Electrical and mechanical properties of exfoliated YBCO filaments

Slowa Solovyov and Paul Farrell, Brookhaven Technology Group Inc., Stony Brook, NY

Funded by DOE Office of Science, Office if High Energy Physics, Phase I SBIR
Outline

• Why do we need new conductor geometries
• BTG cable geometry and its advantages
• Exfoliated filament test results:
 • Electrical tests
 • Mechanical tests
• Conclusion and future work
Brookhaven Technology Group

• Founded in 1987
• Located in Stony Brook, NY
• First HTS project: ARMY SMES system
• Currently two Phase I SBIR on HTS applications
Why do we need new 2G cable geometries

- High AC loss, complicated joints, poor quench stability are intrinsic to 2G
BTG exfoliated filament process

2G tape

- Stabilizer
- Silver
- YBCO
- Buffer
- Substrate

Exfoliation

- Buffer
- Substrate

Protective silver

- Silver

Laser slicing

- Laser cut

Copper/solder plating

- Twisted filament stack
- Sheath

Cabling

- Multi-strand cable
Advantages of the exfoliation

• Narrow filament, low AC loss: we are cutting though less layers

• Electrical coupling between filaments:
 • Simplified joining of multi-strand cables
 • Current sharing during a quench

• Low mass of the winding

• Substrate does not compromise mechanical properties

• For FCL and cable applications:
 • High “off” resistance at the same protection level
 • No magnetic substrate, reduced magnetization loss
Electron microscopy analysis of the exfoliated YBCO surface

SEM: plane view

SEM: edge view

✓ The YBCO surface roughness is below 100 nm
Slicing of the tape by a commercial CO$_2$ laser

250 W CO$_2$ laser, 10”/second cut

Laser cut cut

✓ Laser slicing does not degrade I_c in narrow filaments

Weak width dependence of I_c
Critical current of the filaments

High n-value

Retention of I_c

Independent validation at AMSC facility

✓ Both I_c and n-value of the YBCO layer are retained
4.2 K in-field test of the 1 mm wide filament

✓ 4.2 K I_c is consistent with the 77 K data

Original I_c value at self-field

$\alpha = 0.8$
Tensile strength test of the filament

✓ The superconducting layer failed at 560 Mpa.
Failure of the filaments

Strained filaments

Cross-wise micro-cracks develop at 560 Mpa.
Splice resistance, Ag-coated YBCO side

Cannot be annealed

✓ Both sides of the filament have splice resistance below 500-200 nΩ/cm²
Tests of 1 mm filament bundles

✓ Current transfer effects are noticeable in a short sample
Bending and twisting tolerance

- Critical bending radius approximately 10 mm for a two-filaments wire
- For a single 2 mm filament critical twist pitch 50 mm
critical bending radius 7 mm
Bend an twist tolerance summary

✓ 15 mm bend radius, 50 mm twist pitch

MEM 2016, March 21 2016
Future work: long-length cabling
Summary

• Retention of 90% of I_c in short sample
• Multi-strand wire coupons show filament current sharing
• The exfoliated surface has low resistance
• Good bending (15 mm radius) and twisting tolerance
• Tensile strength 560 MPa
• Further work
 • Demonstration of long length cabling
 • Mechanical tests of the multi-strand cable
 • Demonstration of a test coil performance in external field

Acknowledgement: Ken Marken, DOE, Marty Rupich and Steve Fleschler, AMSC, Rob Findarnick, Northrop Grumman