REBCO Roebel cables under high transverse stress

M. Dhallé¹, P. Gao¹, W.A.J. Wessel¹, M. Hartman¹, H.H.J. ten Kate¹, ⁴, S. Otten², A. Kario², W. Goldacker², A. Usoskin³, J. van Nugteren¹, ⁴, G. Kirby⁴ and L. Bottura⁴.

¹ University of Twente, ² Karlsruhe Institute of Technology, ³ Bruker HTS GmbH, ⁴ CERN.

Partly funded by the EC under GA 312453 (EUCARD2)
Outline

- Introduction
 - background
 - mechanical behavior Roebel
 - problem / proposed solution

- Experimental

- Results

- Conclusions & outlook

See also S. Otten et al. SUST 28 (2015) 065014
Introduction: background

See talk Glyn Kirby this morning:

5T stand-alone
HTS coil
as insert for
20T-class dipole
Introduction: background

At start EUCARD2 (2013): emphasis on ReBCO ROEBEL

- High cable - J_E (accelerator magnet!)
- Fully transposed (field quality)
- Rutherford - like (magnet design, possibility to wind with cable // field)

Proposed by Wilfried Goldacker @ EUCAS 2005
Recent review by Goldacker @ EUCAS 2015
Introduction: mechanical behavior

Tensile-stress response: OK

Bending-stress response: OK

A. Kario, internal EUCARD2 report (2015)
Introduction: problem...

Naked cable under transverse pressure: degradation starts at ~ 20 – 40 MPa due to stress-concentration

D. Uglietti et al. SUST 26 (2013) 074002

J. Fleiter et al. SUST 26 (2013) 065014
Introduction: problem...

Design pressure 150 MPa

<table>
<thead>
<tr>
<th>parameter name</th>
<th>1 - Aligned block</th>
<th>2 - Normal block</th>
<th>3 - Cosine Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>coil layout</td>
<td>yoke</td>
<td>yoke</td>
<td>yoke</td>
</tr>
<tr>
<td>5.0T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

general			
cable width / thickness	12 mm / 0.8 mm	12 mm / 0.8 mm	10 mm / 1.2 mm
required bend radius	16 mm	16 mm	7.5 mm
number of turns	12/6 (18)	12/7 (19)	4/5/3 – 6/10/4 (32)
block area (all quadrants)	790 mm²	909 mm²	1827 mm²
inductance (w.o. iron)	0.29 mH/m	0.31 mH/m	0.80 mH/m

standalone (in yoke)			
percentage on loadline	70%	70%	60%
current density (block)	648 A/mm²	635 A/mm²	387 A/mm²
critical current density	1216 A/mm²	1164 A/mm²	915 A/mm²
cable operating current	7905 A	7747 A	5526 A
dipole field B1	5.0 T	5.0 T	5.0 T
harmonics b3 / b5 / b7	8 / 5 / 2 units	16 / 1 / 0 units	0 / 0 / 0 units
estimated coil pressure	17 MPa	17 MPa	20 MPa

in 13 T background field			
percentage on loadline	70%	70%	70%
current density (block)	667 A/mm²	530 A/mm²	283 A/mm²
critical current density	1282 A/mm²	1068 A/mm²	477 A/mm²
cable operating current	8137 A	6466 A	4041 A
dipole field B1	16.9 T	16.2 T	15.8 T
harmonics b3 / b5 / b7	13 / 3 / 0 units	4 / 0 / 0 units	6 / 0.4 / 0.1 units (in Fresca2)
estimated coil pressure	110 MPa	87 MPa	51 MPa
Introduction: … and proposed solution

Proper impregnation (cfr. Nb$_3$Sn Rutherford)!

Nb$_3$Sn RRP cable
Outline

- Introduction
- Experimental
 - Transformer / cryopress
 - Impregnation
- Results
- Conclusions & outlook

See also S. Otten et al. SUST 28 (2015) 065014
Experimental: transformer

- \(I_{\text{max}} = 50 \text{ kA}, T = 4.2 \text{ K}, B_{\text{applied,max}} = 11 \text{ T}; \)
- Cable samples laterally constrained & vacuum impregnated

Experimental: cryo-press

- Double NbTi pancake ($F_{\text{max}} = 260$ kN);
- Steel + 50µm polyimide anvil ($\sigma_{\text{max}} \approx 350$ MPa)

Experimental: impregnation

Karlsruhe method (Araldite + glass beads)

<table>
<thead>
<tr>
<th>Filler</th>
<th>Filling ratio [wt%]</th>
<th>Product name</th>
<th>Thermal expansion T = 300 K</th>
<th>Viscosity [Pa s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>60-80</td>
<td>Duralco 125</td>
<td>-1.04 %</td>
<td>20 (20 °C)</td>
</tr>
<tr>
<td>Graphite</td>
<td>50-60</td>
<td>Duralco 127</td>
<td>-0.58 %</td>
<td>50 (20 °C)</td>
</tr>
<tr>
<td>Carbon particles + CNT</td>
<td>4-8</td>
<td>Carbocond 171/6</td>
<td>-1.18 %</td>
<td>6-8 (20 °C)</td>
</tr>
<tr>
<td>Graphite + CNT</td>
<td>4-8</td>
<td>Carbocond 471/6</td>
<td>-1.11 %</td>
<td>1-2 (20 °C)</td>
</tr>
<tr>
<td>Fused silica</td>
<td>50-66</td>
<td>Araldite CY5538/HY5571</td>
<td>-0.82 % (50 wt%) < 4.5 (80 °C)</td>
<td></td>
</tr>
<tr>
<td>Al(OH)₃</td>
<td>56</td>
<td>Araldite CW5730N/HY5731</td>
<td>-0.60 % (60 wt%)</td>
<td></td>
</tr>
</tbody>
</table>

SS dummy cable with 1 REBCO strand @ 77K, s.f. :

<table>
<thead>
<tr>
<th>Ic[A]</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before impregnation</td>
<td>171.7</td>
</tr>
<tr>
<td>After impregnation (cycle 1)</td>
<td>170.2</td>
</tr>
<tr>
<td>After impregnation (cycle 2)</td>
<td>170.9</td>
</tr>
</tbody>
</table>

A. Kario et al. ICEC-ICMC 2014
Experimental: impregnation

2-step UTwente implementation …

Cable:
- 10 tapes (SuperPower SCS12050-AP)
- 126 mm transposition length
- ReBCO facing holder

(vacuum) impregnation step 1:
- Araldite + 50% silica
- Teflon pushing block
Experimental: impregnation

Impregnation step 2:
(for parallelism)

- Stycast 2850 FT + glass
- Actual pushing anvil (30mm)
Outline

- Introduction
- Experimental
- Results
- Conclusions & outlook

See also S. Otten et al. SUST 28 (2015) 065014
Results: 1st cable-type 10 - strand $l_p = 126$ mm SP cable

Critical current @ 4.2K, 10.5T versus applied pressure
Results

Some discussion on the role of the side-plate supports …

Sample 1:
14 mm high side-plates

Additional confirmation:

Sample 2: identical cable & impreg.
but 3 mm high side-plates

Sample 3: identical cable,
but not impregnated
Results: 1st cable-type 10 - strand $l_p = 126$ mm SP cable

Cable 2: identical cable & impregnation but 3 mm side plates

![Image of cable and experimental setup]

![Graph showing critical current vs. transverse stress]

- Cable 1: 254 MPa
- Cable 2: 167 MPa
Results: 1st cable-type 10 - strand \(l_p = 126 \text{ mm} \) SP cable

Cable 3: identical but *not impregnated* (3 mm side plates)
Outline

- Introduction
- Experimental
- Results
- Conclusions & outlook

See also S. Otten et al. SUST 28 (2015) 065014
Conclusions & outlook

- **Transverse pressure tolerance impregnated Roebel promising**
 - 10-strand SP cable reproducibly meets Feather2 design goal (150MPa)
- **Residual issues with Araldite/glass-bead impregnation**

Outlook:

<table>
<thead>
<tr>
<th>Cable type</th>
<th># strands & L_p</th>
<th>Tape</th>
<th>Impregnation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10 (126mm)</td>
<td>SP</td>
<td>KIT</td>
</tr>
<tr>
<td>2.</td>
<td>15 (226mm)</td>
<td>SP</td>
<td>KIT</td>
</tr>
<tr>
<td>3.</td>
<td>15 (226mm)</td>
<td>SP</td>
<td>CERN</td>
</tr>
<tr>
<td>4.</td>
<td>15 (226mm)</td>
<td>BRUK</td>
<td>CERN</td>
</tr>
</tbody>
</table>

More at ASC 2016 …