Dynamical Mean Field Theory: Basic ideas and cluster extensions

A. J. Millis
Department of Physics
Columbia University

Support: NSF DMR 10006282, DOE ER-046169 and ARO 056032PH
Key people

*P. Werner
Columbia -> Fribourg

*E. Gull
Columbia -> Dresden
The need for approximations
Fermionic Many-Body Physics: the exponential wall

General Hamiltonian:
Choose some basis $\alpha = 1...M$

$$H = \sum_{\alpha,\beta} E^{\alpha\beta} \psi^\dagger_\alpha \psi_\beta + \sum_{\alpha\beta\gamma\delta} I^{\alpha\beta\gamma\delta} \psi^\dagger_\alpha \psi^\dagger_\beta \psi_\gamma \psi_\delta + ...$$

$M = \infty$ for condensed matter
M finite for chemistry

Interest: ground state and excitations
Dimension of Hilbert space: 2^M

Direct diagonalization: exponentially difficult.

Present limit-- $M \sim 30$.

(and wont get much bigger)

Direct diagonalization becomes impractical before size gets big enough,
‘Optimized diagonalization’: density matrix renormalization group

1d (provably), d>1 (probably): polynomial time method for finding ground state (at least for gapped systems).

Some excited state properties in d=1 (but is comprehensive description of excitations not possible in polynomial time)

U. Schollwoeck, RMP77 259

‘Optimized diagonalization’: density matrix renormalization group

Method of choice for ground state properties of 1d model system problems

Becoming important tool in quantum chemistry

d>1 remains a big challenge

??Excitations??

U. Schollwoeck, RMP77 259

Standard method for exploring exponentially large configuration space:
Stochastic (Monte-Carlo) integration

Definition of expectation value
\[
\langle A \rangle_w = \frac{1}{Z_w} \int_C dx \ A(x) w(x)
\]

- \(Z = \text{partition function}\)
- \(x = \text{some configuration}\)
- \(w(x): \text{``weight'': contribution of } x \text{ to partition function}\)

Copyright A. J. Millis 2012
Stochastic part:

To estimate

$$<A>_w = \frac{1}{Z_w} \int_C dx \ A(x)w(x)$$

Select M points x_i with probability $p(x_i) = w(x_i)/Z_w$ and compute

$$<A>_{MC} = \frac{1}{M} \sum_{i=1}^{M} A(x_i)$$

for classical and unfrustrated boson problems: method of choice.
BUT still not enough for fermions

Sign problem: antisymmetry of fermion wave function means that different configurations come with different signs. $w(x)$ not always positive

Solution:

Sample using $\rho(x) = |w(x)|$ via

$$Z_w = \int_C dx \ w(x) = \int_C dx \ \text{sign}(w(x))\rho(x)$$

$$\equiv Z_\rho < \text{sign}[w] >_\rho$$
SO

\[<A >_w = \frac{1}{Z_w} \int_C dx \ A(x) w(x) \]

\[= \frac{\int_C dx \ A(x) \text{sign}(w(x)) \rho(x)}{Z_\rho < \text{sign}(w) >_\rho} \]

\[= \frac{\langle A \text{ sign}(w) \rangle_\rho}{< \text{sign}(w) >_\rho} \]
Problem: \(<\text{sign}>\) exponentially small
(Assaad, 1991; Ceperly, 1996....)

\[< \text{sign}[w] >_\rho = \frac{Z_w}{Z_\rho} \]

\(\Rightarrow\) \(<\text{sign}>\) is ratio of two
partition functions

\(Z_w\): partition function of fermions
\(Z_\rho\): partition function of sign-free (``boson'') particles
with same Hamiltonian.

\[Z_w = \text{Exp} \left[-\beta F_{\text{ferm}} \right] \]
\[Z_\rho = \text{Exp} \left[-\beta F_{\text{bos}} \right] \]

No antisym.\(\Rightarrow\)fewer nodes for boson \(\Rightarrow\)
\(F_{\text{bos}} < F_{\text{ferm}}\)
Thus

$$\langle \text{sign}[w] \rangle_{\rho} = \frac{Z_w}{Z_{\rho}} = \exp \left[- \left(\frac{F_{\text{ferm}} - F_{\text{bos}}}{T} \right) \right]$$

Free energy is extensive => \(\langle \text{sign} \rangle \)
vanishes exponentially as system size
increases or temperature decreases

Direct fermion QMC becomes impractical
before size gets big enough or \(T \) low enough
Fermion calculations: exponential wall of computational complexity

Straightforward approaches: reach ‘wall’ before reach interesting system sizes, temperatures

Aim of dynamical mean field theory: Maximize the information obtainable before reaching the ‘exponential wall’. Side benefit: wall may be slightly ‘farther away’
Dynamical Mean Field Theory: indirect approach
Dynamical Mean Field Theory

Review articles

Thomas Maier, Mark Jarrell, Thomas Pruschke, and Matthias H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

Formalism: electron Green function

Define: Exact eigenstates $|\Psi_{N+1}^m(k)\rangle$
of N+1 particle system
momentum k, energy E_k^m
relative to N-particle ground state $|GS\rangle$

Define: electron Green function $G(k,\omega)$

$$G(k,\omega) = \int dt e^{-i\omega t} \mathcal{T} \langle GS | \{ \psi_k(t), \psi^\dagger_k(0) \} | GS \rangle$$

ψ^\dagger_k creates electron in state $e^{i\vec{k} \cdot \vec{r}}$
\mathcal{T} is time ordering symbol

Copyright A. J. Millis 2012
Spectral representation

\[G^R(k, \omega) = \int \frac{dx}{\pi} \frac{A(k, x)}{\omega - x - i\delta} \]

Spectral function

\[A(k, \omega) = \text{Im} \left[G^R(k, \omega) \right] \]

\[= \sum_m < GS | \psi_k | \Psi_{N+1}^m > < \Psi_{N+1}^m | \psi_k^\dagger | GS > \delta(\omega - E_{N+1}^m) \]

\[+ \sum_m < GS | \psi_k^\dagger | \Psi_{N-1}^m > < \Psi_{N-1}^m | \psi_k | GS > \delta(\omega - E_{N-1}^m) \]

Measures overlap of exact eigenstates with `single-particle state created by \(\psi_k^\dagger \)`
Spectral representation II

Noninteracting system: ψ_{k}^{\dagger} creates an exact eigenstate, say $m=m_1$

$$\psi_{k}^{\dagger}|GS>=|\Psi_{N+1}^{m}(k)> \delta_{m,m_1}$$

Spectral function is a delta function

$$A(k,\omega) = \delta(\omega - E_k)$$
Spectral representation III

General interacting system: state created by ψ_{k}^{\dagger} does not closely resemble any eigenstate; has overlap with all

$$<\Psi_{N+1}^{m}(k)|\psi_{k}^{\dagger}|GS> = f(m)$$

Spectral function is a smooth function
Spectral representation IV

Fermi liquid: as $k \to k_F$, the state created by ψ_k^\dagger tends to have some overlap with one unique state, as well as with a continuum of others

$$<\Psi_{N+1}^m(k)|\psi_k^\dagger|GS> = Z_k \delta_{m,m_1} + f(m)$$

Spectral function tends to a delta function (quasiparticle peak) plus smooth (‘incoherent part’) background

Important concept: quasiparticle weight Z_k
Angle-Resolved Photoemission (ARPES) measures (occupied state part of) A (up to matrix element)

Noninteracting Fermi liquid

Z: relative weight of near fermi surface peak

v^*: peak dispersion

$\text{Im } \Sigma$: peak width

Fig. 3, Damascelli, Hussain and Shen RMP 75 473 (2003)
Spectral representation V

Alternative mathematical formulation: self energy

\[G(k, \omega) = \frac{1}{\omega - \varepsilon_k - \Sigma(k, \omega)} \]

Self energy \(\Sigma(k, \omega) \) expresses difference between actual electron propagation and electron propagation in reference noninteracting system with dispersion.
Self energy has real and imaginary parts. Spectral function

$$A(k, \omega) = \frac{Im \Sigma(k, \omega)}{(\omega - \varepsilon_k - Re \Sigma(k, \omega))^2 + Im \Sigma(k, \omega)^2}$$

Real part expresses renormalization of dispersion, overlap with exact eigenstate.
Imaginary part expresses quasiparticle lifetime.
Spectral representation VI

Fermi liquid: \(\text{Im} \Sigma(k, \omega \to 0) \to 0 \)

Expand spectral function near \(\omega = 0, \text{ fermi surface} \). Find

\[
G(k, \omega) = \frac{Z}{\omega - v_k^*(|k| - k_F)}
\]

With

\[
Z = \left(1 - \frac{\partial \text{Re} \Sigma(k_F, \omega)}{\partial \omega} \bigg|_{\omega \to 0} \right)^{-1}
\]

\[
v_F^* = \frac{\partial_k \varepsilon_k + \partial_k \text{Re} \Sigma(k = k_F, \omega \to 0)}{1 - \frac{\partial \text{Re} \Sigma(k_F, \omega \to 0)}{\partial \omega}}
\]
DMFT: indirect approach: express (some aspects of) solution of physical problem in terms of solution of auxiliary problem

Useful analogy: density functional theory
Density Functional Theory

Theorem (Hohenberg and Kohn): \(\exists \) functional \(\Phi \) of electron density \(n(r) \): minimized at physical density; value at minimum gives ground state energy.

\[
\Phi[\{n(r)\}] = \Phi_{\text{univ}}[\{n(r)\}] + \int (dr)V_{\text{ion}}(r)n(r)
\]

\(\Phi_{\text{univ}} \) depends only on electron mass, interelectron interaction

\(V_{\text{ion}} \) specifies material

Difficulties with this formulation:

- dont know \(\Phi_{\text{univ}} \)
- cant do minimization
Key insight (Kohn-Sham)

*Re-express minimization in terms of solution of auxiliary problem: single-particle Schroedinger equation with potential \(V_{\text{XC}}[\{n(r)\}] \) determined by density

*Recast problem of finding density functional as problem of approximating ‘exchange-correlation’ potential

Result: broadly useful tool
Dynamical Mean Field Theory

Many-body formalism: analogous to Hohenberg-Kohn

\[\mathbf{H} = \sum_{\alpha, \beta} E^{\alpha \beta} \psi^{\dagger}_{\alpha} \psi_{\beta} + \sum_{\alpha \beta \gamma \delta} I^{\alpha \beta \gamma \delta} \psi^{\dagger}_{\alpha} \psi^{\dagger}_{\beta} \psi_{\gamma} \psi_{\delta} + \ldots \]

=> Luttinger-Ward functional

\[\mathbf{F}[\{\Sigma\}] = \mathbf{F}_{\text{univ}}[\{\Sigma\}] - \text{Tr} \ln [\mathbf{G}_0^{-1} - \Sigma] \]

\(\mathbf{G}_0 \): Green function of noninteracting reference problem (contains atomic positions)

\(\mathbf{F}_{\text{univ}} \): determined (formally) from sum of diagrams. Depends only on interactions \(I^{\alpha \beta \gamma \delta} \)

Copyright A. J. Millis 2012
$\Phi_{LW}[\{G\}]$ defined as sum of all vacuum to vacuum diagrams (with symmetry factors)

$$\delta \Phi \over \delta G = \Sigma$$

$$F_{\text{univ}} = \Phi_{LW}[\{G\}] - \text{Tr} [\Sigma G]$$
More formalities

\[F[\{\Sigma\}] = F_{\text{univ}}[\{\Sigma\}] - \text{Tr} \ln[G_0^{-1} - \Sigma] \]

Diagrammatic definition of \(F_{\text{univ}} \) =>

\[\frac{\delta F_{\text{univ}}}{\delta \Sigma} = G \]

Thus stationarity condition

\[\frac{\delta F}{\delta \Sigma} = 0 \implies G = (G_0^{-1} - \Sigma)^{-1} \]

Difficulties with this formulation:
--dont know \(F_{\text{univ}} \) (exc. perturbatively)
--cant do extremization

Copyright A. J. Millis 2012
1992 Breakthrough

Kotliar and Georges found analogue of Kohn-Sham steps: useful approximation for F and way to carry out minimization via auxiliary problem

Key first step: infinite d limit
Metzner and Vollhardt, PRL 62 324 (1987)
Analogy:

Density functional \leftrightarrow ‘Luttinger Ward functional

Kohn-Sham equations \leftrightarrow quantum impurity model

Particle density \leftrightarrow electron Green function
self energy is $M \times M$ matrix

$[M(M+1)/2$ indep fns of frequency]$
Modern interpretation of Kotliar and Georges idea

Parametrize self energy in terms of small number N of functions of frequency

$$\Sigma^{\alpha\beta}(\omega) = \sum_{ab} f^{\alpha\beta}_{ab} \Sigma^{ab}_{\text{DMFT}}(\omega)$$

$\alpha = 1 \ldots M; \ a = 1 \ldots N << M$

parametrization function f determines ‘flavor’ of DMFT (DFT analogue: LDA, GGA, B3LYP,)

Also must truncate interaction $I^{\alpha\beta\gamma\delta}$ “appropriately”
Approximation to self energy + truncated interactions imply approximation to F_{univ}

Approximated functional $F_{\text{approx univ}}$ is functional of finite (small) number of functions of frequency Σ_{ab}^{ω}, thus is the universal functional of some 0 (space) +1 (time) dimensional quantum field theory. Derivative gives Green function of this model:

$$\frac{\delta F_{\text{approx univ}}}{\delta \Sigma_{ba}^{\omega}} = G_{QI}^{ab}(\omega)$$
Specifying the quantum impurity model

Need

--Interactions. These are the ‘appropriate truncation’ of the interactions in the original model

--a noninteracting (‘bare’) Green function \(\mathcal{G}_0 \)

Then can compute the Green function and self energy

\[
\mathcal{G}_{QI} = \left(\mathcal{G}_0^{-1} - \Sigma \right)^{-1}
\]
Useful to view auxiliary problem as ‘quantum impurity model’ (cluster of sites coupled to noninteracting bath)

Quantum impurity model is in principle nothing more than a machine for generating self energies (as Kohn-Sham eigenstates are artifice for generating electron density)

As with Kohn Sham eigenstates, it is tempting (and maybe reasonable) to ascribe physical significance to it
In Hamiltonian representation

\[
H_{QI} = \sum_{ab} d_a^\dagger E_{QI}^{ab} d_b + \text{Interactions}
\]

\[
+ \sum_{p,ab} \left(V_{ab}^p d_a^\dagger c_{pb} + H.c \right) . + H_{\text{bath}}[\{c_{pa}^\dagger c_{pa}\}]
\]

Important part of bath: ‘hybridization function’

\[
\Delta^{ab}(z) = \sum_p V_{ac}^p \left(\frac{1}{z - \varepsilon_{\text{bath}}^p} \right) V_{cb}^{p,\dagger}
\]

\[
G_0^{-1} = \omega - E_{QI}^{ab} - \Delta^{ab}(\omega)
\]
Thus

\[F \to F_{\text{approx}}^\text{univ} \left[\{ \Sigma^{ab} \} \right] - \text{Tr} \ln \left[G^{-1}_0 - \sum_{ab} f^{\alpha\beta} \Sigma^{ab} \right] \]

and stationarity implies

\[\frac{\delta F}{\delta \Sigma^{ba}} = G^{ab}_{\text{QI}} - \text{Tr} \alpha\beta f^{\alpha\beta}_{ab} \left[G^{-1}_0 - \sum_{cd} f^{\alpha\beta} \Sigma^{cd} \right]^{-1} = 0 \]

or, using \(G_{\text{QI}} = (G^{-1}_0 - \Sigma^{ab})^{-1} \) from ‘impurity solver’

\[(G^{-1}_0)^{ab} = \Sigma^{ab} + \left(\text{Tr} \alpha\beta f^{\alpha\beta}_{ab} \left[G^{-1}_0 - \sum_{cd} f^{\alpha\beta} \Sigma^{cd} \right]^{-1} \right)^{-1} \]

so \(G_0 \) is fixed
In practice

Guess hybridization function

Solve QI model; find self energy

Use extremum condition to update hybridization function

Continue until convergence is reached.

This actually works
Technical note

From your ‘impurity solver’ you need G at ‘all’ interesting frequencies. Solution ~uniformly accurate over whole relevant frequency range.

This is challenging
advantages of method

‘Moving part’ \(Tr_p [\phi_a(p)G_{lattice}(\Sigma_{approx})] \)

some sort of spatial average over electron spectral function--but still a function of frequency

*Computational task: solve quantum impurity model: not necessarily easy, but do-able

=>releases many-body physics from twin tyrannies of
--focus on coherent quasiparticles/expansion about
well understood broken symmetry state
--emphasis on particle density and ground state properties
In formal terms:

--Approximation to full $M \times M$ self energy matrix in terms of $N(N+1)/2$ functions determined from solution of auxiliary problem specified by self-consistency condition.

--Auxiliary problem: find (at all frequencies) Green functions of N-orbital quantum impurity model.

``Exponential wall” remains:

Question (practical): for feasible N, can you get the physics information you want?
Questions:

• What kinds of impurity models (?possible f?)

• What can be solved
 • Where is the exponential wall (how large can N be?)
 • what kinds of interactions can be included
 • other issues

• What else (besides electron self energy) can be calculated

• Quality of approximation

• What has been done?
Technical challenge: “impurity solver”

\[\text{\Rightarrow find local (d-d) green functions of} \]

\[H_{QI} = \sum_{ab} d_{a}^{\dagger} E_{QI}^{ab} d_{b} + \text{Interactions} \]

\[+ \sum_{p,ab} (V_{p}^{ab} d_{a}^{\dagger} c_{pb} + H.c) \cdot + H_{\text{bath}}[\{c^{\dagger}_{p} c_{pa}\}] \]

Two main methods:

- “exact” diagonalization
- (Continuous time) quantum Monte Carlo

Both methods: exponential wall
New ideas needed
Exact diagonalization

--represent continuous (or at least large) Hilbert space of bath states by small number of (variationally chosen) levels with associated hybridization hybridization parameters
--diagonalize problem exactly (Lanczos)
--virtues: can treat ‘arbitrary’ interactions. formulated directly in real frequency

Difficulty: M bath levels per impurity level => dimension $4(M+1)N$

Present methods: $(M+1)N<17$ Minimizing M crucial
determining the bath parameters: more of an art than a science

Calculated quantities are a sum of poles

\[
\text{Im} G_0^{\text{ED}}(\omega) = \sum_\lambda g_\lambda^0 \delta(\omega - \omega_\lambda)
\]

\[
G_0(i\omega_n) = \int \frac{dx}{\pi} \frac{\text{Im} G_0^{\text{ED}}(x)}{i\omega_n - x}
\]

Typically fit bath params by minimizing

\[
\sum_n \left| \frac{G_0(i\omega_n) - G_0^{\text{lattice}}(i\omega_n)}{|\omega_n|} \right|^2
\]
Minimization not always stable

Trying to fit a nonlinear function

Problems particularly severe when G cannot be diagonalized at all frequencies

$$\left[\hat{\Delta}(\omega_1), \hat{\Delta}(\omega_2) \right] \neq 0$$

(Experience: best to fit diagonal components, then using this as guess, fit full matrix)
How many bath states do you need.

Capone et al (PRB 76 254116 (2007)): convergence with number of bath sites: M~8 or 9=> only model with N=1 practical

Koch et al (arXiv:0804.3320): need approx 6 bath sites per edge site

Liebsch (arXiv:1109.0158) shows reasonable (at least qualitatively) results for N=4, M=2 or 3.
ED: Excitation spectrum discrete but not totally sparse.

Care needed in interpreting spectra

3 site DMFT, triangular lattice.
4 bath sites per impurity

Liebsch and Tong:
Open question

Quantum impurity models: interaction only a few sites=> interesting sparsity structure

=>maybe method "`smarter" than Lanczos can reach larger systems.

G. Chan/D. Zgid: ‘CI’ based solver N=4, 6 bath sites
Monte Carlo: imaginary time

Workhorse of 1980s, 1990s (‘Hirsh-Fye’ QMC). Difficulties: only Hubbard (local density-density) interaction. Fixed time discretization.

Breakthrough: continuous-time quantum Monte Carlo (CT-QMC)

* Rubtsov 05 Interaction expansion (CT-INT)
* Werner/AJM 06 Hybridization expansion (CT-HYB)
* Gull/Parcollet 08 Auxiliary field (CT-AUX)
Hirsch-Fye for Hubbard model

Fixed time discretization \(\Delta \tau \leq U^{-1} \)

Trotter decomposition: \(\hat{K} = e^{-\Delta \tau \hat{H}} \approx e^{-\Delta \tau \hat{T}} e^{-\Delta \tau U n_\uparrow n_\downarrow} \)

At each \(\tau_i \) and each site, discrete Hubbard-Stratonovich

\[
e^{-\Delta \tau U \left(n_\uparrow n_\downarrow - \frac{n_\uparrow + n_\downarrow}{2} \right)} = \frac{1}{2} \sum_{s_i = \pm 1} e^{\lambda s_i (n_\uparrow - n_\downarrow)} \quad \lambda = \text{arcosh} \left[\exp \left(\frac{1}{2} \Delta \tau U \right) \right]
\]

\[
Z = \sum_{\{s_i\}} \text{Exp} \left[\text{TrlnG}(\{s_i\}) \right] \quad \text{Matrix: dimension} \quad \frac{\beta}{\Delta \tau} \times N_{\text{sites}}
\]
Notional scaling:

Operations with matrices
cost: \(\sim \) cube of dimension

Issues:
- prefactor not small
- extrapolation in \(\Delta \tau \) needed (but see N. Bluemer thesis http://komet337.physik.uni-mainz.de/Bluemer/thesis.en.shtml)
- longer range interactions: multiplicity of H-S fields, serious sign problem (Mikelsons)
- no good H-S for non-density ints

\[
G(\tau) \sim \exp(-U\tau/2)
\]

\(\text{Sign problem for } N>1 \)
Continuous time Monte Carlo:

\[H = H_a + H_b \]

- interaction representation with respect to \(H_b \)

\[Z = \text{Tr} \left(T_\beta e^{-\beta H_a} \exp \left[- \int_0^\beta d\tau H_b(\tau) \right] \right) \]

- formal expansion in \(H_b \)

\[= \sum_k (-1)^k \int_0^\beta d\tau_1 \ldots \int_{\tau_{k-1}}^\beta d\tau_k \times \text{Tr} \left[e^{-\beta H_a} H_b(\tau_k) H_b(\tau_{k-1}) \ldots H_b(\tau_1) \right] \]

- sample series stochastically
CT-QMC 2

Monte-Carlo: add or remove H_b vertex (if H_b has many terms, expand in each). Connect vertices with H_a.

Tried in 1990s for continuum problems: worked poorly

Turns out: works VERY WELL for impurity problems
Two principal `flavors’

\[H_b = \text{hybridization (CT-HYB)} \]

\[H_b = \text{Interaction (CT-INT)} \]
Continuous time:
‘many-body adaptive grid’

Puts time points where needed.

All methods involve manipulating matrices; cost ~cube of matrix size.

CT-QMC: much smaller matrix is needed
'Hybridization expansion’ CT-HYB
(P. Werner and AJM, PRL 97}, 076405 (2006))

\[H_{QI} = H_{loc}\{d_\alpha^\dagger, d_\alpha\} + \sum_{p,a} (V_{pa} d_\alpha^\dagger c_{pa} + H.c.) . + H_{bath}\{c_{pa}^\dagger c_{pa}\} \]

- interaction representation with respect to \(H_{loc}, H_{band} \)

\[Z = \text{Tr} \left[e^{\sum_{p,a} (V^I_{pa} d_\alpha^\dagger(\tau) c_{pa}(\tau) + H.c.\})} \right] \]

- formal expansion in \(V \)

\[= \sum_k \frac{1}{k!} \int_0^\beta d\tau_1 ... d\tau_k \text{Tr} \left[e^{\sum_{p,a} (V^I_{pa} d_\alpha^\dagger(\tau_1) c_{pa}(\tau_1) + H.c.\})} \right] \]

- sample series stochastically: add/remove \(V \); accept or reject by usual importance sampling
CT-HYB

*General interactions can be treated

But:

*Requires diagonalization of H_{impurity}

*Computation of

$$= \sum_k \frac{1}{k!} \int_0^\beta d\tau_1 \ldots d\tau_k \text{Tr} \left[T_\tau \hat{V}^I(\tau_1) \ldots \hat{V}^I(\tau_k) \right]$$

Requires manipulation of matrices of size of local Hilbert space

Restricted to ~ 5-7 orbitals at present
Also

\[
H_{QI} = \sum_{ab} d_a^\dagger E_{QI}^{ab} d_b + \text{Interactions}
\]

\[
+ \sum_{p,ab} (V^p_{ab} d_a^\dagger c_{pb} + \text{H.c}). + H_{bath}\{c^\dagger_{pa} c_{pa}\}
\]

Severe sign problem if

\[
[\hat{\Delta}, \hat{E}] \neq 0
\]

=> reasonably high symmetry desirable
CT-INT: sample interaction perturbation diagram series stochastically

Vertex \leftrightarrow particle
Propagator \leftrightarrow interparticle interaction

Scaling $\sim (N_{\text{site}}/\beta U)^3$

Like Hirsch-fye but prefactor much better
Empirical fact: Coupling to bath \Rightarrow SIGN PROBLEM MUCH BETTER

2d Hubbard model, 36 sites

F. Assaad (QMC) E. Gull (DMFT)
Technical remarks

Computations are trivially parallelizable:

Basic computation performed on a single core.

Initialization/thermalization time is very low

=> pays to distribute computation over \(\sim 10^4 \) cores
(sub)matrix updates
E. Gull et al PRB 83 075122

*Method deals with large matrices
=>computational bottleneck is moving information from memory into cache
=>Efficiency gain from arranging calculation to maximize # compute operations/memory call.
Typical computational costs (on 2-5 year old machines)

- Single-site 1 orbital: minutes on a laptop
- Single-site, 2 orbital: 16 cores, 4 hours
- 8 site Hubbard normal state (T=t/20): 64 cores, 8 hours
- 8 site Hubbard superconducting state (T=t/60): 128 cores, 8 hours
- 8 site Hubbard, measurement for raman vertex (T=t/20), 4096 cores 8 hours (BNL Blue Gene)

These times are ‘reasonable’
can treat large systems

3D Hubbard, up to 100 sites. $T=0.5t$

E. Gull and S. Fuchs
BUT

Most efficient version relies on Hubbard-Stratonovich transformation (or something equivalent). Presently restricted to models with density-density (preferably on-site) interactions

\[H = \varepsilon_d d^\dagger d + U\hat{N}_d^2 + \]

\[\varepsilon_p p^\dagger p + V_{pd} d^\dagger p + H.c \]
Summary: scaling

Naive scaling:

Hybridization algorithm $\sim \beta^2 e^{N_{\text{site}}}$
Interaction (Hubbard) $\sim N_{\text{site}}^3 U^3 \beta^3$
Interaction (General U_{ijkl}) $\sim (N_{\text{site}}M_{\text{int}})^3 U^3 \beta^3$

Sign problem

$[\hat{E}, \hat{\Delta}] \neq 0$ i.e. low symmetry or $N_{\text{site}} \geq 4$

Or, clusters large enough to have loops
What can be done in practice

realistic (exchange/pair-hopping) interactions:

At present can do 5 orbitals (dim $4^5 = 1028$) (\Rightarrow single site dmft of transition metals, or actinides with truncation)

Hubbard (on-site, density-density interactions)

Complete solution at interesting temperatures may be within reach.
Formulating the impurity model

What choices of $f^{\alpha\beta}_{ab}$ are

- mathematically consistent
- physically reasonable
- easiest to compute with

!!Choice of f includes choice of basis in both physical and impurity space!!

=> room for new insights!
Example: Hubbard model

Hubbard model: periodic lattice of sites in d dimensions. One orbital per site. Position and momentum reps.

\[H_{Hub} = - \sum_{ij\sigma} t_{i-j} d_{i\sigma}^\dagger d_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

\[H_{Hub} = - \sum_{k\sigma} \varepsilon_k d_{i\sigma}^\dagger d_{j\sigma} + U \sum_{k_1k_2q} d_{k_1\uparrow}^\dagger d_{k_2\downarrow}^\dagger d_{k_1+q\uparrow} d_{k_2-q\downarrow} \]

Real space: \(\Sigma(i-j) \)

Momentum space: \(\Sigma(k) \)
Real space representation: ``CDMFT”

G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli,

Tile lattice with equal size cells, labelled by J.
Introduce label a for sites in a cell
Drop terms in Σ which couple sites in different cells.

$$\Sigma(i - j, \omega) = \Sigma^{a_i b_j}(\omega)$$

If $i, j \in J$ and a_i, b_j are cluster sites corresponding to i, j

$$\Sigma(i - j, \omega) = 0 \text{ otherwise}$$

Note: translation invariance broken \text{ If } N \neq 1
Easiest to express in supercell basis

Introduce spinor $\Psi_J^\dagger = (d_{J1}^\dagger, \ldots, d_{JN}^\dagger)$

$$H_{Hub} = \sum_J \Psi_J^\dagger \hat{E} \Psi_J^\sigma + U \sum_{a=1..N} n_{Ja\uparrow} n_{Ja\downarrow}$$

$$+ \frac{1}{2} \sum_{I \neq J} \Psi_I^\dagger \hat{T}(I-J) \Psi_J^\sigma$$

CDMFT function $f_{ia}^{ij} \rightarrow \delta_{IJ} \hat{1}$

$$\hat{G}(I-J; \omega) = \left(\omega \hat{1} - \hat{E} \delta_{IJ} - \hat{T}(I-J) - \hat{\Sigma}(\omega) \delta_{I,J} \right)^{-1}$$

SCE: $\hat{G}_{Q_I}(\omega) = \hat{G}(0, \omega)$
Extremum condition:

\[
\left(\omega \hat{1} - \hat{E}_{QI} - \hat{\Delta}(\omega) - \hat{\Sigma} \right)^{-1} = \int' (dk) \left[\omega \hat{1} - \hat{E} - \hat{T}(k) - \hat{\Sigma} \right]^{-1}
\]

(Here \(\int' (dk) \) means integral over reduced zone of supercell with appropriate normalization)

inverting and rearranging

\[
-\hat{E}_{QI} + \hat{\Delta} = -\omega + \Sigma + \left[\int' (dk) \left[\omega \hat{1} - \hat{E} - \hat{T}(k) - \hat{\Sigma} \right]^{-1} \right]^{-1}
\]
Look at high frequency limit

\[\int \left(\frac{\omega \hat{1} - \hat{E} - \hat{T}(k) - \hat{\Sigma}}{1} \right)^{-1} \to \frac{1}{\omega} \left(1 + \frac{\hat{E} + \hat{\Sigma} + \int \frac{\omega}{\omega} (dk) T(k)}{\omega} \right) \]

so the SCE becomes:

\[-\hat{E}_{QI} + \hat{\Delta} = -\omega + \Sigma + \omega - \hat{E} - \hat{\Sigma} - \int \frac{\omega}{\omega} (dk) T(k) \]

So \(E_{QI} = E \) (integral of \(T \) vanishes because \(T \) is non-local)

behavior at lower \(w \) fixes hybridization function

something like this occurs in all implementations
Special to CDMFT: `Periodization'

\[\Sigma(i - j, \omega) = \Sigma^{a_i b_j}(\omega) \]

If \(i, j \in J \) and \(a_i, b_j \) are cluster sites corresponding to \(i, j \)

\[\Rightarrow \] 2 points of view on broken translation invariance:

- Accept it: calculate only quantities not directly influenced by broken translational invariance (energy, local excitation spectra...)
- `Periodize': use results to reconstruct periodic function
Periodization

To estimate lattice quantity, Fourier transform cluster quantity over cluster sites (but for all momenta in zone)

$$f(\tilde{k}) = \frac{1}{N} \sum_{ij=1\ldots N} e^{i\tilde{k} \cdot (\tilde{r}_i - \tilde{r}_j)} f_{cl}(i, j)$$

Key question: what quantity to use?

Civelli et al PRL 95 106402: self energy Σ
Stanescu et al PRB 74 125110: cumulant $M = [\omega + \mu - \Sigma]^{-1}$
Self energy interpolation

Methods yield: $\Sigma (K, \omega)$ at discrete momenta K

\[K = (0, 0), (0, \pi), (\pi, 0), (\pi, \pi) \]

\[e.g \, 4\text{-site cluster} \]

Problem: zone diagonal $\Sigma \left(\left(\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$
made from $(0, 0), (0, \pi), (\pi, 0), (\pi, \pi)$

The physics of the points from which the interpolation is made may be very different from that of the point of interest. I prefer to avoid periodization
Very new results:
Sakai et al arXiv:1112.3227
Longer ranged interactions

CDMFT: approx Luttinger Ward functional made of diagrams involving local (in supercell basis) Green function

\[\Phi[\{G(I-J, \omega)\}] \rightarrow N_{\text{sites}} \Phi[\{G(0, \omega)\}] \]

This is fine on level of Green functions: but what if interaction connects different sites??

Answer: truncate interactions
Instructive example: H_n

N. Lin, C. Marianetti, A. J. Millis and D. Reichman PRL 106 096402

\[D \quad \text{Set of n hydrogen atoms} \]

Atoms far apart: strong coupling problem

---what we did: on each atom, keep only 1s state
(STO-6G basis)

- Compute matrix elements of $H = \sum_i \frac{-\nabla_i^2}{2m} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|r_i - r_j|}$ between these orbitals

\[
H^{\text{elec}} = \sum_{ij\sigma} (t_{ij} - \delta_{ij}\mu) c_{i\sigma}^\dagger c_{j\sigma} + \frac{1}{2} \sum_{ijkl\sigma\sigma'} V_{ijkl} c_{i\sigma}^\dagger c_{j\sigma}^\dagger c_{k\sigma'} c_{l\sigma'}
\]
CDMFT: isolate blocks in self energy

\[
\begin{bmatrix}
\Sigma_{11} & \Sigma_{12} & \Sigma_{13} & \cdots \\
\Sigma_{21} & \Sigma_{22} & \cdots & \cdots \\
\Sigma_{31} & \Sigma_{33} & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\Sigma_{41} & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
\]
treat orbitals outside ‘active blocks’ via Hartree-Fock

\[\Sigma_{ab}(\omega) \rightarrow \Sigma_{HF}^{ab} + \delta_{ab}(\Sigma_{a}(\omega) - \Sigma_{HF}^{aa}) \]

Similarly treat in-block interactions exactly; other interactions by Hartree-Fock

\[I^{abcd} \rightarrow I_{HF} + (I^{aaaa} - I_{HF}^{aaaa}) \]

Keep V12, V34 in DMFT; treat V23 by hartree-fock
treat orbitals outside ‘active blocks’ via Hartree-Fock

$$\Sigma^{ab}(\omega) \rightarrow \Sigma_{HF}^{ab} + \delta_{ab} \left(\Sigma_a(\omega) - \Sigma_{HF}^{aa} \right)$$

Similarly treat in-block interactions exactly; other interactions by Hartree-Fock

$$I^{abcd} \rightarrow I_{HF} + (I^{aaaa} - I_{HF}^{aaaa})$$

Note ‘double-counting’ correction
Results: energy
Results: excitation

\[A(\omega)^* (\text{a.u.}) \]

\[\omega / (\text{a.u.}) \]

\[H_6 \text{ ring } R=4 \text{ bohr} \]
Implication

Single-site DMFT not adequate

CDMFT approximation is somehow ‘smart’: errors produced by asymmetrical treatment of interactions get compensated....
Momentum space representation: DCA

M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy

tile Brillouin zone: choose N momenta K_a, draw an equal area patch around each one

\[\Sigma_p(\omega) \rightarrow \Sigma_p^{\text{approx}}(\omega) = \sum_a \phi_a(p) \Sigma_a(\omega) \]

$\phi_a(p) = 1$ if p is in the patch containing K_a and is 0 otherwise.
Coarse-grain interaction in k space

Evaluate interaction at discrete k-points:

\[V(k_1, k_2, k_3, k_4) \rightarrow V(K_1, K_2, K_3, K_4) \]

\[\Rightarrow \text{defines quantum impurity model} \]

Then

\[F \rightarrow F_{univ}^{\text{approx}}[\{\Sigma_a\}] - \text{Trln}[G_0^{-1} - \sum_a \phi_a(k)\Sigma_a(\omega)] \]

So:

\[G_{QI}^a = A_{\text{patch}} \int (dk)\phi_a(k) \left(G_0^{-1} - \sum_a \phi_a(k)\Sigma_a(\omega) \right)^{-1} \]
Comments

- Patches need to have equal area
- Patches do not need to have any particular shape
- (as long as they tile the Brillouin zone)
- Patching does not have to respect point group symmetry
- Translational invariance respected (in fact, required) but self energy piecewise continuous
Status of the approximation

Favorable cases: (moderate correlations, simple interactions) --direct comparison to numerically exact results available

Kozik, Houcke, Gull, Pollett, Prokof’ev, Svistunov, Troyer
EPL 90 10004 (2010)
3 dimensional Hubbard model
S. Fuchs, E. Gull, L. Pollett et al PRL 106 030401 (2011)

$U=8t$ cluster sizes up to 100 sites high-ish $T=t/2$

Controlled extrapolation to thermodynamic limit now possible at high T
3 dimensional Hubbard model
S. Fuchs, E. Gull, L. Pollett et al PRL 106 030401 (2011)

DCA: cluster sizes up to 100 sites. U=8t

Temp=0.4t

Controlled extrapolation to thermodynamic limit now possible
‘Optical emulator’: cold atomic gasses as analogue computers for model systems of condensed matter physics

Very promising, but present experiments cannot reach low enough T; also validation needed
3 dimensional Hubbard model
S. Fuchs, E. Gull, L. Pollett et al PRL 106 030401 (2011)

DCA: cluster sizes up to 100 sites. U=8t

Temp=0.4t

Controlled extrapolation to thermodynamic limit now possible (at lower T than experiment)

DMFT: Optical emulator emulator
Other formulations

\[\Sigma^{\alpha\beta}(\omega) = \sum_{ab} f_{ab}^{\alpha\beta} \Sigma_{DMFT}^{ab}(\omega) \]

Conditions on \(f \) not known

Considerations:

Causality: \(\text{Im} \Sigma^{\alpha\alpha}(\omega + i\delta) > 0 \);
want \(\text{Im} \Sigma^{\alpha\alpha}(\omega + i\delta) \geq 0 \) also

Orthogonal function expansion
\[\Sigma(k, \omega) = \Sigma_0(\omega) + \Sigma_1(\omega) \cos(k_x) + \]
rings: can find region where \(\text{Im} \Sigma(k, \omega) < 0 \)

see e.g. Phys. Rev. B68 195121/1-8 (2003)
More subtle: pole structure in correlated insulator

In Mott insulator $\Sigma^{\alpha \alpha} \frac{1}{\omega - \Omega_{\alpha}}$

In impurity model $\Sigma^{aa} \frac{1}{\omega - \Omega_{a}}$

$f_{aa}^{\alpha \alpha}$ must couple only one a to each α

If not, states in the gap

Applications of cluster DMFT

Main application so far: to high-Tc cuprates

(modelled by Hubbard model, for which you can reach large systems)

But it is likely the physics is more generally important.
Kumagai says oxygen doping is less than 0.01. Taguchi says that oxygen doping in the Kumagai samples is 0.04.

Mott divergence not tied to n=1?
Orbital order (?fluctuations?) important

Pavarini et al PRL 92 176403: importance of GdFeO$_3$ (octahedral rotation) distortion

LaTiO$_3$

YTiO$_3$
Orbital order (fluctuations) important

Pavarini et al PRL 92 176403: importance of GdFeO$_3$ (octahedral rotation) distortion
Short ranged correlations: other systems

CMR: `Colossal’ magneto- resistance

High T phase: insulating behavior associated with short ranged order

Wavevector: (1/4,0,0)
These + many other results:

=> motivation to go beyond single-site DMFT

This has only been systematically done for 2d Hubbard model (main application: high Tc)

Remainder of lectures: overview of published results, mainly aimed at high Tc. Illustrate strengths and limits of method.
Characteristic features of high-T_c superconductivity

1. Superconductivity created by adding carriers to nontrivial insulator
2. Characteristic scaling with doping: optical conductivity strongly doping dependent; carrier mass much less so
3. `Pseudogap’ for hole doped materials
4. Precursor: scattering rate anisotropy
Phase diagram
Probes of carrier motion

Optical conductivity:

\[\sigma \sim \frac{n}{m} \]

YBCO

\[T_c = 90 \text{ K} \]
\[80 \text{ K} \]
\[50 \text{ K} \]
\[30 \text{ K} \]

n/m: strongly doping dep.

carrier velocity: weakly doping dependent

Copyright A. J. Millis 2012
Characterize by ‘spectral weight’

\[K(\Omega) = \frac{\hbar d_c}{e^2} \int_0^\Omega \frac{2d\omega}{\pi} \sigma(\omega) \]

\(\Omega = 0.2\text{eV}: \quad K \sim x \)

\(\Omega = 0.8\text{eV}: \quad K \sim x + 0.1 \)

Low freq conductivity \(\sim x\) but quasiparticle velocity is not
`Pseudogap’

Suppression of density of states in zone corner

Angle-resolved photoemission sample w/ 90K T_c:

S. Lee et al, Nature 450, p. 81 (2007)
`Pseudogap’

Magnitude increases as doping decreases

Onset temp. increases as doping decreases

Precursor of pseudogap in momentum-space dependent scattering rate

Idea: from anisotropy of magnetoresistance, can tease out variation of electronic scattering rate around fermi surface.

Result: unconventional term (rate $\sim T$ not T^2) associated with (0,pi) turns on as doping is decreased.
Are these phenomena properties of a theoretical model?

Phase diagram

Conductivity

Pseudogap

Scattering rate

Copyright A. J. Millis 2012
Main theoretical idea: interesting phenomena related to Mott transition in Hubbard model:

One (spin degenerate) orbital per lattice site. hopping \(t \) short ranged.

\[
\mathcal{H} = - \sum_{ij} t_{i-j} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}
\]

Important parameters:
--relative interaction strength \(U/t \)
--electron density \(n \)

Hopping parameters from band theory

Copyright A. J. Millis 2012
1, 2, 4, 8, 16 site cluster DMFT
Clusters: trade off
momentum resolution <=> computability

1-site:

2-site

4-site

8-site

Ferrero et al EPL89 57009
Cluster notes

4-site: amenable to CT-HYB (‘expand in V’) => much info available. Near half filling, fermi surface almost entirely in (0, Pi) sector

8-site: only CT-AUX. Systematic studies down to $T=t/60$ feasible. Direct (coarse-grained) access to nodal and antinodal Fermi surface regions

16-site: only CT-AUX. Systematic studies down to $T=t/10$ feasible. At one parameter: $t/40$ (if sign)
1,2,4,8,16 site cluster DMFT

Quantitative extrapolation to infinite cluster limit not possible with present ‘technology’. Focus on qualitative physics: quantities for which all clusters give (qualitatively) the same answers.

Look at metal insulator transition
=> Fundamental interest of (correlation-driven) Metal-Insulator transition

breakdown of fermi liquid at strong interactions

\[A(k, \omega) = \frac{\text{Im} \Sigma(k, \omega)}{(\omega - \varepsilon_k - \text{Re} \Sigma(k, \omega))^2 + \text{Im} \Sigma(k, \omega)^2} \]

Insulator: Gap in electronic spectrum => \(\text{Im} \Sigma(k, \omega) = 0; |\omega| < \Delta \)

and no solution to \(\omega - \varepsilon_k - \text{Re} \Sigma(k, \omega) = 0 \)

for any \(k \) at \(|\omega| < \Delta \)

Real part of self energy must be very large at low freq.
Intuitive idea: ‘Mott’ if insulating in absence of intersite correlations (i.e. from purely local physics)

Implementation: 1-site DMFT (no spatial correlations)

Bethe lattice.
bandwidth =4

density n=1

T=0 correlation-driven metal insulator transition at U=U_{c2}
Gives precise theoretical meaning to ‘Mott transition’.

Note! Insulator: ground state degeneracy
Characterize Insulator

Choose zero of energy to be chemical potential

Metal if “quasiparticle equation”

\[G^{-1}(k, \omega) = \omega - \varepsilon_k - \text{Re}\Sigma(k, \omega) = 0 \]

is satisfied for some \(k \) near \(\omega=0 \)

To kill the metal: make “renormalized chemical potential” \(\text{Re}\Sigma \) larger than \(\max |\varepsilon_k| \)
Consider particle-hole symmetric situation

\[\text{Re} \Sigma(\omega) = \int \frac{dx}{\pi} \frac{\text{Im} \Sigma(x)}{\omega - x} \quad \text{Im} \Sigma(\omega) \text{ even } \rightarrow \text{Re} \Sigma(\omega) \text{ odd} \]

If gap, \(\text{Im} \Sigma(\omega) = 0 \) at low energies

If \(\text{Re} \Sigma(\omega) \rightarrow 0 \) at \(\omega = 0 \) then quasiparticle equation satisfied \(\rightarrow \) states in gap

Self energy must have pole at \(w=0 \) (in p-h symm)
Single site DMFT: insulating state pole in sigma splits the band

\[\Sigma(z) = \frac{\Delta^2}{z - \omega_0} \]

Characterize approach to insulator as interaction is increased at half filling

Side bands: localized (atomic-like) states

Central peak: coherent, strongly renormalized fermions
Central peak is fragile. As raise T it goes away.

X. Y. Zhang, M. J. Rozenberg, and G. Kotliar

Copyright A. J. Millis 2012
interaction driven MIT via pole splitting

Self energy has two poles, which converge as $U \rightarrow U_c^2$

P. Cornaglia data
$U=0.85 \, U_c^2$
interaction driven MIT via pole splitting

\[\Sigma(z) \approx \frac{\Delta_1^2}{z - \omega_1} + \frac{\Delta_2^2}{z - \omega_2} \]

\[\omega_{1,2} \to 0 \text{ as } U \to U_{c2} \]

P. Cornaglia data

U=0.85 U_{c2}

Copyright A. J. Millis 2012
interaction driven MIT via pole splitting

\[\Sigma(z) \approx \frac{\Delta_1^2}{z - \omega_1} + \frac{\Delta_2^2}{z - \omega_2} \]

\[\Sigma(z \to 0) = -\frac{\Delta_1^2 \omega_2 + \Delta_2^2 \omega_1}{\omega_1 \omega_2} - \frac{\Delta_1^2 \omega_2^2 + \Delta_2^2 \omega_1^2}{\omega_1^2 \omega_2^2} \]

\[\omega_{1,2} \to 0 \text{ as } U \to U_{c2} \]

P. Cornaglia data
U=0.85 U_{c2}
interaction driven MIT via pole splitting

\[
\Sigma(z) \approx \frac{\Delta_1^2}{z - \omega_1} + \frac{\Delta_2^2}{z - \omega_2}
\]

\[
\Sigma(z \to 0) = \frac{\Delta_1^2 \omega_2 + \Delta_2^2 \omega_1}{\omega_1 \omega_2} - z \frac{\Delta_1^2 \omega_2^2 + \Delta_2^2 \omega_1^2}{\omega_1^2 \omega_2^2}
\]

\[\mu \text{ renormalization}
\]

0 if p-h symmetry

P. Cornaglia data
U=0.85 U_{c2}
interaction driven MIT via pole splitting

\[\Sigma(z) \approx \frac{\Delta_1^2}{z - \omega_1} + \frac{\Delta_2^2}{z - \omega_2} \]

\[\Sigma(z \to 0) = -\frac{\Delta_1^2 \omega_2 + \Delta_2^2 \omega_1}{\omega_1 \omega_2} \]

\[\omega_{1,2} \to 0 \quad \text{as} \quad U \to U_{c2} \]

\(\mu \) renormalization

0 if p-h symmetry

'mass' renormalization diverges as approach insulator

P. Cornaglia data

U=0.85 U_{c2}
interaction driven MIT via pole splitting

\[\Sigma(z) \approx \frac{\Delta_1^2}{z - \omega_1} + \frac{\Delta_2^2}{z - \omega_2} \]

Subtle low frequency behavior: not just poles

P. Cornaglia data

\(U = 0.85 U_c^2 \)
doping driven transition:
also coexistence regime;
2 pole structure
Single-site DMFT neglects spatial correlations. How much of this structure is artifact of this neglect??

In 2d: almost all is artifact.
In 3d: not yet known
2d: Larger clusters

Paramagnetic insulator stabilized at lower U

Insulator has lower entropy than metal

Hubbard model
2d square lattice $n=1$

- $U^{(1)} = 12t = U_c^2$
- $U^{(4)} = 5t$
- $U^{(8)} = 6.5t$
- $U^{(16)} = 6t$

4-DCA 8-DCA 1-DCA
2d triangular lattice

Liebsch et al arXiv:0903.2063

t=0.04eV => U_c ~ 9t

single site: ~ 15t

=> apparently, substantial corrections to single-site behavior here also
Recent results on 2D square lattice

Emanuel Gull, Olivier Parcollet, Philipp Werner, and Andrew J. Millis, Phys. Rev. B80, 245102 (2009).

Emanuel Gull, Michel Ferrero, Olivier Parcollet, Antoine Georges, Andrew J. Millis, Phys. Rev. B82 155101 (2010)
New finding: 2d square lattice correlation-driven metal-paramagnetic insulator transition is generically multi-stage
How do we see that this is true

\[\varepsilon_k = -2t \left(\cos k_x + \cos k_y \right) - 4t' \cos k_x \cos k_y \]

look first at

\[\beta G(\tau = \frac{\beta}{2}) = \beta \int \frac{dx}{4\pi} \frac{A_{\text{sector}}(x)}{\cosh \frac{x}{2T}} = \int \frac{dy}{4\pi} \frac{A_{\text{sector}}(2Ty)}{\cosh y} \]

Integral is peaked at \(y \sim 1 \Rightarrow T \to 0 \)
picks out fermi level density of states
Directly measured.
No analytic continuation. No interpolation
n=1, vary U
sector-selective transition
t’=0; 8 sites

van Hove singularity in sector C=>T-dependence
16 sites $t' = 0$

$\beta = 60$ half filling interaction transition

$\beta G(\beta/2)$ Betts2D-16B
change t’: transitions coalesce, seem to become 1st order
Phase diagram: n=1
(second order nature of transition confirmed down to T=t/60)
Doping driven transition: $U=7t$, $t'=-0.15t$

- Ungapped until (perhaps) lowest doping
- $\left(\frac{\pi}{2}, \frac{\pi}{2} \right)$ Ungapped until (perhaps) lowest doping
- $\left(\pi, 0 \right)$ Gapped, $n>0.9$
Transition not controlled by van Hove physics

van Hove point

Sector-selective point
Momentum sector occupancy vs chemical potential

\[\Delta = 1.8t \]

\[\Delta = 1.1t \]

\[\Delta = 1.4t \]

All sizes: n=1=>gap (different in different momenta) =>paramagnetic (Mott) insulator, reasonable estimate of gap~1.4t
Density per sector vs chemical potential
U=7t, t’=-0.15t
Blow-up

Sector-selective transition \leftrightarrow pinning of sector density to half filling \Rightarrow Mott-like transition
Blow-up: electron-doped side

Doping transition (weakly) first order
\[t' = -0.3t \]

e-doping: transition strongly first order
Closer look at the pseudo--or is it real--gap: maximum entropy analytical continuation

Note: gap ‘fills in’ as \(T \) increases. Magnitude (peak to peak distance) not changed much
Doping dependence

Gap decreases with increasing doping--but has filled in, not closed at $x \sim 0.11$ boundary of sector selective phase.
Doping driven transition:

No sign of 2 pole structure

N. Lin, E. Gull, AJM arXiv:1004.2999
Zone diagonal sector

Possibly hint of gap at lowest dopings, but otherwise no gap
Summary of gap size

Compilation of data

Calculation (t=300meV)

DOS
Linear Fit

\[E_{sc} \sim 5k_B T_c \]

\[\beta t = 20 \]

Pseudogap and zone diagonal velocity

‘Normal state gap’ for states near 0,\(\pi\)

\[T = 40K < T_c \quad T = 140K > T_c \]

Kanigel et al, Nat. Phys 2 447 2006

Copyright A. J. Millis 2012
Higher doping: electron scattering rate divided by T

High doping: isotropic scattering
Intermediate doping: anisotropy in magnitude, T-dep
4 site cluster is different

Single first order metal-insulator transition at half filling.

First order line extends out in doping. Again only 1 transition (or crossover).

Sordi et al, PRL and PRB
Standard 4-site cluster: fermi surface almost entirely contained in one sector

Sector selective transition is suppressed
Georges/Ferrero alternative tiling
4* has the transition

Sector selective transition is robust in DCA (for all clusters large enough to have nodal antinodal differentiation), is the DCA representation of pseudogap physics.
Standard 4-site cluster: captures much of physics despite lack of transition

Liebsch and Tong, 09

Sordi 11

Onset of anisotropic scattering, suppression of DOS at $x \sim 0.15$.

Copyright A. J. Millis 2012
Summary:

Present limits:
--Hubbard models (local, density-density interaction).

--Constrained by sign problem. Generic points in phase diagram, surveys of parameters: 8 sites, T>60. 16 sites: larger T.

--*Properly interpreted*, lots of information in small clusters

--Large cluster studies=> Hubbard model at moderate correlations--reasonable description of high Tc
Extensions

Hubbard model:

--Multiparticle response functions.

--superconductivity

--longer ranged interactions

--perturbative inclusion of other physics

Richer models??--probably need to go beyond CT-QMC
2 particle response: Theory

Observable in presence of pertubation P:

$$\langle O \rangle = \text{Tr} \left[\hat{O}(t) G(t; P) \right]$$

Hamiltonian:

$$H[P] = \hat{T} + \hat{I} + P\hat{O}_P$$

Unperturbed H \hspace{1cm} Perturbation

Expand $G = \left(\omega \hat{I} - \hat{T} - P\hat{O}_P - \hat{\Sigma}(P) \right)^{-1}$ to linear order in P

Vertex function $\Gamma = \frac{\delta \Sigma}{\delta P}$
Formally

Expand $G = \left(\omega \hat{1} - \hat{T} - P\hat{O}_P - \hat{\Sigma}(P) \right)^{-1}$
to linear order in P

response function $\chi = \chi_{\text{bubble}} + \chi_{\text{vertex}}$

$\chi_{\text{bubble}} = \text{Tr} \left[\hat{O}G\hat{O}_P G \right]$

$\chi_{\text{vertex}} = \text{Tr} \left[\hat{O}G \frac{\delta \Sigma}{\delta P} G \right]$
Find (reducible) vertex from linearized DMFT equations

Presence of perturbation \Rightarrow impurity model changes

\[
S = S_{\text{int}} + T \sum_{\omega} (G^{-1}_0)_{\text{eq}} (\omega) c(\omega) c^\dagger(\omega) \\
+ T^2 \sum_{\omega\omega'} (G^{-1}_0) (\omega', \omega) c(\omega) c^\dagger(\omega')
\]

\Rightarrow first order change in G_{QI}

\[
G_{\alpha\alpha}(\omega, \omega') = G^{eq}(\omega) \beta \delta_{\omega\omega'} + G^{eq}(\omega) \beta \delta_{\omega\omega'} T \sum_{\omega_1} G^{eq}(\omega_1) (G^{-1}_0) (\omega_1 \omega_1) \\
- T^2 \sum_{\omega_1\omega_2, \gamma} \Gamma_{\alpha,\alpha,\gamma,\gamma}(\omega, \omega', \omega_1, \omega_2) (G^{-1}_0) (\omega_2 \omega_1)
\]
Must measure reducible 4 point functions of the impurity model

\[\Gamma_{\alpha,\alpha,\gamma,\gamma}(\omega + \Omega, \omega, \omega_1 - \Omega, \omega_1) = \langle c_\alpha(\omega + \Omega)c_\alpha(\omega')c_\gamma(\omega_1 - \Omega)c_\gamma(\omega_1) \rangle \]

(Need only reducible vertex; can do calc one external frequency at a time)

(Need ~100 Matsubara frequencies in each argument => compute and store \(N^210^6\) numbers)
Combining Eq for G^1 and self consistency Eq. gives linear equation for $\frac{\delta \Sigma}{\delta P}$ in terms of $\Gamma_{\alpha,\alpha,\gamma,\gamma}(\omega + \Omega, \omega, \omega_1 - \Omega, \omega_1)$ and

$$P(\omega, \omega') = \int (dk) G_{\text{lattice}}^{\text{eq}}(k, \omega) \hat{O}_P G_{\text{lattice}}^{\text{eq}}(k, \omega')$$
Raman spectra

two magnon peak inside insulating gap

\[\chi'_{B1g}(\Omega/t) \]
Superconductivity: preliminary results

8 sites; $U=7t$

Phase diagram

Spectral function
Non-local interactions

Naturally dimerized materials: CDMFT

\(\text{NaV}_2\text{O}_5 \) Mazurenko et al PRB 66 081104 (2002)

\(\text{Ti}_2\text{O}_3 \) Poteryaev et al PRL 93 086401 (2004)

\(\text{Ti}_2\text{O}_3 \) Intersite interaction essential to metal-insulator transition
Not naturally dimerized: DCA

\[V(k_1, k_2, k_3, k_4) \rightarrow V(K_1, K_2, K_3, K_4) \]

Hubbard: V indep of K

Longer ranged interactions=> more independent components of V.

Can include in QMC. Mikelsons (prvt comm) says: bad sign problem.

Alternative: treat non-local ints perturbatively
Summary:

`Cluster’ DMFT: family of approximations---converge to exact result if cluster large enough

*Requirement: solve N orbital impurity model.

*So far: can do this well only for Hubbard model.
 --Convergence demonstrated
 --2d model: pseudogap +sc ‘similar to’ high Tc
 --vertex functions: coming under control

*?Extensions--an important open problem