STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS

Classical spin liquids, emergent gauge fields and fractionalised excitations

John Chalker Physics Department, Oxford University

Outline

• Geometrically frustrated magnets

Experimental signatures of frustration

Classical models

Degeneracy of under-constrained ground states

Ground state selection: order from disorder

- Low temperature correlations
 - **Emergent degrees of freedom**
 - **Fractionalised excitations**

Unfrustrated antiferromagnets: for contrast

Spin S Heisenberg antiferromagnet on simple cubic lattice

$$\mathcal{H} = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

Classical ground state

unique up to symmetries

Sublattice magnetisation:

$$\langle S_i^z \rangle = S - \delta S$$

$$\delta S \sim \sum_{\mathbf{k}} \frac{1}{\omega_{\mathbf{k}}} \left(\langle n_{\mathbf{k}} \rangle + \frac{1}{2} \right)$$

Types of frustration in magnetic systems

With quenched disorder

- in spin glasses

From competition

VS

From geometry

structure \rightarrow degeneracy Anderson 1956, Villain 1977

Examples of frustrated lattices

Building block: corner-sharing frustrated units

2D: kagome lattice

3D: pyrochlore lattice

Characteristics of geometrically frustrated antiferromagnets

 $SrGa_{12-x}Cr_{x}O_{19}$ (SCGO) as an example

Paramagnetic even for $T \ll |\Theta_{\rm CW}|$

Martinez et al, PRB **46**, 10786 (1992)

Mean field theory

$$\chi \propto \frac{1}{T - \Theta_{\rm CW}}$$

Selected examples of frustrated magnets

Layered materials

SCGO

pyrochlore slabs Cr^{3+} S=3/2 $\Theta_{
m CW}\sim-500{
m K}$ $T_{
m F}\sim4{
m K}$

Herbertsmithite

kagome layers

к-ЕТ

triangular layers molecular S=1/2 $\Theta_{
m CW}\sim-400{
m K}$

ZnCr₂O₄ pyrochlore Heisenberg antiferromagnet Cr^{3+} S = 3/2 $\Theta_{CW} \sim -390 K$ $T_N \sim 12.5 K$ Spin ices Dy₂Ti₂O₇ and Ho₂Ti₂O₇ ferromagnets with single-ion anisotropy

Pyrochlore lattices

— hence frustration

Effective description: pyrochlore lsing antferromagnet

 $J_{
m eff} \sim +2{
m K}$

Spin correlations: ${\cal S}(Q)$ for SCGO (powder at 1.5 K)

S-H Lee et al., EPL 35, 127 (1996)

Low-T spin correlations in ZnCr_2O_4

$S(q) \ \mathrm{in} \ (h0l) \ \mathrm{and} \ (hhl) \ \mathrm{scattering} \ \mathrm{planes}$

Experiment

Lee et al, Nature (2002)

1 1.5 2 2.5 3 3.5 4 0.5 0 4.5 4 C) d) 3 --2 \sim 1 0 -1 1 h 1 $_h$ 2 30 2 0 3

Conlon + JTC (2010)

Theory

Spin correlations: spin ice single crystal

Fennell et al, Science 326 415 (2009)

Excitations: inelastic neutron scattering from herbertsmithite

Han et al., Nature 492, 406 (2012)

Excitations: heat capacity of κ (BEDT-TTF)₂Cu₂(CN)₃

C/T vs T^2 . Yamashita *et al.*, Nature Phys. 4, 459 (2008).

Antiferromagnetic spin clusters - frustration and degeneracy

General problem: simplex of q spins, each with n components

$$\mathcal{H} = J \sum_{\text{pairs}} \mathbf{S}_i \cdot \mathbf{S}_j \equiv \frac{J}{2} |\mathbf{L}|^2 + c \quad \text{with} \quad \mathbf{L} = \sum_{i=1}^q \mathbf{S}_i$$

Ground state degeneracy in Heisenberg AFM

Maxwellian constraint-counting

Example: Heisenberg pyrochlore antiferromagnet

$$\mathcal{H} = J \sum_{\text{bonds}} \mathbf{S}_i \cdot \mathbf{S}_j \equiv \frac{J}{2} \sum_{\text{units}} |\mathbf{L}_{\alpha}|^2 + c$$

Total number of degrees of freedom:

$$F = 2 \times (\text{number of spins})$$

Constraints satisfied in ground state: $K = 3 \times (\text{number of units})$

Ground state dimension:

Geometric Frustration \rightarrow Macroscopic D

Consequences of degeneracy: SCGO

Paramagnetic even for $T \ll |\Theta_{\rm CW}|$

Martinez et al, PRB 46, 10786 (1992)

Strong short-range correlations

Elastic neutron scattering

S.H. Lee et al, Europhys Lett 35, 127 (1996)

Schematics of behaviour at low temperature

Classical cooperative paramagnet: $JS \ll k_{\rm B}T \ll JS^2$

Ground state selection by fluctuations?

'Order by disorder' Villain (1980), Shender (1982)

Order by disorder: four XY or Heisenberg spins

Thermal distribution of $oldsymbol{S}_1 \cdot oldsymbol{S}_2$?

Integrate out
$$S_3$$
 and S_4 $P(\alpha) \propto \begin{cases} \sin \alpha \\ 1 \end{cases} d\alpha \mathcal{Z}(\alpha)$

 $\mathcal{Z}(\alpha) = \int d\vec{S}_3 \, d\vec{S}_4 \, \exp(-\frac{\beta J}{2} |\vec{S}_3 + \vec{S}_4 + 2\hat{z} \cos(\alpha/2)|^2)$

Order by disorder: four XY or Heisenberg spins

Thermal distribution of $oldsymbol{S}_1 \cdot oldsymbol{S}_2$?

Integrate out
$$S_3$$
 and S_4 $P(\alpha) \propto \begin{cases} \sin \alpha \\ 1 \end{cases} d\alpha \mathcal{Z}(\alpha)$

$$\mathcal{Z}(\alpha) = \int d\vec{S}_3 \, d\vec{S}_4 \, \exp(-\frac{\beta J}{2} |\vec{S}_3 + \vec{S}_4 + 2\hat{z} \cos(\alpha/2)|^2)$$

Low temperature limit:

(()

 $\pi + \phi + \delta$

α

S,

Heisenberg $P(\alpha) \propto \sin(\alpha/2)$ — no order

XY
$$P(\alpha) \propto 1/\sin(\alpha)$$

— collinear order

Ground state selection in general?

Thermal fluctuations

Probability distribution on ground states

$$\int \mathrm{d}y \, \mathrm{e}^{-\omega y^2/k_{\mathrm{B}}T} \propto \sqrt{\frac{k_{\mathrm{B}}T}{\omega}}$$

$$P(\mathbf{x}) \propto \prod_{l} \left(\frac{k_{\rm B}T}{\omega_l(\mathbf{x})} \right)$$

Thermal fluctuations kagome \rightarrow coplanar pyrochlore \rightarrow disordered Order by disorder in the kagome Heisenberg model

Coplanar spin configurations have soft modes

Coplanar states

Generic states

Constraint counting

- F = 2(# spins)
 - $= 2 \times \frac{3}{2} (\# triangles)$
- K = 3(# triangles)

$$D = F - K = 0$$

soft modes

- no soft modes

Coplanar states selected

Soft modes in MC simulations

Equipartition: mode with $E \propto y^2$ contributes $\frac{k_{\rm B}}{2}$ to heat capacity mode with $E \propto y^4$ contributes $\frac{k_{\rm B}}{4}$

Kagome Heisenberg model

Pyrochlore Heisenberg & XY models

Co-planar states: 1/6 of modes are quartic

Heisenberg: 1/4 of modes cost zero energy XY: 1/4 of modes are quartic

Ground state selection?

Quantum fluctuations

Zero-point energy

of stiff modes

Effective Hamiltonian for

soft degrees of freedom

$$\mathcal{H}_{\rm eff}(\mathbf{x}) = \frac{1}{2} \sum_{l} \hbar \omega_l(\mathbf{x})$$

Expected consequences:

 $\bullet \ {\rm Large} \ S$

Minimise zero-point energy in ordered (collinear/coplanar) state

 $\bullet \ {\rm Small} \ S$

Delocalisation over classical ground state manifold \Rightarrow spin liquid

Spin Ice and Ising pyrochlore AFMs

Pyrochlore ferromagnet with single-ion anisotropy

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - D \sum_i \left(\mathbf{\hat{n}}_i \cdot \mathbf{S}_i \right)^2 - \mathbf{h} \cdot \sum_i \mathbf{S}_i$$

Large D: $\mathbf{S}_i = \sigma_i \hat{\mathbf{n}}_i$ $\sigma_i = \pm 1$ $J_{\text{eff}} = -J \hat{\mathbf{n}}_i \cdot \hat{\mathbf{n}}_j$ $h_i^{\text{eff}} = \mathbf{h} \cdot \hat{\mathbf{n}}_i$

$$\mathcal{H} = J_{\text{eff}} \sum_{\langle ij \rangle} \sigma_i \sigma_j - \sum_i h_i^{\text{eff}} \sigma_i$$

Effective Ising system

Frustration and residual entropy

Anisotropy +

Pauling 1935

ferromagnetic exchange

Ground states: 'two-in, two-out'

Pauling's entropy estimate

One tetrahedron

Total number of states: 16

Fraction that are ground states:

 $\frac{6}{16}$

Pyrochlore lattice

Estimate for number of ground states:

$$(total \# states) \times \left(\frac{6}{16}\right)^{(\# \text{ tetrahedra})} = 2^{(\# \text{ spins})} \times \left(\frac{6}{16}\right)^{(\# \text{ spins}/2)} = \left(\frac{3}{2}\right)^{(\# \text{ spins}/2)}$$

Pauling entropy in experiment

 $Dy_2Ti_2O_7$, Ramirez *et al*, Nature 399, 333 (1999).

Summary

Geometric frustration

leads to macroscopic classical ground state degeneracy

possibility of order-by-disorder

... but long-range order may be avoided

At low T: strong correlations + large fluctuations