Critical current retention of potted and unpotted REBCO Roebel cables with transverse pressure

N. J. Long, E. F. Talantsev, S. Chong, K. Bouloukakis, R. Mataira, R. A. Badcock

Robinson Research Institute
Introduction

• ReBCO Roebel cable
 • Fully transposed cable/ equivalent topology to Rutherford cable (with $R_c = \infty$)
 • High J_e
 • High bend tolerance

• Manufacturing facility at Robinson Research Institute, VUW (GCS – in transition, parent company sold)
 • Can use 10 mm or 12 mm ReEBCO tape to make strands
 • Can punch and wind long lengths
Introduction (cont)

- Pressure experiments reported here use 5/5 cable
- Geometry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>2 mm Cable</th>
<th>4.5 mm Cable</th>
<th>5 mm Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{TRANS} ($=2L$)</td>
<td>Transposition length</td>
<td>90 mm</td>
<td>300 mm</td>
<td>300 mm</td>
</tr>
<tr>
<td>W_R</td>
<td>Strand width</td>
<td>2 mm</td>
<td>4.5 mm</td>
<td>5 mm</td>
</tr>
<tr>
<td>W_X</td>
<td>Crossover width</td>
<td>1.7 mm</td>
<td>5.0 mm</td>
<td>6.0 mm</td>
</tr>
</tbody>
</table>
Background – transverse pressure issues

• Requirements ~150 MPa in a dipole magnet
• Pressure concentration due to Roebel shape

• The geometry of Roebel assembly concentrates pressure in non-trivial patterns [1].
 • The ‘blue’ areas are thicker
 • Shifts can concentrate stress further – not reported here

• Odd or even strand #s behave quite differently

Objectives

• Measure transverse pressure performance of unpotted Roebel cable
 • Previous results have been variable
 • Find critical pressure for irreversibility
 • Understand variability and mechanisms
 • Important for preparing coils pre-impregnation

• Improve pressure performance by encapsulation
 • Reproduce successful previous results (CERN, KIT, Twente) on our cable geometry
 • Find critical pressure
 • Understand variability and mechanisms
Experimental

• Planar face compression
 • Simulate effect of hoop stress
 • Pressure applied via hydraulic ram
 • Rotational coupling between ram and platen

• Liquid N$_2$ immersion

• Strand I_c testing
 • Single strand energised
 • Incremental pressure increase
 • I-V curves were measured with cycling of pressure (pressure/release/pressure/...)
 • I_c checked after each pressure cycle (@ $P=0$)
Roebel cable pressure test

- Point of initial irreversible I_c degradation
 - Criteria I_c changes by 1%

![Graph showing pressure test results for PR0009 Non-impregnated cable. The graph indicates that the pressure threshold for degradation is $P_{\text{threshold}} = 13.3$ MPa.]
Results: unpotted 5/5 cables

- $P_{\text{threshold}} = 4.2 - 34.2 \text{ MPa}$
- n-value more sensitive to damage than I_c
Evidence of pressure concentration

• After transverse pressure of 60 MPa was applied to 5/5 cables
 • Change in surface finish over part of surface
 • Seen as darker in picture
 • Light reflection more specular
 • Implies pressure concentration
Optical microscopy

- Stress concentration
- Buckling of strand
- Live strand

(1) Length 3447.32 μm
(2) Length 2927.75 μm
Stress concentration

• Concentrated pressure region
 • Overlapping edges

• Mitigation
 • Distribute the pressure evenly
 • Investigate cable impregnation
Epoxy impregnation

- Molded planar cable
 - Bisphenol-A epoxy resin system
 - Araldite CY5538 + HY5571
- I_c degraded on cooldown
 - (but not further degradation)
 - Believed due to thermal mismatch
Matching CTE

• A mismatch of the coefficients of thermal expansion of the epoxy and the 2G wire
 • which causes mechanical degradation of HTS layer, is likely the cause of this failure.

• SiO2 / Epoxy composites
 • Closely match CTE of the Roebel cable strands.
 • Epoxy+SiO2-nanopowder (< 1 um) 46.5% Vf
 • Highest vol. fraction that still allows resin flow
 • American Elements SI-OX-02N-P.01UM
 • 1:1:3 resin: hardener: silica powder by weight

• Thermal cycling also investigated
46.5% $V_f \text{ SiO}_2$

- Good retention of I_c at 46.5%.

Critical current retention after first cooling down of RC potted by epoxy+46.5% SiO$_2$

Number of studied RCs

Retained I_c ratio

N 3

0 1 2 3 4 5

0.96 0.98 1.00 1.02 1.04
Pressure and thermal cycling

- I_c retained with combined pressure and thermal cycling (to 100 MPa)
Pressure testing to irreversibility point

- Potted length 80 mm
Irreversibility point for tested cables

- Some evidence of mechanical damage
 - Cracks in epoxy
Conclusions

• Non-impregnated cable is susceptible to damage at low transverse pressures
 • Evidence for stress concentration (different from simple models)

• We can epoxy impregnate and retain I_c with thermal and mechanical cycles

• Increase in irreversibility to 75 - 212 MPa
 • Variability may be due to non-optimised sample production