NMR STUDY OF TWO TRANSITIONS IN TRIANGULAR-LATTICE ANTIFERROMAGNET CsV(MoO₄)₂

J. J. Kweon¹, D. M. Wilson¹, P. L. Kuhns¹, M. Lee¹, E. S. Choi¹, H. D. Zhou¹,² and A. P. Reyes¹

¹National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
²Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

We carried out ¹³³Cs NMR measurements on triangular lattice magnet CsV(MoO₄)₂ single crystals. CsV(MoO₄)₂ belongs to the trigonal space group P3m1 at room temperature, where V³⁺ ions (S=1) form a regular triangular lattice in the basal plane with Cs atoms located between them.[¹] The heat capacity measurement revealed two phase transitions around 24 K and 29 K, the former related to an antiferromagnetic ordering and the latter unknown. The ¹³³Cs (I = 7/2, γ = 5.5844 MHz/T) spectrum at 40 K showed a set of simple seven lines due to its electric quadrupole moment. The seven lines started to shift to lower frequencies below 29 K, at which low temperature XRD measurements also revealed an anomaly. Upon further cooling, each electric quadrupole line split into three pairs below 24 K, which is associated to the AFM ordering at the same temperature. The ¹³³Cs spin-lattice relaxation time (T₁) showed significant change around 24 K but no apparent features around 29 K. The NMR results indicate that CsV(MoO₄)₂ goes through a structural phase transition at 29 K and an AFM transition at 24 K. The splitting of the NMR spectrum suggests the 120 degree ordered phase below 24 K.[³] We discuss the possible origin of the structural phase transition considering the orbital degree of freedom of V³⁺.[⁴]


Category: MR
Email: jjkweon@magnet.fsu.edu