Axial strain effects of superconducting properties in detwinned RE123 coated conductors.

High Field Laboratory for Superconducting Materials (HFLSM), Institute for Materials Research (IMR), Tohoku University

*present address: Kyusu University
RE123 coated conductors

Schematic grain structure

Polycrystalline metallic tape

IBAD textured buffer layer

Buffer layer

YBCO

Pole figure

YBCO (103)

(103) \(\phi\)-scan

Int. (arb unit.)

0 90 180 270 360

\(\phi\) (deg)

Longitudinal direction

a-domain

b-domain

a-axis

b-axis

a-axis

b-axis
The strain effect of REBCO tapes is complicated because of the coexistence of a- and b-axis domains and the large anisotropy of the strain effect in the ab-plane.
De-twinning process (Strain Annealing)

YBCO

\[a = 0.382 \text{ nm} \]
\[b = 0.389 \text{ nm} \]
\[c = 1.168 \text{ nm} \]

\(b \)-axis is about 1.8 % longer than \(a \)-axis

\[T, P (\text{N}) \]

Annealing condition (In air)

\[T = 300^\circ\text{C} \]

Furnace cooling

\[200^\circ\text{C} \]

SS curve at high temperature

Temperature fall

Strain released at 200\(^\circ\text{C}\)

\[T = 300^\circ\text{C} \]

Young's modulus 211 GPa

Coexistence of a- and b-axis domains

Align of in-plane crystal axis (detwin)

Anneal under strain

Transmission XRD (Mo $K\alpha$)

Suzuki et al., IEEE TAS, 25 (2015) 8400704
After tensile strain anneal with 1%, the cracks along a-axis appeared.

We checked the internal strain under external strain.

$J_c (77K, \text{sf}, 0\%)$
- 2.6 MA/cm^2 for as-received
- 0.79 MA/cm^2 for a-axis (\parallel cracks)
- 0.013 MA/cm^2 for b-axis (\perp cracks)

Slope ≈ 0.57
Strain dependence measurements of T_c and J_c (4-point bending)

Acknowledgment: The strain dependency was measured using the Dr. Nishijima’s 4 point bending apparatus.
Effect of axial tensile strain on T_c

(a) Strain along a-axis

(b) Strain along b-axis

S. Awaji et al., Scientific Reports 5 (2015) 11156
External strain dependence of T_c

(a) Strain along a-axis

(b) Strain along b-axis

Lattice parameter under the strain

Optimum value?

Macmanus-Driscoll, J. L. & Wimbush, IEEE TAS. 21, 2495 (2011)

S. Awaji et al., Scientific Reports 5 (2015) 11156
Critical current

\[J_c (77K, sf, 0\%) = 2.6 \text{ MA/cm}^2 \text{ for as-received} \]
\[= 0.79 \text{ MA/cm}^2 \text{ for } a\text{-axis} \]
\[= 0.013 \text{ MA/cm}^2 \text{ for } b\text{-axis} \]

As-received: dome-like
\(a\text{-axis: dome-like but shift a peak position} \)
\(b\text{-axis: almost linear} \)
The strain sensitivities of J_c are larger in higher fields.
Strain annealing under compressive strain

Intensity (arb. unit)

2θ (deg.)

Longitudinal

(020) (200)

as-received
0.25% compression
0.5% compression

20.5 21 21.5 22
J_c properties

As-received

![Graph showing J_c properties for As-received material with different temperatures and magnetic fields.](image)

0.5% Compression

![Graph showing J_c properties for 0.5% Compression material with different temperatures and magnetic fields.](image)
We succeeded in de-twinning of REBCO coated conductors by strain annealing, although cracks formed. Using de-twinned REBCO sample, external strain dependences of T_c and J_c were investigated.

✓ Critical temperature
 • The strain dependencies for the a and b axes obey a power-law but exhibit opposite slopes.
 • The optimum conditions of the CuO$_2$ plane in RE123 are a square with a lattice constant of 0.385 nm to attain a high critical temperature.

✓ Critical current
 • The strain dependencies of J_c seem to be similar to those of T_c.
 • Magnetic field increases the strain sensitivity along both a- and b- axes, although those are opposite each other.

✓ The annealing under compressive strain is a promising way for de-twinning without cracking.