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A B S T R A C T

We report the first combination of a commercial direct analysis in real time (DART) sourcewith FT-ICRMS
and its application to analysis of complex organic mixtures. DART enables ionization of compounds with
little or no sample preparation, and FT-ICR provides ultrahigh mass resolution and mass accuracy. The
combination provides a rapid, robust, and reliable method for analysis of components spanning a wide
range of chemical functionality. DART 9.4 T FT-ICR MS generates abundant molecular or quasimolecular
ions from C60, heavy petroleum, naphthenate deposits, and biotar, without fragmentation. Moreover, we
demonstrate desorption/ionization of compounds with boiling points significantly higher than the DART
source temperature. DART FT-ICR MS thus offers a new and useful atmospheric pressure ionization mass
spectrometry technique for analysis of complex organic mixtures.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Direct analysis in real time (DART) [1] is a relatively new
atmospheric pressure ionization technique that has gained popular-
ity for mass spectrometry-based analysis of compositionally
complex organic mixtures [2], with applications in forensics [3],
metabolomics [4,5], pharmacokinetics [6], petroleomics [7],
homeland security [8,9], food and beverage analysis [10], etc. It
offers rapid throughput for analysis of solid, liquid, and gaseous
samples with minimal sample preparation requirement.

InDART, a glowdischarge sustained by the continuousflowofHe
gasresults inthegenerationofelectronicallyexcited(metastable)He

atoms(23S1,19.82eV)with lifetimesofupto8000s [11].Positive ions
can be formed when metastable atoms interact with ambient air
upon exiting the source, resulting in the generation of protonated
water clusters, which serve as proton transfer reagents for chemical
ionization of analytemolecules desorbed from solid samples placed
directly within the ionization region (Fig. 1). Under appropriate
conditions,oxygenradical-cation(O2

+�) andnitricoxidecation(NO+)
can also be generated, resulting in analyte ionization by charge
exchange, hydride abstraction, or/and oxidation reactions [1,12]. For
analysis of samples dissolved in a solvent, the metastable helium
atoms interact with the solvent molecules to generate primary ions
ina transientmicroenvironment for subsequent chemical ionization
of analytes [13]. Solventmolecular ions reactwithanalytemolecules
to generate both protonated analyte molecules by proton transfer
and/or molecular ions by charge exchange. Negative ions can be
produced by four main mechanisms: electron capture, dissociative
electron capture, proton transfer, and anion attachment [13].
Recently it was reported that saturated hydrocarbons, alcohols,
fatty acids, and esters form [M+O2]– � ions by anion attachment by
means of negative ion DART [14].
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The nonpareil mass resolution and mass accuracy provided by
Fourier transform ion cyclotron resonance mass spectrometry
(FT-ICR MS) [15] are essential for analysis of complex organic
mixtures [16–21]. Moreover, broadband phase correction [22] and
“walking” calibration [23] significantly increase FT-ICR mass
resolving power and mass accuracy without any modification or
upgrade of instrument hardware. For example, absorption-mode
FT-ICR MS can simultaneously resolve mass doublets separated by
less than the mass of an electron (�0.0005Da) in broadband mass
spectra over awidemass range [16]. By comparison, a DART source
coupled to an orbitrap mass analyzer, at a mass resolving power
(m/Dm50%) = 50,000 atm/z 200 demonstrated resolution of CH4 vs.
O (0.036Da) at m/z 253 in a sparse mass spectrum [24]. However,
the much higher resolving power of FT-ICR MS is needed for
smaller mass splits in complex mixtures extending tomuch higher
mass (e.g., C4 vs. 13CH3S, 0.0011Da, requiringmass resolving power
higher than 455,000 at m/z 500 – see below).

A custom-built DART source has previously been coupled with
FT-ICR MS to characterize individual compounds and complex
samples, including a petroleum crude oil [7]. However, the
resulting DART mass spectrum of the crude oil differed from that
obtained by electrospray ionization (ESI), and demonstrated
preferential ionization of low molecular weight components,
presumably due to inefficient desorption of largermolecules. Here,
we combine a commercial DART source (IonSense, Inc.) with the
same 9.4 T FT-ICR mass spectrometer to further explore the
capabilities and limitations of the technique for analysis of
complex organic mixtures.

2. Experimental methods

2.1. Samples and preparation

HPLC grade solvents (acetone and toluene) and fullerene
C60 were purchased from Sigma–Aldrich (St. Louis, MO). The
deasphalted oil sample, provided by an oil company, is the
n-heptane soluble fraction (maltenes) from a high vacuum oil
residue. Its atmospheric equivalent boiling point is 540 �C+ (ASTM
method D7169) (in fact, the sample was never exposed to such a

temperature – the maximum temperature in a refinery is limited
to�360–380 �E to prevent thermal cracking). The biotar sample is
a product of fast pyrolysis of biomass (hardwood chips) under
nitrogen and was obtained from Primus Green Energy, Inc.
(Hillsborough, NJ). An emulsion formed in oil–water separators
containing sodium naphthenates and solid deposit samples
containing calcium naphthenates was received from Nalco Energy
Services (Sugar Land, TX).

Fullerene C60 dissolved in toluene at a concentration of
5mgmL�1 was introduced into the DART source through a melting
point capillary. The deasphalted oil sample was diluted in toluene
to a concentration of 1mgmL�1 and continuously injected
thorough a metal needle into a DART source (Tsource = 370 �C) with
a syringe pump at 5mLmin�1. The biotar sample was dissolved in
acetone at a concentration of 1mgmL�1 and a melting point glass
capillary was dipped into the solution and analyzed at a DART
source temperature of 300 �C. Emulsion, deposit sample, and
“ARN” extract were analyzed directly without dilution or other
sample preparation. “ARN” acids isolated from a calcium
naphthenate deposit as described elsewhere [25] were ionized
at a DART source temperature of 470 �C. Specifically, a calcium
naphthenate sample was washed repeatedly with toluene to
remove entrapped crude oil until the color of the toluene phase
was almost clear. After the toluenewash, calcium naphthenatewas
digested with 1M hydrochloric acid, followed by toluene extrac-
tion. The organic extract containing ARN acids was then dried with
a stream of nitrogen gas.

2.2. Instrumentation and mass analysis

A commercial DART ET source equipped with a DART 100-CE
controller for source operation (IonSense, Saugus, MA) was
coupled with a custom-built 9.4 T FT-ICR mass spectrometer
[26,27] equipped with a Predator data station [28]. The outlet of
DART source was axially aligned with the mass spectrometer inlet
and the signal was optimized by varying the intervening distance
from 4 to 20mm. The DART source was operated at temperatures
ranging from 250 to 500 �C, with helium gas (99.999% purity,
Airgas) at �6 L/min (i.e., 60% of the maximum) flow rate. High

[(Fig._1)TD$FIG]

Fig.1. Top: schematic diagramof the IonSense DARTsource (with permission from JEOLUSA, Inc.). Bottom: reactions derived frommetastable helium atoms, He* produced by
glow discharge (see text).
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voltage (3500V) was supplied to a needle to provide a glow
discharge that generates primary ionizing species (ions, electrons,
and electronically excited neutrals). The discharge electrode
potential was set to +400V for generation of positive ions and
�400V for negative ions. The grid electrode potential was set to
0V to enable efficient transmission of both excited neutrals and
charged species to maximize analyte ionization efficiency.

The mass spectrometer was operated as follows: tube lens,
50V; inlet metal capillary, 70V and heated with 12W; and
skimmer, 12V [29]. The generated ions were accumulated in an
external linear octopole ion trap [30], ejected by applying a dc
voltage to angled wires, and then transferred by rf-only octopoles
[31] (operated at 2.0MHz and 240Vp–p) to an open cylindrical
Penning ion trap [32]. Ions were subjected to broadband
frequency-sweep (chirp) dipolar excitation (at a sweep rate of
50Hz/ms and amplitude, 450Vp–p) followed by direct broadband
image current detection to yield 8 Mword time-domain data.
20 time-domain acquisitions were summed, Hanning-apodized,
and zero-filled once before fast Fourier transformation and
magnitude calculation. ICR frequency to mass-to-charge
conversion was based on the quadrupolar electrostatic trapping
potential approximation [33,34].

2.3. Data analysis

Prior to mounting of the DART source, the mass spectrometer
was calibrated by use of electrospray-ionized Agilent HP mix No.
G2421A (Agilent Technologies, Santa Clara, CA) under ESI. FT-ICR
mass spectra of complex mixtures (i.e, petroleum and bio-tar
samples) were internally calibrated with respect to a highly
abundant homologous series of ions spanning a wide mass range.
Singly charged ions with mass spectral peak magnitude greater
than 6 times the standard deviation of the baseline noise were
Kendrick-sorted and imported into Microsoft Excel for identifica-
tion with a formula calculator as per a previously reported
procedure [35]. Kendrick mass defect was used to identify
homologous series for peak assignment [36]. The most abundant
homologous series of ions used for internal calibration can differ
from sample to sample. For example, for (�) DART FT-ICR MS for
sodium naphthenates, it was the O2 class (DBE=1). Relative
isoabundance-contoured plots of double bond equivalents

(DBE=number of rings plus double bonds to carbon) [37] vs.
carbon number serve to visualize data for all members of a given
heteroatom class (NnOoSs) simultaneously.

3. Results and discussion

3.1. Need for high mass resolving power

In general, DART can generate both even- and odd-electron
positive ions, and very narrow mass splits must be resolved for
organic compounds containing C, H, N, O, and S atoms. Examples of
mass splits that require ultrahigh resolving power are shown in
Table 1. Resolution of those splits over a wide mass range is
achievable only with FT-ICRMS, because themass resolving power
(m/Dm50%) entries in the right column in Table 1 represent the
minimum required to barely resolve two peaks of equal
magnitude; much higher resolving power is needed to resolve
peaks of significantly different magnitude [38].

3.2. DART source temperature and fractionation

DART FT-ICRmass spectra of complex mixtures (e.g., petroleum
or environmental samples) may exhibit a truncated molecular
weight distribution if the components span awide range of boiling
temperature. The above phenomenon is known as “fractionation”
and results from faster evaporation of more volatile molecules,
resulting in underestimation of the higher-boiling components.
The fractionation effect can be minimized by use of direct sample
injection and signal averaging.

To investigate the DART temperature limitation, we analyzed
fullerene C60 at a DART source temperature (370 �C) well below the
C60 sublimation temperature (500 �C) [39]. (Note that the
temperature reported by the DART software is from a thermocou-
ple embedded in the ceramic heater, not in the gas stream.
Therefore, the actual gas temperature is lower, and is a function of
the heater core temperature, gas flow rate, and heat capacity of the
gas [40].) Fig. 2 shows a positive ion DART FT-ICRmass spectrum of
the fullerene, C60. The highest magnitude peak corresponds to
[M+H]+ ions, and is produced in the source by ion-molecule
reactions that result in proton transfer from H3O+. The proton
affinity (PA) is 167kcal/mol [41] for H2O and 190kcal/mol [42] for

Table 1
Common mass “splits” observed by DART MS analysis of complex organic mixtures.

Doublet m2–m1, Da Minimum resolving power (m/Dm50%) at m/z 500

C2H4 vs. N2 0.0252 20,000
H2N vs. O 0.0238a 22,000
H4O2 vs. C3 0.0211 24,000
O2 vs. S 0.0178 29,000
C2H3 vs. 13CN 0.0170 30,000
H6S vs. C2N 0.0159a 32,000
HN2 vs. 13CO 0.0157a 32,000
C4 vs. O3 0.0153 33,000
CH2 vs. N 0.0126a 40,000
13CH5S vs.C3N 0.0115 44,000
N2 vs. CO 0.0112 45,000
H4O3 vs. C2N2 0.0099 51,000
C2H2 vs. 13C2 0.0089 57,000
13CH vs. N 0.0081 62,000
H3NS vs. C3

13C 0.0047 107,000
CH vs. 13C 0.0045a 112,000
C2N vs. 34SH4 0.0039a 129,000
13C2 vs. CN 0.0036a 139,000
H4S vs. C3 0.0034 148,000
C2H34S vs. NS13C 0.0028 179,000
C4 vs. 13CH3S 0.0011a 455,000

a Mass split due to simultaneous presence of even- and odd-electron ions.
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(H2O)2, compared to 204 kcal/mol [43] for C60. The peak atm/z 737
([M+O+H]+) is due to oxidation of fullerene during atmospheric
pressure ionization. Thus, DART enables ionization of high-boiling
compounds due to desorption/ionization of analyte molecules by
highly energetic reagents (ions and electronically excited neutrals)
[1], formed in the source region.

3.3. DART FT-ICR MS for petroleum analysis

To evaluate the suitability of DART for analysis of composition-
ally complexmixtures of high-boiling compounds spanning awide
molecular weight range, we examined a deasphalted oil containing
compounds boiling at �540 �C. Fig. 3 shows a DART FT-ICR mass
spectrumwith signals from 400 to 1600Da and a number-average
molecular weight of �1100Da. Note that the molecular weight
distribution was the same as obtained by ESI and atmospheric
pressure photoionization [44], validating the applicability of DART
for petroleum analysis.

3.4. Sodium naphthenates

Another potential application of DART is direct analysis of rock
samples, geological and production deposits, and natural objects of
organic origin.We therefore applied (�) DART FT-ICRMS to analyze

industrial naphthenate deposits formed by the interaction of
naphthenic acids with monovalent (Na+, K+) and divalent
(Ca2+, Mg2+) ions from produced waters that cause severe problems
during petroleum production [45,46]. Naphthenic acids are
encountered in all crude oils and their abundance depends on
petroleum maturity and degree of biodegradation. The correlation
between concentration ofnaphthenic acids detectedbynegative ion
(ESI)mass spectrometry and total acid numberhas been established
recently [47]. In the petroleum industry the term “naphthenic acids”
encompasses all carboxylic acids, including acyclic, cyclic (truly
naphthenic), and aromatic. Naphthenates can occur as stable
emulsions, soap, sludge, and deposits. Sodium naphthenates
predominantly formemulsionsandsoaps,andconsistofmonoprotic
carboxylic acids with carbon number from C15 to C35.

Naphthenates have traditionally been isolated by a
time-consuming purification protocol for subsequent analysis by
negative ion ESI MS [25]. Fig. 4 shows the broadband negative ion
DART FT-ICR mass spectrum of sodium naphthenates obtained

[(Fig._3)TD$FIG]

Fig. 3. Positive ion DART 9.4 T FT-ICR mass spectrum of a de-asphaltened high
vacuum gas oil.

[(Fig._2)TD$FIG]

Fig. 2. Positive ion DART 9.4 T FT-ICR mass spectrum of fullerene C60 at a DART
source temperature (Tsource = 370 �C) well below the sublimation point (Tsub = 500
�C) of C60.

[(Fig._5)TD$FIG]

Fig. 5. Negative ion DART 9.4 T FT-ICR mass spectrum of an “ARN” extract from a
calcium naphthenate deposit, clearly showing singly charged [M�H]– ions
from ARN acids. The accompanying ARN acid structure was suggested by
Lutnaes et al. [45].

[(Fig._4)TD$FIG]

Fig. 4. Negative ion DART 9.4 T FT-ICR mass spectrum of a sodium naphthenate
emulsion. Inset: isoabundance-contoured plot of double bond equivalents (DBE) vs.
carbon number for O2 class ions.
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from a stable emulsion interfacial layer in oil/water separation
units. Although the analysis does not require any sample
preparation, and takes only several seconds, it nevertheless
provides rich compositional detail about the naphthenic acids.
Specifically, the detected acids exhibit DBE=1, corresponding to
saturated acyclic carboxylic acids (fatty acids). Saturated fatty acids
form an emulsion in the sodium naphthenate deposit, in accord
with their structurally determined surfactant properties (polar
carboxylic head and nonpolar aliphatic tail). The acid composition
derived from (�) DART FT-ICRMS closelymatches that from (�) ESI
FT-ICR MS for similar extracts [25]. Notably, the absence of dimers
in the (�) DART mass spectrum, in addition to much shorter
analysis time, is another advantage of DART over ESI.

Concentration-dependent naphthenic acid multimer formation
(e.g., [2M�H]– ions) is usually observed with (�) ESI and requires
additional ion activation (either collision-induced dissociation or
infraredmultiphoton dissociation) [48]. Finally, DARTmass spectra
are less subject to matrix effects than ESI, resulting in wider
applicability of DART for screening of targeted compounds in
complex matrices.

3.5. Calcium naphthenates

In petroleum production, calcium naphthenates are formed
from high molecular weight tetraprotic carboxylic acids (so-called
“ARN” acids) with �80 carbons, and produce sludge and solid

[(Fig._6)TD$FIG]

Fig. 6. Top: negative ion DART 9.4 T FT-ICR mass spectrum of a biotar sample. Inset: summed relative abundances for each member of the Ox (x =2–12) heteroatom class.
Bottom: isoabundance-contoured plots of DBE vs. carbon number for each of the most abundant heteroatom classes.
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deposits [25,49]. C80 ARN acid molecular weights range from
1228 to 1236Da, and their elemental compositions have been
determined by FT-ICR accuratemass measurement [50]. ARN acids
were first found in deposits from an offshore Norwegian Sea oil
field. The term “ARN” (“eagle” in Norwegian) derives from their
talon-like structure determined by NMR [51]. The structure of ARN
acids (a head-to-head linked isoprenoid 20-bis-16,160-biphytane
carbon skeleton with four to six cyclopentane rings) is believed to
closely resemble the tetraethers in lipid membranes from Archaea
bacteria [52,53], a family of microorganisms found in most
petroleum reservoirs.

The (�) DART FT-ICRmass spectrum of the “ARN” extract from a
solid calcium naphthenate deposit (Fig. 5) clearly shows abundant
[M�H]– ions from “ARN” acids (confirmed by high resolutionmass
measurement). In contrast to (�) ESI, which produces both singly
and doubly-charged ions [49], DART generates exclusively
singly-charged [M�H]– ions. Prior low resolution mass spectra
for naphthenate extracts derived from atmospheric pressure
chemical ionization also yielded preferential (if not exclusive)
formation of singly-charged ions for ARN acids [54]. DART
ionization (like atmospheric pressure chemical ionization (APCI))
takes place in the gas phase, and formation of doubly-charged ions
from singly-charged small molecules is energetically unfavorable.
In contrast, with ESI, analytes are typically pre-ionized in solution
(and thus can be multiply-charged) as ions are transferred from
liquid to gas phase.

3.6. Bio-tar

Finally, we apply DART FT-ICR MS for characterization of
biotar produced from hardwood chips during fast pyrolysis under
nitrogen. The primary components of wood include bio-polymers
(cellulose, hemi-cellulose, lignin) that decompose on heating in
the absence of oxygen. In general, pyrolysis of biomass results
in the formation of gas, liquid (biotar), and solid (charcoal) phases.
Fast pyrolysis is used to maximize the yield of liquid products that
can be further upgraded to produce transportation fuels [55]. The
application of DART time-of-flight MS for analysis of mainly
volatile, low molecular weight compounds formed during wood
pyrolysis has been reported [56].

Compositional characterization of biotar is crucial for the
development and optimization of technology in manufacturing of
bio-fuels. The negative ion DART FT-ICR mass spectrum of biotar
(Fig. 6, top) reveals more than 6400 different elemental
compositions spanning a wide mass range 150<m/z<900. The
most abundant heteroatom ion classes (Fig. 6, top inset) are On

(n =3–8). Fig. 6, bottom demonstrates the distribution of
components within each heteroatom class, graphically sorted
according to DBE and carbon number. All of the biotar On classes
are highly aromatic (i.e., high DBE for a given carbon number). The
diagonal distribution in DBE vs. carbon number is characteristic of
polymers: i.e., composition and molecular weight increase
proportionally with addition of each successive monomer unit.
Here again, (�) DART determination of the most abundant
heteroatom classes and the distribution of components in the
DBE vs. carbon number plots are similar to those from (�) ESI [57],
except for small differences in relative abundances.
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