Rotationally misalignment profoundly modifies electronic and lattice properties of van der Waals materials. If the twist angle between adjacent layers is small, a periodic network of dislocations (solitons) delineating large commensurate domains appears. These solitons have a surprisingly strong influence on collective modes of the system, plasmons and phonon-polaritons. For example, a twisted bilayer graphene can act as a photonic crystal for two- and one-dimensional plasmons. Solitons in a twisted boron nitride can induce spectral shift and splitting of phonon-polaritons. I will review recent nano-optical experiments that probed these phenomena and their theoretical modeling.