FRACTIONAL QUANTUM HALL EFFECT IN A FRACTAL SYSTEM

Lei Wang1,2, Yuanda Gao2, Bo Wen3, James Hone2, Cory R. Dean3

1Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.
2Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
3Department of Physics, Columbia University, New York, NY 10027, USA

The Hofstadter energy spectrum provides a uniquely tunable system to study emergent topological order in the regime of strong interactions. Previous experiments, however, have been limited to low Bloch band fillings where only the Landau level index plays a role. Here we report measurements of high mobility graphene superlattices where the complete unit cell of the Hofstadter spectrum is accessible. We observe coexistence of conventional fractional quantum Hall effect (QHE) states together with the integer QHE states associated with the fractal Hofstadter spectrum. At large magnetic field, we observe signatures of another series of states, which appears at fractional Bloch filling index. These fractional Bloch band QHE states are not anticipated by existing theoretical pictures and point towards a distinct type of many-body state.