A new 1.5-mm high-temperature superconducting probe designed to detect carbon 13 will significantly enhance studies in natural products and metabolomics.

13C NMR when used in metabolomics 1. Provides better peak list for database matching and spectral annotation, 2. Provides better group separation and loadings annotation when using multivariate statistical analysis, and 3. Prevents possible misidentification of metabolites.

This instrument is located at the MagLab's AMRIS Facility at the University of Florida in Gainesville.

This instrument is located at the MagLab's AMRIS Facility at the University of Florida in Gainesville.

A new non-Brownian model of anomalous translational diffusion in nervous tissue is introduced and applied to the brain. This model provides new fractional order parameters of diffusion, entropy, waiting time and jump length that represent unique markers of morphology in neural tissue.

Scientists analyzing maize affected by southern leaf blight determine the molecular structures of so-called “death acids.”

The MagLab’s AMRIS facility has recently implemented dissolution DNP technology. The system utilizes a 5 T magnet in which samples are cooled to 14,000 gain in SNR on dissolution and injection into our 4.7T MRI/S scanner.

This week at the lab, scientists from across North America are learning the theory and practice of radio frequency (RF) coils.

RF coils are used in magnetic resonance imaging (MRI) to transmit and receive RF signals. The MagLab’s Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility at the University of Florida has an entire lab devoted to RF coil manufacture and development, led by RF engineer Malathy Elumalai.

In response to a growing need for visiting scientists to be able to troubleshoot and design their own RF coils, Elumalai is sharing her expertise at this week’s inaugural coil workshop. Empowering scientists to make their own coils makes sense. The demand for specialized coils has outpaced the rate at which Elumalai can design them. Additionally, sometimes the coils break, causing an experiment to come to a halt.

Throughout this week’s workshop, participants will learn the physics behind RF coils and be trained in specialized software for designing and modeling how the coils will behave under different magnetic fields and with different samples. Participants also have the chance to build their own coil and test it in the MagLab’s 4.7 tesla imaging magnet.

How do RF coils in MRI machines work? First, the coil transmits an RF signal, which produces a magnetic field perpendicular to the one already being produced by the magnet. Then, the same RF coil (or a separate one) receives signals indicating how the nuclear spins inside the subject are relaxing. This information is then processed as an image. Without RF coils, there’d be no "I" (imaging) in MRI!

The workshop is an example of the ongoing training we offer our "users" so that they can make the most of their time with our magnets. The MagLab also offers a User Summer School and a Theory Winter School once a year.

Text and image by Elizabeth Webb.

Each day at work, Long, tackles the twin duties of providing administrative leadership for a growing program, and her own scientific research.

Dr. Joanna Long has been appointed Associate Laboratory Director and co-Principal Investigator of the MagLab.

Page 1 of 2