UNUSUAL MAGNETIC AND PRESSURE RESPONSE OF THE S = 1 ANTI-FERROMAGNETIC LINEAR-CHAIN MATERIAL [Ni(HF$_2$)(3-Clpy)$_4$]BF$_4$

Jian-Sheng Xia1, Marcus K. Prepah1, Andrzej Ozarowski2, Jaynise M. Pérez1,3, Pedro A. Quijentero1, Peter M. Spurgeon4, Adora G. Graham4, Jamie L. Manson4, and Mark W. Meisel1

1Department of Physics and the National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611-8440
2National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
3Department of Physics, University of Puerto Rico at Mayagüez, Puerto Rico 00681-9000
4Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, Washington 99004

An S = 1 antiferromagnetic polymeric chain, [Ni(HF$_2$)(3-Clpy)$_4$]BF$_4$ (py = pyridine), has been identified to have nearest-neighbor antiferromagnetic interaction $J/k_B = 4.86$ K and single-ion anisotropy $D/k_B = 4.3$ K, while avoiding long-range order down to 25 mK [1]. With $D/J = 0.88$, this system is close to the $D/J \approx 1$ gapless quantum critical point between the topologically distinct Haldane and Large-D phases. The magnetization was studied over a range of temperatures, 50 mK $\leq T \leq 1$ K, and magnetic fields, $B \leq 10$ T [2]. The results allow an upper bound of the critical field, B_C, which closes the Haldane gap, to be estimated. Specifically, $B_C \leq (35 \pm 10)$ mT, which is close to the predicted 46 mT [3], when using the reported values of J, D, and g [1]. In low fields, the magnetic signal increases with decreasing temperature for 400 mK $< T < 800$ mK but is independent of temperature for 50 mK $\leq T \leq 400$ mK. This observation is consistent with a significant increase in the specific heat arising from the accumulation of entropy in the vicinity of the quantum critical point.

Using a commercial magnetometer equipped with home-made pressure cells [4], the low-field (0.1 T), high-temperature ($T \geq 2$ K) magnetic susceptibility was studied as function of pressure up to 1.47 GPa. Preliminary analysis of these data suggest the response observed at ambient pressure [1] changes between 0.24 GPa and 0.35 GPa, and the unusually strong Curie-like response intensifies. In other words, externally applied pressures might be tuning the material through the $D/J \approx 1$ gapless quantum critical point. To our knowledge, theoretical predictions of the thermodynamic quantities in the critical region have not appeared in the literature.

This work was supported, in part, by the National Science Foundation through DMR-1202033 (MWM), DMR-1306158 (JLM), DMR-1461019 (UF Physics REU support for JMP), and DMR-1157490 (NHMFL), and by the State of Florida.

Category: LD
Email: meisel@phys.ufl.edu