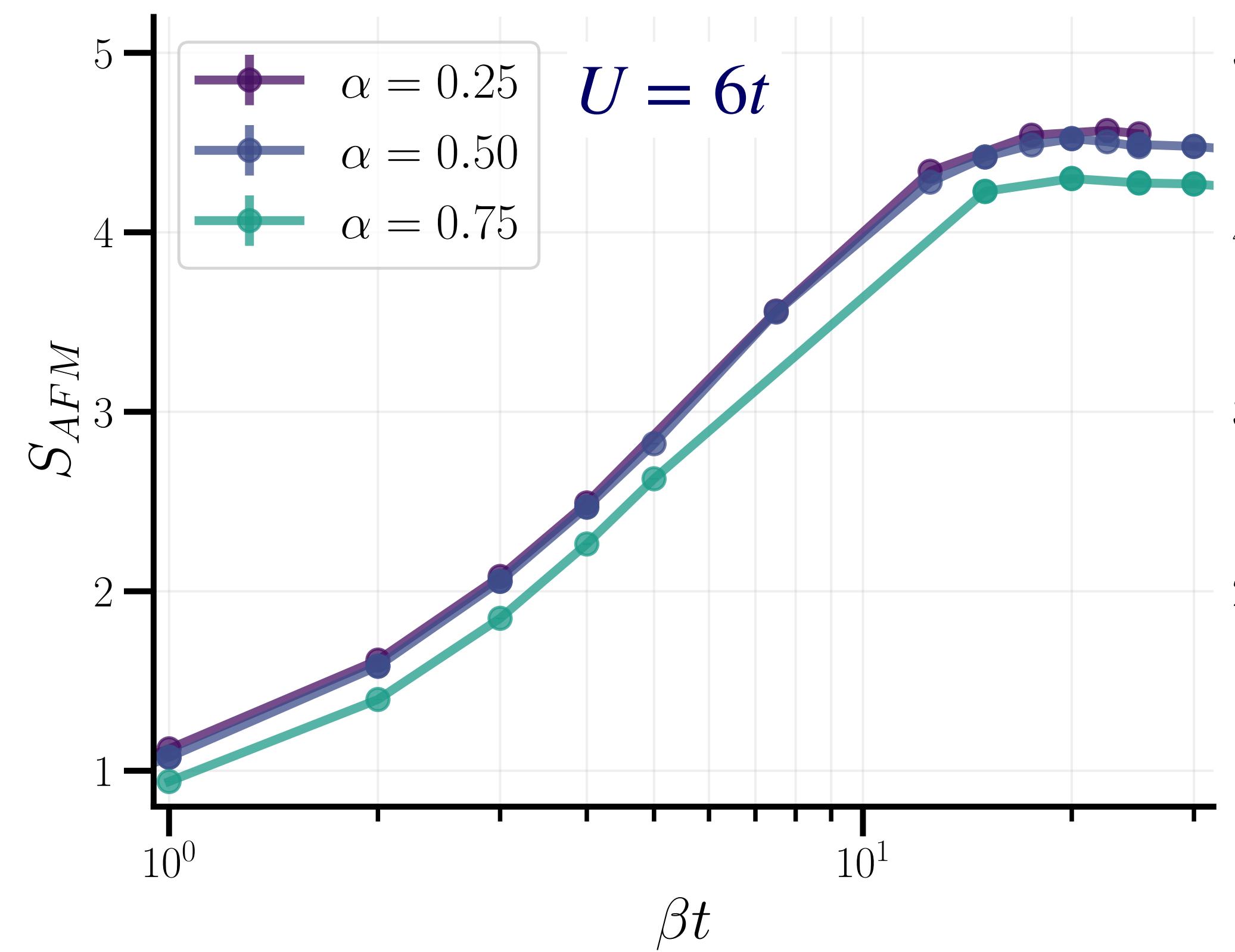
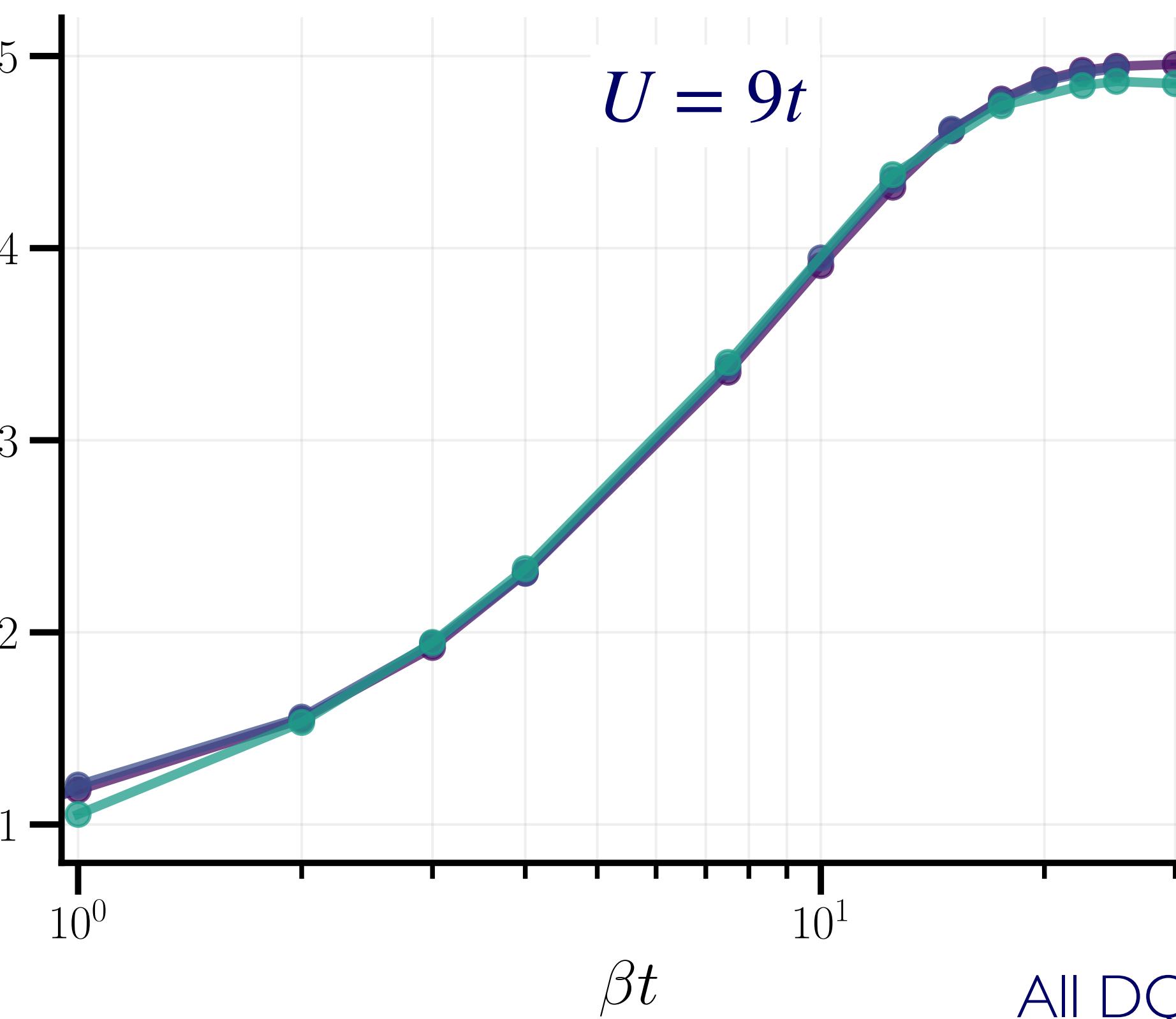
Check PHS condition: sign free at half-filling for $\alpha \in [0,1]$ if $\frac{V}{U} \leq \frac{2\alpha + 1}{9}$

“Standard” Antiferromagnetism for Anisotropic Case ($\alpha \neq 1$)

$t_{\perp} \neq 0$: two decoupled rectangular lattices in each valley leading to 6 copies of usual $SU(2)$ Heisenberg AF

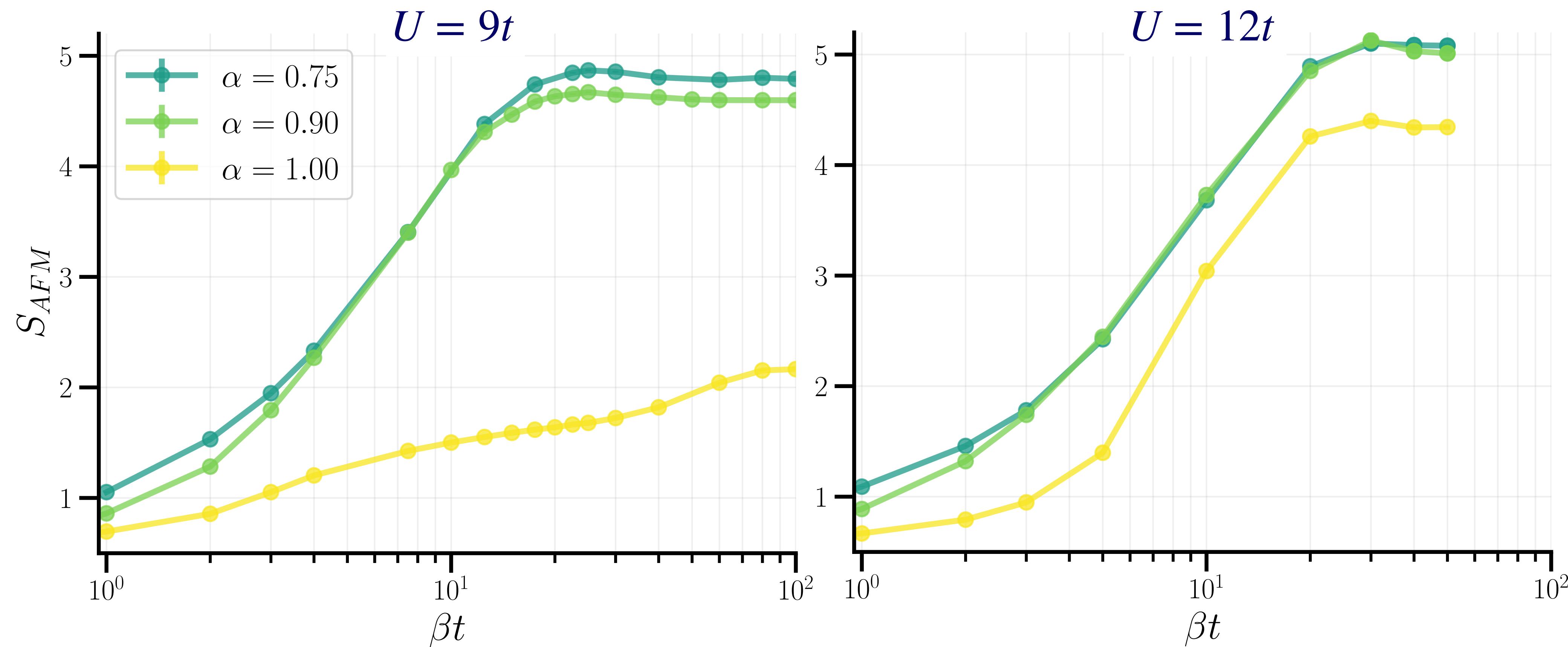
Néel order in each valley $\eta \Rightarrow$ AF peak at rectangular BZ corners = triangular M-points

Clear saturation of $S_{AFM} = \frac{1}{3} \sum_{\eta} \langle \hat{\mathbf{S}}_{\mathbf{Q}_{\eta}}^{(\eta)} \cdot \hat{\mathbf{S}}_{-\mathbf{Q}_{\eta}}^{(\eta)} \rangle$ as $T \rightarrow 0$



All DQMC data for $N = 12 \times 12$

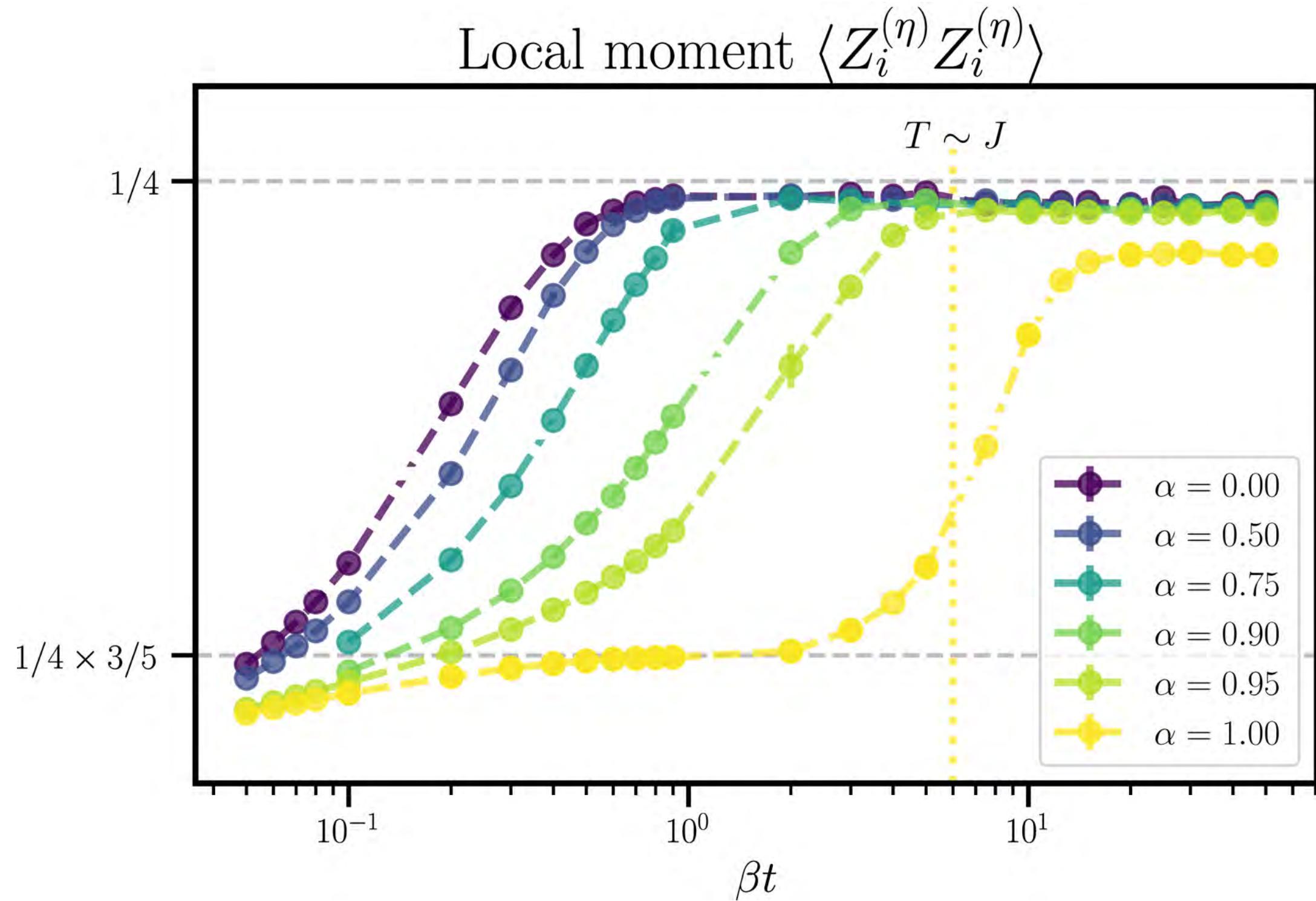
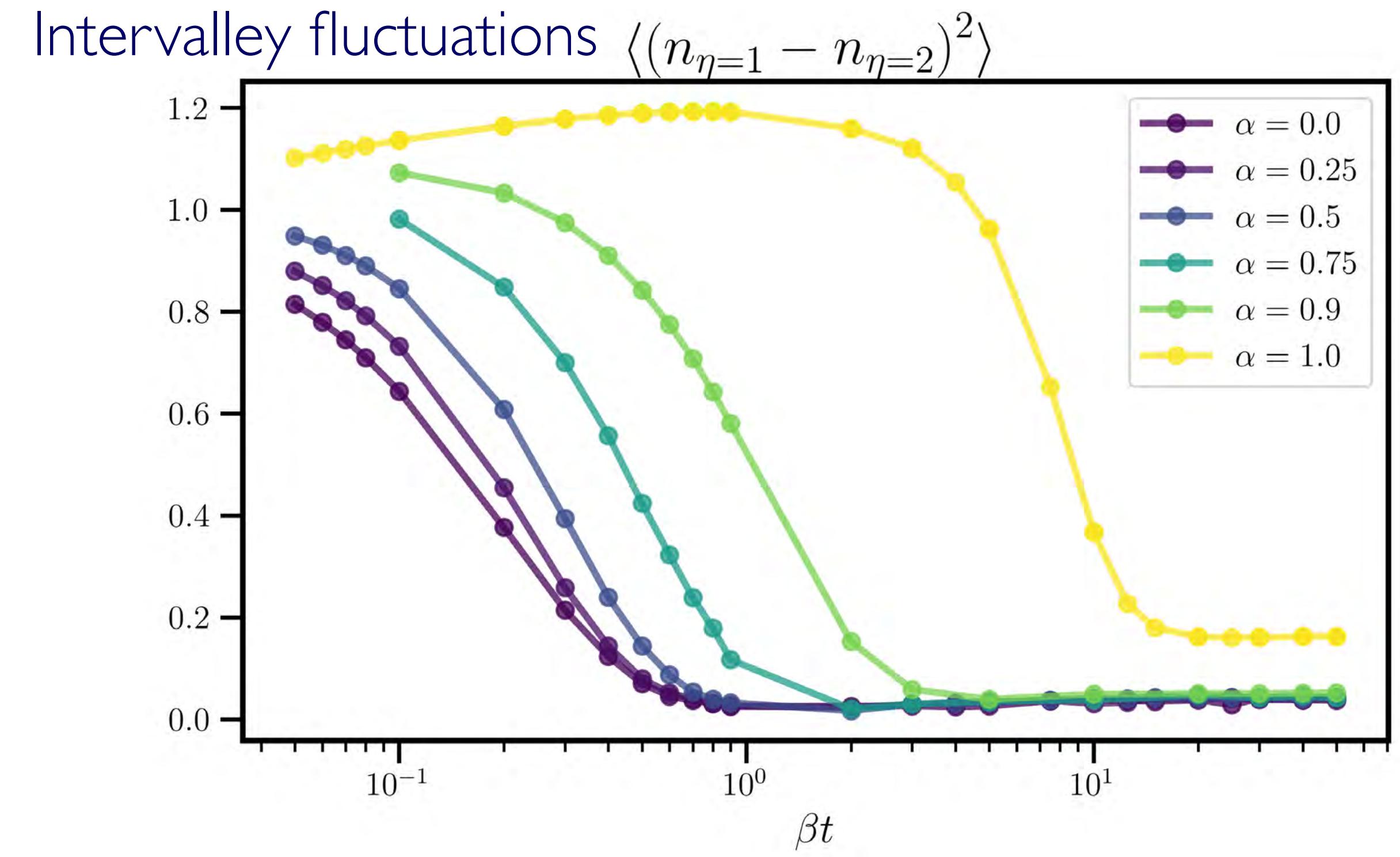
$\alpha \rightarrow 1$: Suppression of AF Order



As $\alpha \rightarrow 1$, AF order only saturates at much larger U/t — likely consequence of $U(6)$ on-site degeneracy

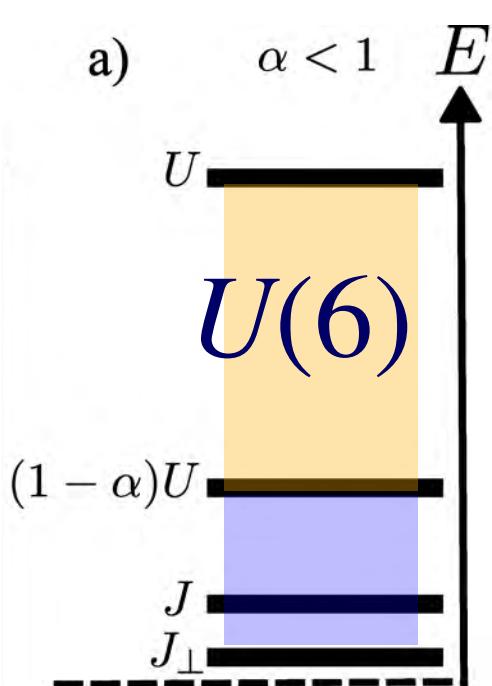
Apparent finite-size effects for $\alpha \rightarrow 1$ even for $\beta t \gg 1$ ~ metal survives to very low T even at strong coupling?

“Local Moment formation” and $U(6)$



Can rationalize based on difference in the scale of $SU(6)$ breaking

Anisotropic case:
 $U(6)$ broken at scale U

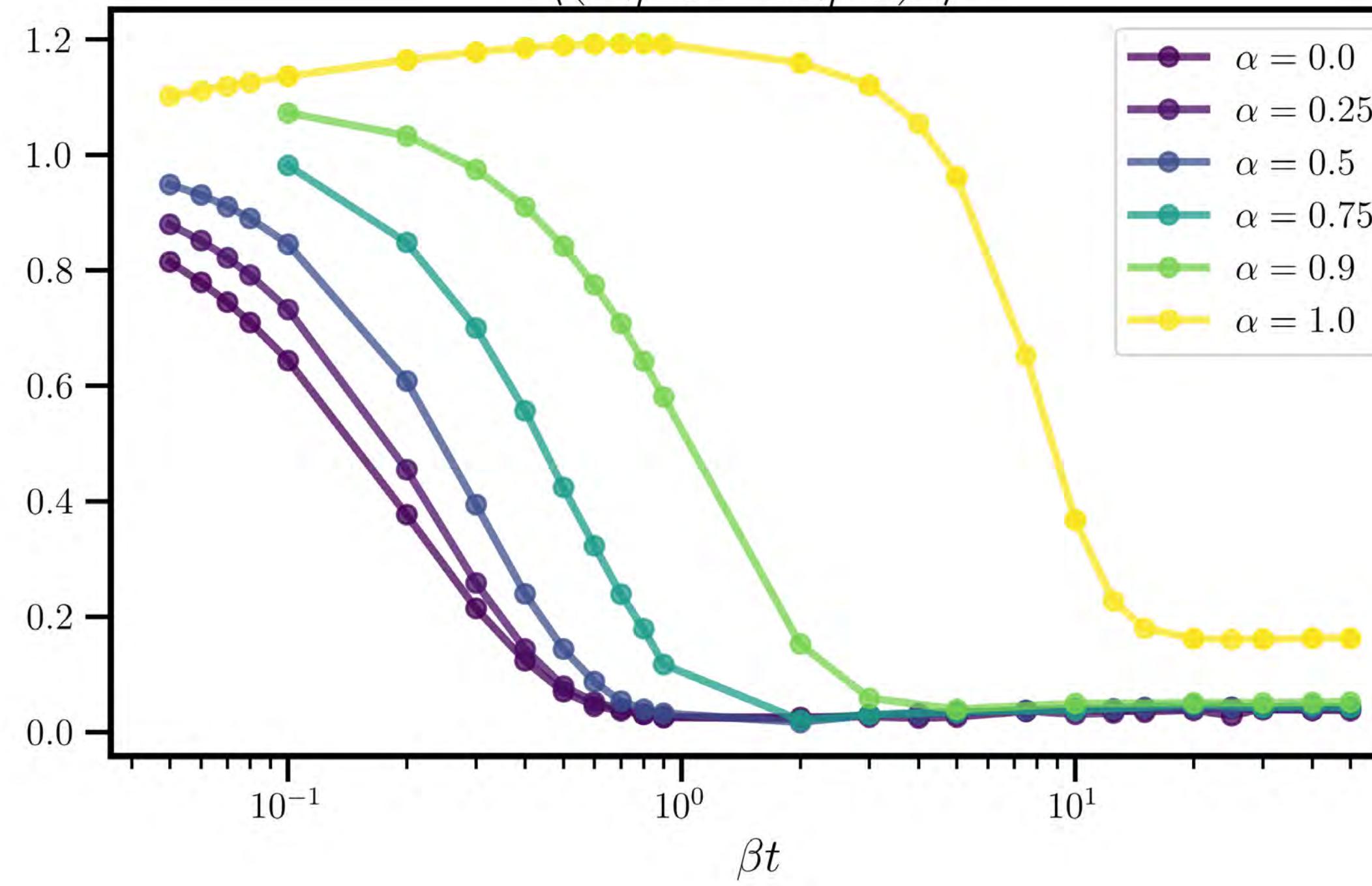


Isotropic case:
 $SU(6)$ broken only at $J \sim t^2/U$

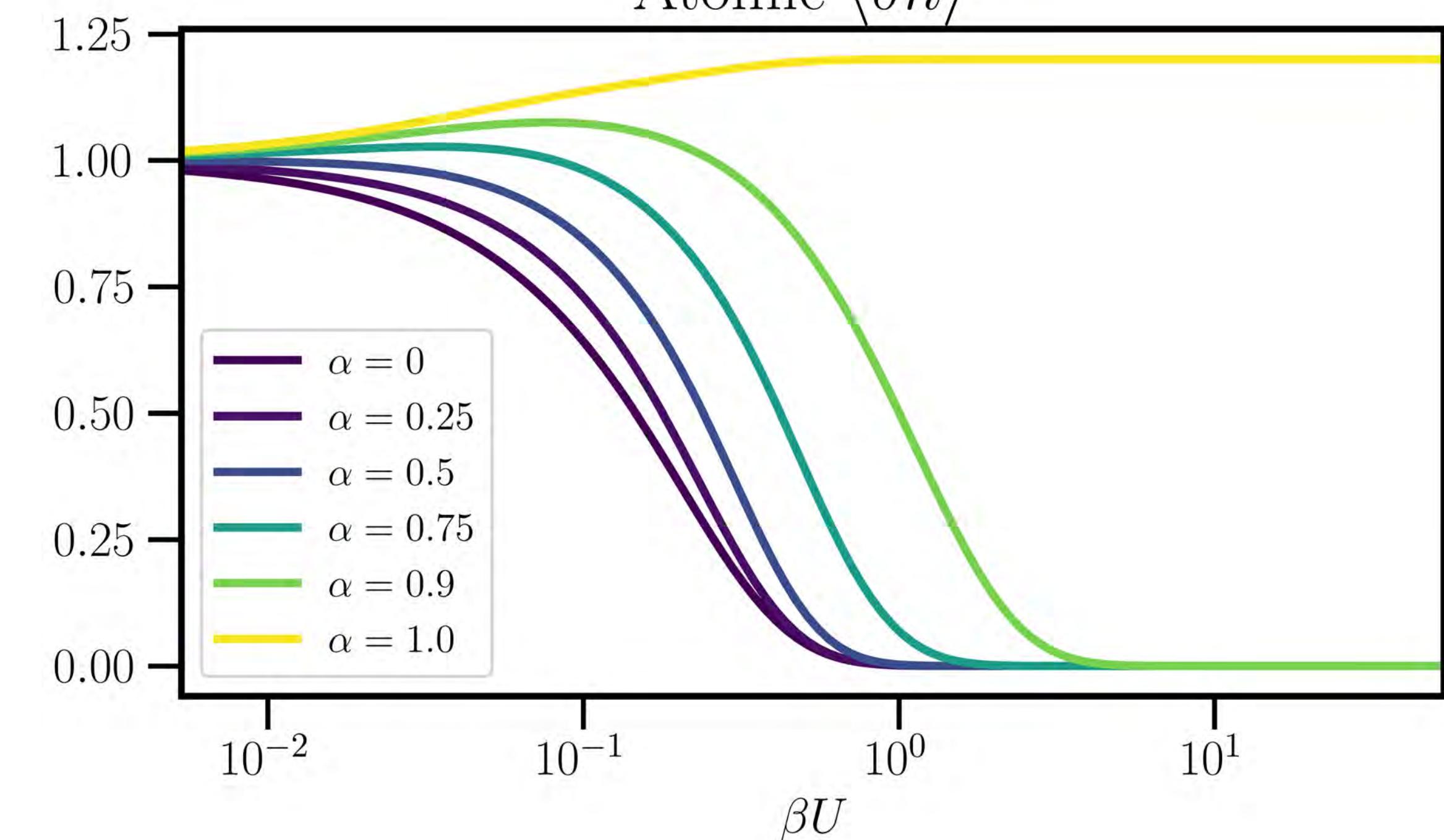


Local Moment formation vs. Atomic Limit

Intervalley fluctuations $\langle (n_{\eta=1} - n_{\eta=2})^2 \rangle$



Atomic $\langle \delta n \rangle^2$



For wide range of T , $\alpha = 0$ curves for full model tracks atomic limit
⇒ “SU(6)” symmetric local moment over wide temperature scale

Spectral Functions

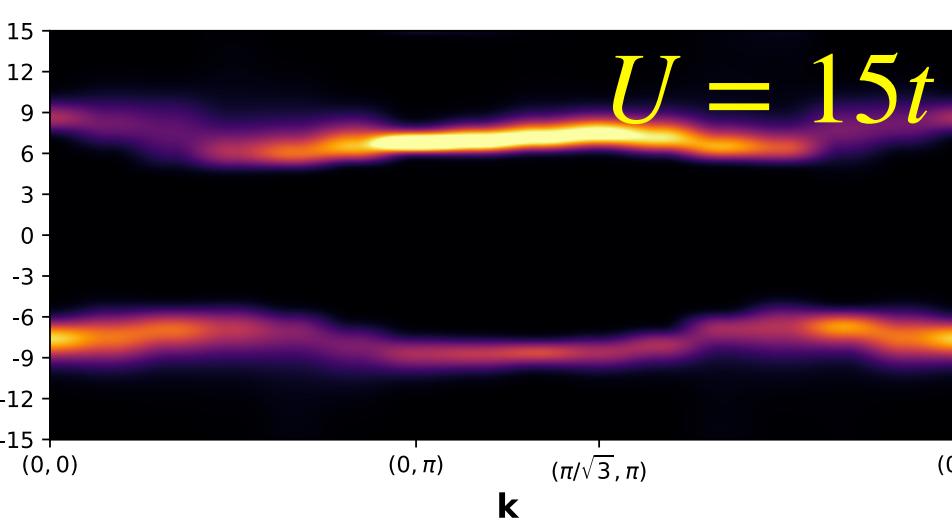
Can analytically continue to real-time & extract $A(\mathbf{k}, \omega)$

Anisotropic system: emergence of clear Mott gap for $U \gg t$

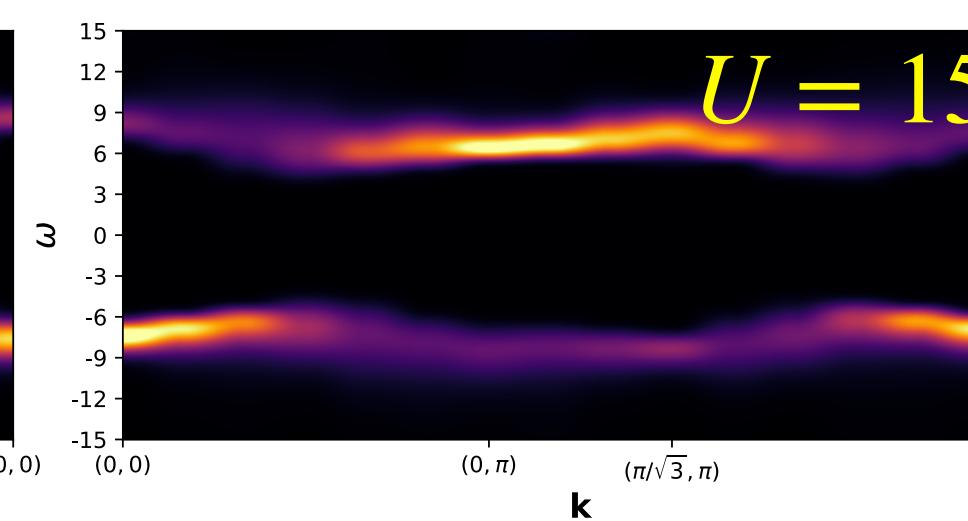
Isotropic point \sim very broad features down to low T

Stronger
Interactions

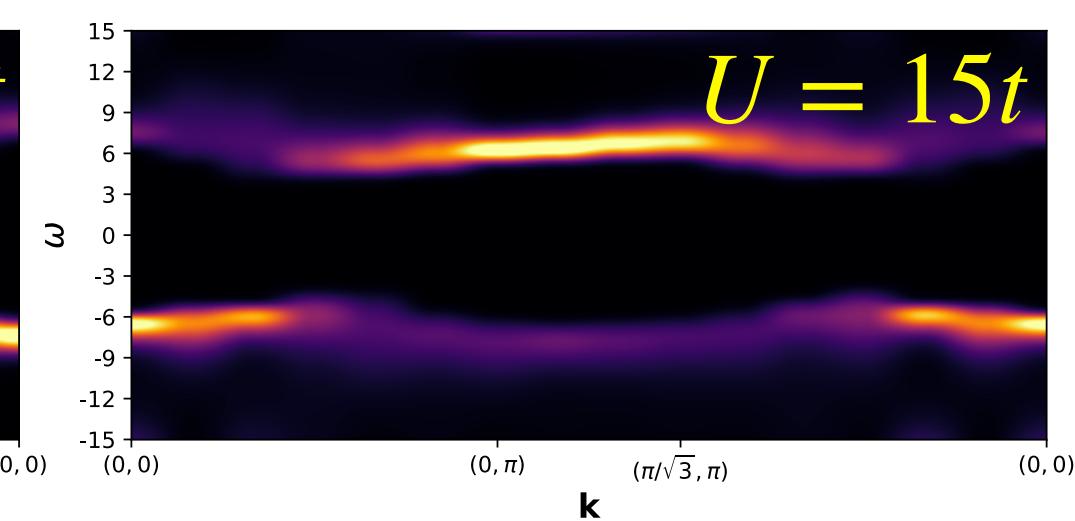
More isotropic



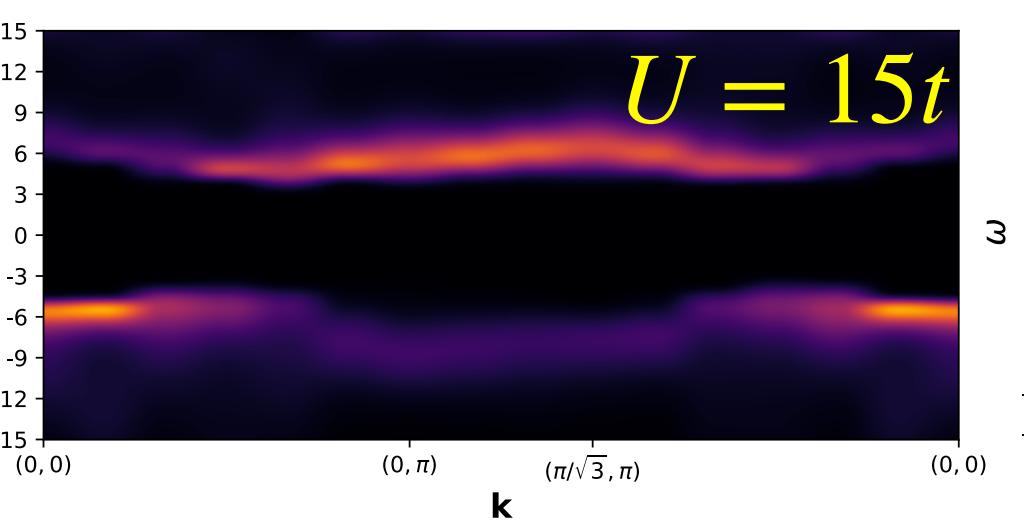
$\alpha = 0$



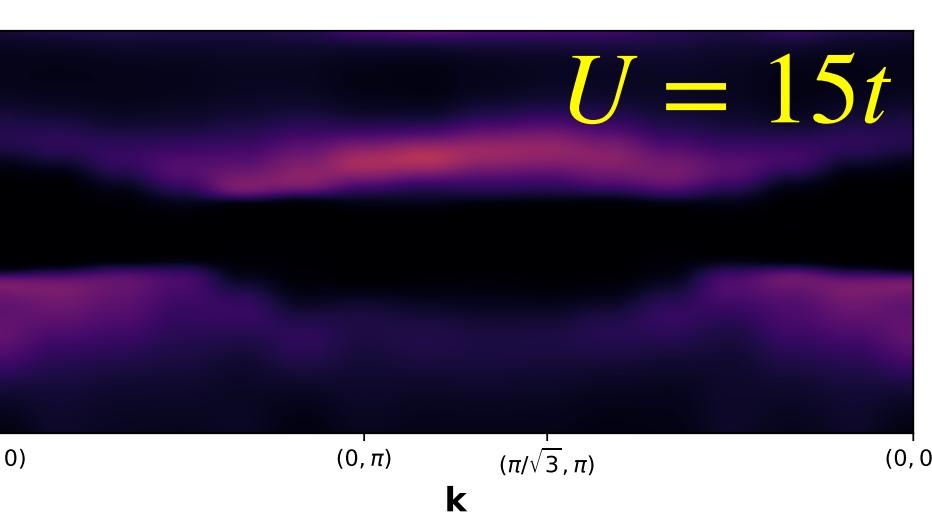
$\alpha = 0.5$



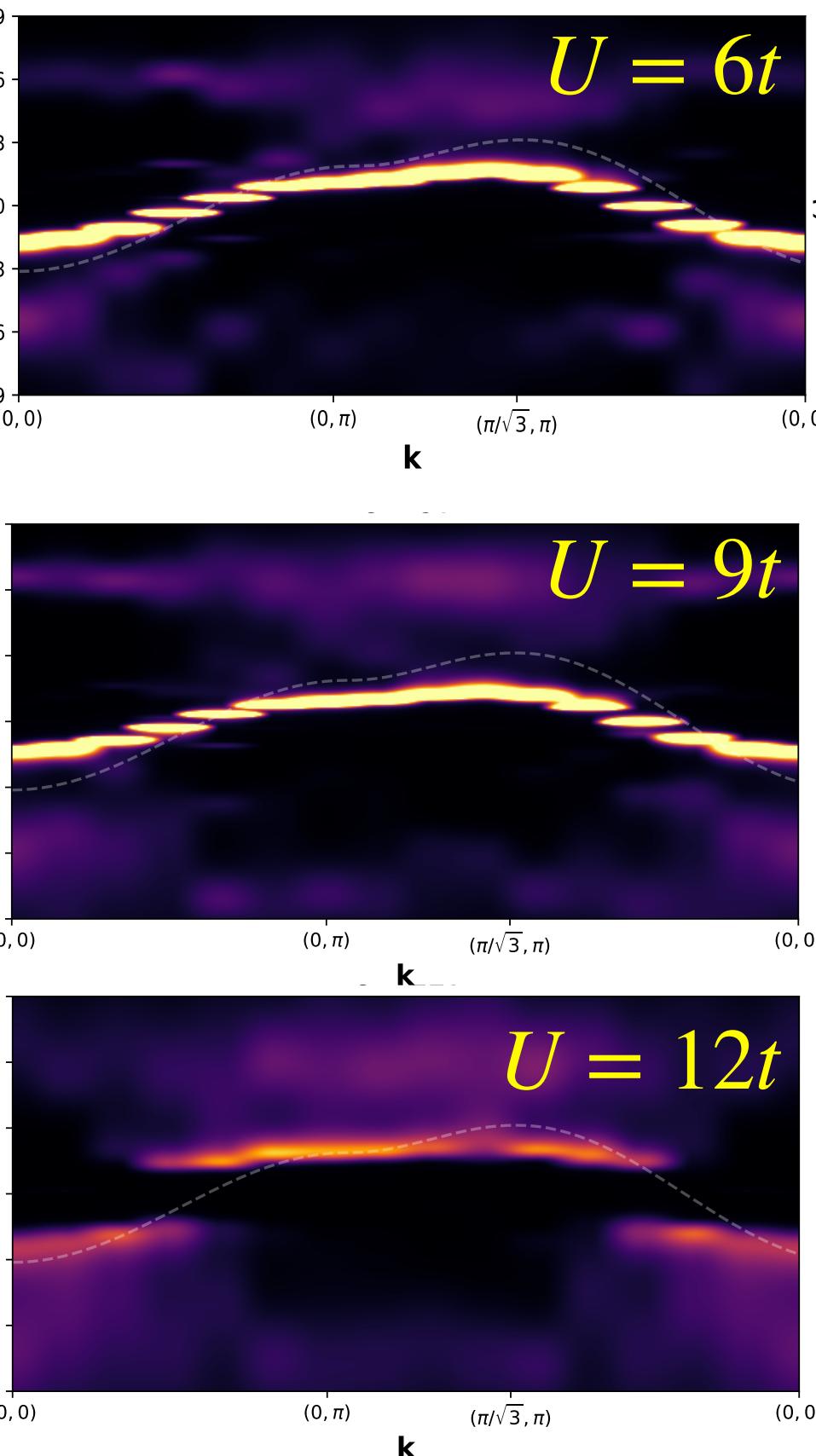
$\alpha = 0.75$



$\alpha = 0.9$



$\alpha = 1$



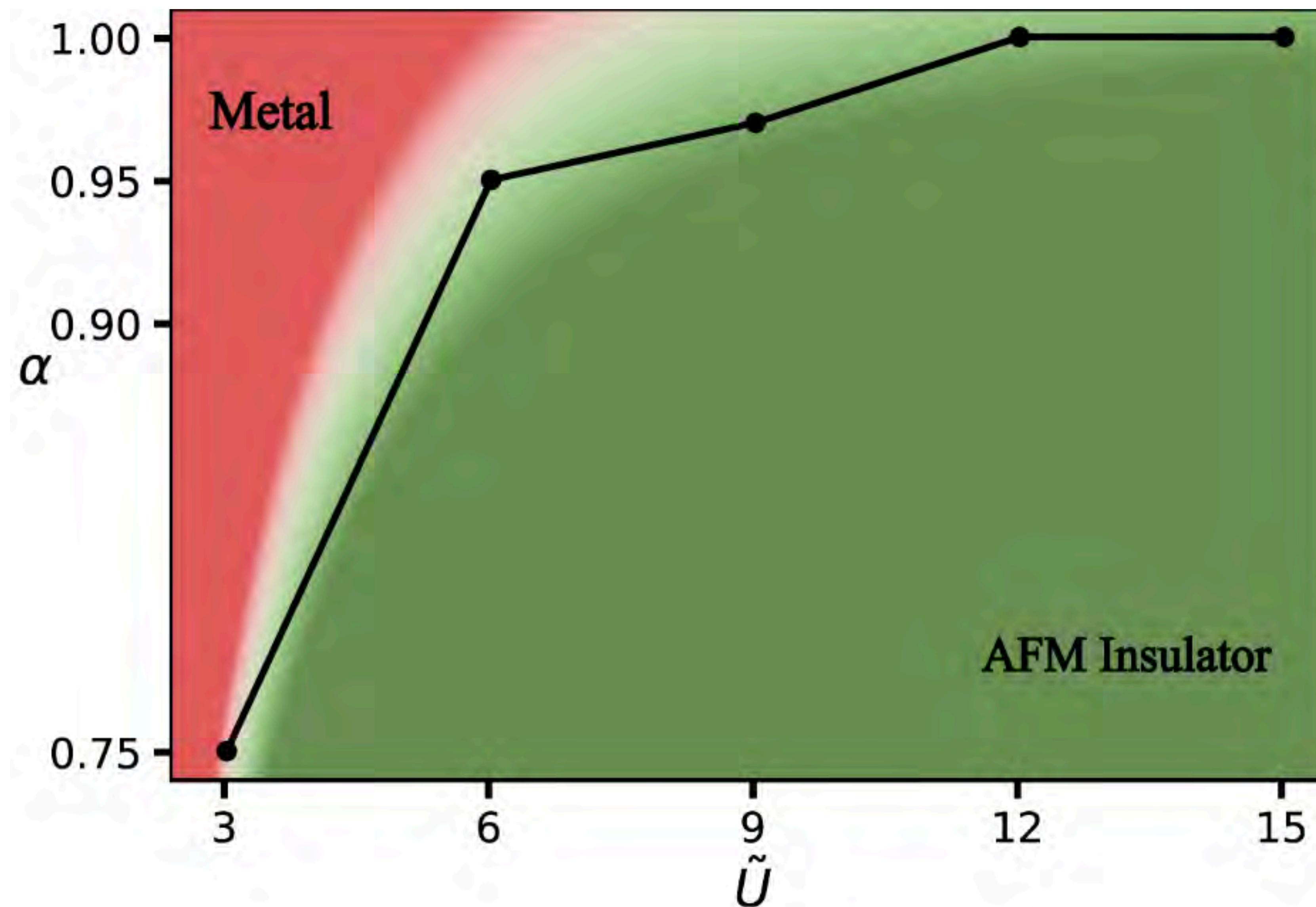
$U = 6t$

$U = 9t$

$U = 12t$

Low- T Crossover Diagram

$T = 0.01t$

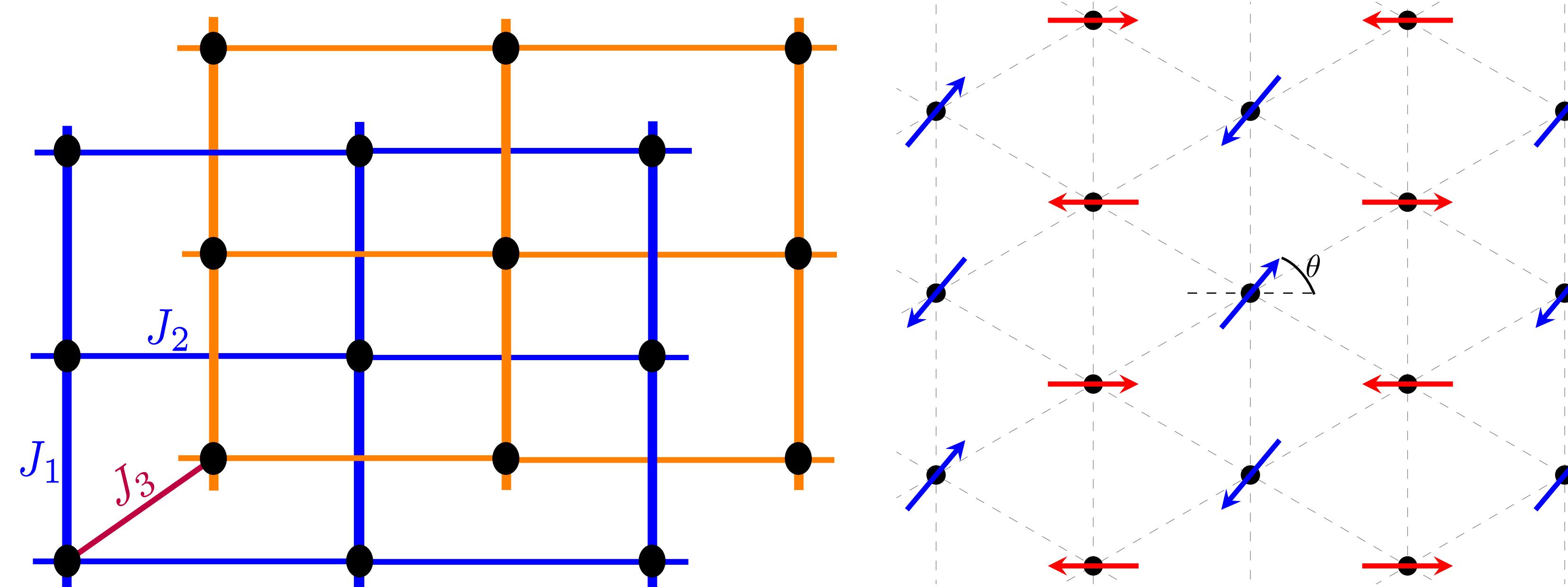


Aside: More on the AF Insulator for $\alpha \neq 1$

Even in a single valley: since second neighbor $t_{\perp} \gg$ first-neighbor t_{\perp} , splits into two rectangular sub lattices (effective $J_1 - J_2 - J_3$ model — so not as frustrated as usual triangular lattice)

Each sublattice Néel-ordered but relative orientation θ of Néel vectors is “free” at leading order in J_3 — “order-by disorder”* selects collinear states w/ $\theta = 0, \pi$ (cf. classic work on $J_1 - J_2$ square lattice)

[C. Henley, PRL **62**, 2056 (1989)]



*competing scale for OBD via inter-valley tunneling as well...

Summary: Lecture 2

M-point materials provide **highly-tunable examples of “mixed-dimensional”/sliding/multiorbital physics**

Remarkably, **two limiting cases of phase diagram can be accessed with sign-free QMC!**

Summary: Lecture 2

M-point materials provide **highly-tunable examples of “mixed-dimensional”/sliding/multiorbital physics**

Remarkably, **two limiting cases of phase diagram can be accessed with sign-free QMC!**

For $t_{\perp} = 0$, rare example of unbiased numerical access (SSE) to doped Mott insulator w/o local approx.

Rich physics: “hierarchy reversal”, Pomeranchuk, Wigner-Mott physics

Future: Green’s functions, superconductivity, possible CDWs

Summary: Lecture 2

M-point materials provide **highly-tunable examples of “mixed-dimensional”/sliding/multiorbital physics**

Remarkably, **two limiting cases of phase diagram can be accessed with sign-free QMC!**

For $t_{\perp} = 0$, rare example of unbiased numerical access (SSE) to doped Mott insulator w/o local approx.

Rich physics: “hierarchy reversal”, Pomeranchuk, Wigner-Mott physics

Future: Green’s functions, superconductivity, possible CDWs

For half-filling and $t_{\perp} \neq 0$, can use DQMC to access AF ordering

AF order suppressed $U(6)$; possible strongly renormalized metal accessed via spectral function

Future: more extensive study of metal and the AF phases

Thanks for listening!