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Quantum matter without quasiparticles
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Ubiquitous
“Strange”,

“Bad”,

or “Incoherent”,

metal has a resistivity, ⇢, which obeys

⇢ ⇠ T ,

and

in some cases ⇢ � h/e2

(in two dimensions),
where h/e2 is the quantum unit of resistance.



Strange metals just got stranger…

I. M. Hayes et. al., Nat. Phys. 2016 
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B-linear magnetoresistance!?



Strange metals just got stranger…
Scaling between B and T !?
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Fermi surface coupled to a gauge field 
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Fermi surface coupled to a gauge field 
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Electron self-energy at order 1/Nf :
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Fermi surface coupled to a gauge field 
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Landau-damping

One loop photon self-energy with Nf fermion flavors:
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• Breakdown of quasiparticles requires strong coupling to a low energy col-

lective mode

• In all known cases, we can write down the singular processes in terms of a

continuum field theory of the fermions near the Fermi surface coupled to

the collective mode.

• In all known cases, the continuum critical theory has a conserved total

(pseudo-) momentum, ~P , which commutes with the Hamiltonian. This

momentum may not be equal to the crystal momentum of the underlying

lattice model.

• As long as � ~J,~P 6= 0 (where ~J is the electrical current) the d.c. resistivity of

the critical theory is exactly zero. This is the case even though the electron

self energy can be highly singular and there are no fermionic quasiparticles

(many well-known papers on non-Fermi liquid transport ignore this point.)

• We need to include additional (dangerously) irrelevant umklapp correc-

tions to obtain a non-zero resistivity. Because these additional corrections

are irrelevant, it is di�cult to see how they can induce a linear-in-T resis-

tivity.
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Theories of metallic states without quasiparticles
in the presence of disorder

• Well-known perturbative theory of disordered met-
als has 2 classes of known fixed points, the insulator
at strong disorder, and the metal at weak disorder.
The latter state has long-lived, extended quasiparti-
cle excitations (which are not plane waves).

• Needed: a metallic fixed point at intermedi-
ate disorder and strong interactions without
quasiparticle excitations. Although disorder is
present, it largely self-averages at long scales.

• SYK models
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A strongly correlated metal built from Sachdev-Ye-Kitaev models
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Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !

1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic

hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘

⇢
T

varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t
2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,
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In the imaginary time formalism, one studies the partition
function Z = Tr e
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a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
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The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from
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Sachdev-Ye-Kitaev model
A toy exactly soluble model 

of a non-Fermi liquid 

Like a strongly interacting quantum dot 
or atom with complicated Kanamori 

interactions between many “orbitals”
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Strongly correlated metals comprise an enduring puzzle at the heart of condensed matter physics.
Commonly a highly renormalized heavy Fermi liquid occurs below a small coherence scale, while at
higher temperatures a broad incoherent regime pertains in which quasi-particle description fails. Despite
the ubiquity of this phenomenology, strong correlations and quantum fluctuations make it challenging to
study. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with random all-to-all
four-fermion interactions among N Fermion modes which becomes exactly solvable as N ! 1, exhibiting
a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence of quasi-
particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic hopping.
Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy
Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find
linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘

⇢
T

varies between two
universal values as a function of temperature. Our work exemplifies an analytically controlled study of a
strongly correlated metal.

Prominent systems like the high-Tc cuprates and heavy
fermions display intriguing features going beyond the quasi-
particle description[1–9]. The exactly soluble SYK models
provide a powerful framework to study such physics. The
most-studied SYK4 model, a 0 + 1D quantum cluster of N

Majorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–25]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature
scale Ec ⌘ t

2
0/U0[21, 26, 27] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a

Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[28], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[29, 30] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,
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where Ui jkl,x = U
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⇤

ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|
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In the imaginary time formalism, one studies the partition
function Z = Tr e

��(H�µN), with N =
P

i,x c
†

i,xc
i,x, written as

a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species
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The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from
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Self-consistent equations

2

t0 = 0, the U
2
0 term is invariant under ⌧! b⌧ and c! b

�1/4
c,

c̄ ! b
�1/4

c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t
2
0 ! bt

2
0, so two-fermion coupling is a relevant perturba-

tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t

2
0/U0. We expect the renormalization flow is to the

SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U
2
0 ! b

�1
U

2
0 is irrelevant. Since the SYK2

Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1

N

P
i cix⌧c̄ix⌧0 and a La-

grange multiplier ⌃x(⌧, ⌧0) enforcing the previous identity, one
obtains Z̄ =

R
[dG][d⌃]e�NS , with the action

S = �
X

x

ln det
⇥
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2
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2
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Gx(⌧2, ⌧1)2 + ⌃x(⌧1, ⌧2)Gx(⌧2, ⌧1)
3
77775

+t
2
0

X

hxx0i

Gx0 (⌧1, ⌧2)Gx(⌧2, ⌧1)
⌘
. (3)

The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt

2
0G(⌧ � ⌧0) (z is the coordination

number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt
2
0G(i!n),

⌃4(⌧) = �U
2
0G(⌧)2

G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C

T
=
S
0(0)
Ec

(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t

�1
0 , there is an “e↵ective mass

enhancement” of m
⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-

perature state is a heavy Fermi liquid.
To establish that the low temperature state is truly a strongly

renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|

T
. Be-

cause the compressibility has a smooth low temperature limit

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0, T ⌧ U0(z = 2). C ! S

0(0)T/Ec as
T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2

� 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2
� 1, so that the

......

...
...

Ḡ(i!̄) = t̃G(i!)

strong similarities to DMFT equations

mathematical structure appeared in early study of doped t-J model with 
double large N and infinite dimension limits: O. Parcollet+A. Georges, 1999
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t0 = 0, the U
2
0 term is invariant under ⌧! b⌧ and c! b

�1/4
c,

c̄ ! b
�1/4

c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t
2
0 ! bt

2
0, so two-fermion coupling is a relevant perturba-

tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t

2
0/U0. We expect the renormalization flow is to the

SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U
2
0 ! b

�1
U

2
0 is irrelevant. Since the SYK2

Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1

N

P
i cix⌧c̄ix⌧0 and a La-

grange multiplier ⌃x(⌧, ⌧0) enforcing the previous identity, one
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R
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⌘
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The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt

2
0G(⌧ � ⌧0) (z is the coordination

number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt
2
0G(i!n),

⌃4(⌧) = �U
2
0G(⌧)2

G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C

T
=
S
0(0)
Ec

(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t

�1
0 , there is an “e↵ective mass

enhancement” of m
⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-

perature state is a heavy Fermi liquid.
To establish that the low temperature state is truly a strongly

renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|

T
. Be-

cause the compressibility has a smooth low temperature limit

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0, T ⌧ U0(z = 2). C ! S

0(0)T/Ec as
T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2

� 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2
� 1, so that the
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Ḡ(i!̄) = t̃G(i!)

strong similarities to DMFT equations

mathematical structure appeared in early study of doped t-J model with 
double large N and infinite dimension limits: O. Parcollet+A. Georges, 1999
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Rescaling
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where z is the coordination number of the lattice under consideration and we have regularized the free energy by subtracting the
part for free fermion, i.e.,G0(i!n) = 1

i!n

, and adding back �T ln(1+e
µ/T ). One switches to Helmholtz free energy which depends

on “universal” particle number density N/N by a legendre transformation F = ⌦/N + µN/N, and obtain entropy density by
S/N = �@F@T . The entropy for SYK4 (i.e. vanishing t0) agrees with the results in Ref 5 and entropy (Fig 1) approaches identically
regardless of t0/U0 the universal ln 2 for high temperature (not shown in the figure). The entropy is significantly reduced for
small temperature by the presence of two-fermion hopping.

The compressibility is obtained as K = 1
N

@N
@µ or K = �1/( @

2F
@2 N

N

). The plot in Fig. 1 shows the results using the first derivative
method (which agrees with that found in Ref 1 as well as a large-q calculation (unpublished)).

VI. HEAVY FERMI LIQUID PHENOMENOLOGY

A. Quasi-particle residue and “Bad” Fermi liquid

The saddle point condition for imaginary-time Green’s function is (assuming zero chemical potential,t̃0 ⌘
p

zp
2
t0, Ẽc ⌘ t̃

2
0

U0
)

G(i!)�1 = i! � ⌃(i!), ⌃(⌧) = �U
2
0G(⌧)2

G(�⌧) + 2t̃
2
0G(⌧). (6.1)

Rescaling functions as

!̄ =
!

Ẽc

, ⌧̄ = ⌧Ẽc, Ḡ(i!̄) = t̃0G(i!), ⌃̄(i!̄) =
⌃(i!)

t̃0
. (6.2)

The saddle point equation is formatted as

Ḡ(i!̄)�1 =
Ẽc

t̃0
(i!̄ � t̃0

Ẽc

⌃̄(i!̄)) ⇡ ⌃̄(i!̄),

⌃̄(⌧̄) = �Ḡ(⌧̄)2
Ḡ(�⌧̄) + 2Ḡ(⌧̄), (6.3)

that, given Ẽc

t̃0
⌧ 1, is an equation set with only dimensionless parameters. As we argued in the text, the low energy behavior is

in the realm of Fermi liquid theory. Then the spectral weight Ā(!̄) should contain a quasiparticle contribution, which because
it contains no parameters, must have a residue of O(1). From the scaling in (6.2), it follows that the width of the “coherence
region” attributed to quasiparticle formation in Ā(!̄) is multiplied by Ẽc in A(!) (i.e. in physical units) and the quasiparticle
residue of our model (i.e., the integral of A(!) within the “coherence region”) is Z ⇠ Ẽc

t̃0
= t̃0

U0
⌧ 1 which is characteristic of a

“bad” Fermi liquid.

B. Grand canonical potential in Fermi liquid theory, compressibility and Sommerfeld coe�cient

In Landau’s Fermi liquid theory, the energy is a functional of a series of “quasi-particle” states labeled by a, b, we have
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X
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where na, n0
a

denotes the occupation number of the quasiparticle state and superscript 0 denotes the occupation number of the
“reference” state one starts with to define "a, fab, and we take it here to be the state with µ = 0,i.e., hnaiµ=0 = n

0
a
. In the second

identity we use f̄ to replace fab for simplicity.
Define Ea = "a� f̄

P
b n

0
b
, we have for the partition function in grand canonical ensemble as (introduce a hubbard-stratonovich
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The saddle point condition for � reads
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(6.6)
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t̃0
⌧ 1, is an equation set with only dimensionless parameters. As we argued in the text, the low energy behavior is

in the realm of Fermi liquid theory. Then the spectral weight Ā(!̄) should contain a quasiparticle contribution, which because
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For t≪U, a single universal coherence scale appears
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the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
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is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t

�1
0 , there is an “e↵ective mass

enhancement” of m
⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-

perature state is a heavy Fermi liquid.
To establish that the low temperature state is truly a strongly

renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|

T
. Be-

cause the compressibility has a smooth low temperature limit

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0, T ⌧ U0(z = 2). C ! S

0(0)T/Ec as
T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2

� 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2
� 1, so that the
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where z is the coordination number of the lattice under consideration and we have regularized the free energy by subtracting the
part for free fermion, i.e.,G0(i!n) = 1

i!n

, and adding back �T ln(1+e
µ/T ). One switches to Helmholtz free energy which depends

on “universal” particle number density N/N by a legendre transformation F = ⌦/N + µN/N, and obtain entropy density by
S/N = �@F@T . The entropy for SYK4 (i.e. vanishing t0) agrees with the results in Ref 5 and entropy (Fig 1) approaches identically
regardless of t0/U0 the universal ln 2 for high temperature (not shown in the figure). The entropy is significantly reduced for
small temperature by the presence of two-fermion hopping.

The compressibility is obtained as K = 1
N

@N
@µ or K = �1/( @

2F
@2 N

N

). The plot in Fig. 1 shows the results using the first derivative
method (which agrees with that found in Ref 1 as well as a large-q calculation (unpublished)).

VI. HEAVY FERMI LIQUID PHENOMENOLOGY

A. Quasi-particle residue and “Bad” Fermi liquid

The saddle point condition for imaginary-time Green’s function is (assuming zero chemical potential,t̃0 ⌘
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Ḡ(�⌧̄) + 2Ḡ(⌧̄), (6.3)

that, given Ẽc

t̃0
⌧ 1, is an equation set with only dimensionless parameters. As we argued in the text, the low energy behavior is

in the realm of Fermi liquid theory. Then the spectral weight Ā(!̄) should contain a quasiparticle contribution, which because
it contains no parameters, must have a residue of O(1). From the scaling in (6.2), it follows that the width of the “coherence
region” attributed to quasiparticle formation in Ā(!̄) is multiplied by Ẽc in A(!) (i.e. in physical units) and the quasiparticle
residue of our model (i.e., the integral of A(!) within the “coherence region”) is Z ⇠ Ẽc

t̃0
= t̃0

U0
⌧ 1 which is characteristic of a

“bad” Fermi liquid.

B. Grand canonical potential in Fermi liquid theory, compressibility and Sommerfeld coe�cient

In Landau’s Fermi liquid theory, the energy is a functional of a series of “quasi-particle” states labeled by a, b, we have
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where na, n0
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denotes the occupation number of the quasiparticle state and superscript 0 denotes the occupation number of the
“reference” state one starts with to define "a, fab, and we take it here to be the state with µ = 0,i.e., hnaiµ=0 = n
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Ẽc =
t̃2

U

Coherence scale

2

t0 = 0, the U
2
0 term is invariant under ⌧! b⌧ and c! b

�1/4
c,

c̄ ! b
�1/4

c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t
2
0 ! bt

2
0, so two-fermion coupling is a relevant perturba-

tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t

2
0/U0. We expect the renormalization flow is to the

SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U
2
0 ! b

�1
U

2
0 is irrelevant. Since the SYK2

Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1

N

P
i cix⌧c̄ix⌧0 and a La-

grange multiplier ⌃x(⌧, ⌧0) enforcing the previous identity, one
obtains Z̄ =

R
[dG][d⌃]e�NS , with the action

S = �
X

x

ln det
⇥
(@⌧ � µ)�(⌧1 � ⌧2) + ⌃x(⌧1, ⌧2)

⇤
+

Z �

0
d⌧1d⌧2

⇣
�

X

x

2
66664
U

2
0

4
Gx(⌧1, ⌧2)2

Gx(⌧2, ⌧1)2 + ⌃x(⌧1, ⌧2)Gx(⌧2, ⌧1)
3
77775

+t
2
0

X

hxx0i

Gx0 (⌧1, ⌧2)Gx(⌧2, ⌧1)
⌘
. (3)

The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt

2
0G(⌧ � ⌧0) (z is the coordination

number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt
2
0G(i!n),

⌃4(⌧) = �U
2
0G(⌧)2

G(�⌧), (4)
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solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
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� ⌘ lim
T!0

C

T
=
S
0(0)
Ec

(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t

�1
0 , there is an “e↵ective mass

enhancement” of m
⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-

perature state is a heavy Fermi liquid.
To establish that the low temperature state is truly a strongly

renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|

T
. Be-

cause the compressibility has a smooth low temperature limit

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0, T ⌧ U0(z = 2). C ! S

0(0)T/Ec as
T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coe�cient
are both proportional to the single-particle density of states
(DOS), and in particular �/K = ⇡2/3 for free fermions. Here
we find �/K = (S0(0)/c)U0/Ec ⇠ (U0/t0)2

� 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via �"a =

P
b fab�nb, where

a, b label quasiparticle states. For a di↵usive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[32], is
that � is una↵ected by F but K is renormalized, leading to
�/K = ⇡

2

3 (1 + F). We see that F ⇠ (U0/t0)2
� 1, so that the

......

...
...

Rescaling

11

where z is the coordination number of the lattice under consideration and we have regularized the free energy by subtracting the
part for free fermion, i.e.,G0(i!n) = 1

i!n

, and adding back �T ln(1+e
µ/T ). One switches to Helmholtz free energy which depends

on “universal” particle number density N/N by a legendre transformation F = ⌦/N + µN/N, and obtain entropy density by
S/N = �@F@T . The entropy for SYK4 (i.e. vanishing t0) agrees with the results in Ref 5 and entropy (Fig 1) approaches identically
regardless of t0/U0 the universal ln 2 for high temperature (not shown in the figure). The entropy is significantly reduced for
small temperature by the presence of two-fermion hopping.

The compressibility is obtained as K = 1
N

@N
@µ or K = �1/( @

2F
@2 N

N

). The plot in Fig. 1 shows the results using the first derivative
method (which agrees with that found in Ref 1 as well as a large-q calculation (unpublished)).

VI. HEAVY FERMI LIQUID PHENOMENOLOGY

A. Quasi-particle residue and “Bad” Fermi liquid

The saddle point condition for imaginary-time Green’s function is (assuming zero chemical potential,t̃0 ⌘
p

zp
2
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⌧ 1, is an equation set with only dimensionless parameters. As we argued in the text, the low energy behavior is

in the realm of Fermi liquid theory. Then the spectral weight Ā(!̄) should contain a quasiparticle contribution, which because
it contains no parameters, must have a residue of O(1). From the scaling in (6.2), it follows that the width of the “coherence
region” attributed to quasiparticle formation in Ā(!̄) is multiplied by Ẽc in A(!) (i.e. in physical units) and the quasiparticle
residue of our model (i.e., the integral of A(!) within the “coherence region”) is Z ⇠ Ẽc
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B. Grand canonical potential in Fermi liquid theory, compressibility and Sommerfeld coe�cient
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denotes the occupation number of the quasiparticle state and superscript 0 denotes the occupation number of the
“reference” state one starts with to define "a, fab, and we take it here to be the state with µ = 0,i.e., hnaiµ=0 = n
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. In the second
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where z is the coordination number of the lattice under consideration and we have regularized the free energy by subtracting the
part for free fermion, i.e.,G0(i!n) = 1

i!n

, and adding back �T ln(1+e
µ/T ). One switches to Helmholtz free energy which depends

on “universal” particle number density N/N by a legendre transformation F = ⌦/N + µN/N, and obtain entropy density by
S/N = �@F@T . The entropy for SYK4 (i.e. vanishing t0) agrees with the results in Ref 5 and entropy (Fig 1) approaches identically
regardless of t0/U0 the universal ln 2 for high temperature (not shown in the figure). The entropy is significantly reduced for
small temperature by the presence of two-fermion hopping.

The compressibility is obtained as K = 1
N

@N
@µ or K = �1/( @

2F
@2 N

N

). The plot in Fig. 1 shows the results using the first derivative
method (which agrees with that found in Ref 1 as well as a large-q calculation (unpublished)).
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For t≪U, a single universal coherence scale appears
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Fermi liquid is extremely strongly interacting. Comparing to
the e↵ective mass, one has F ⇠ (m⇤/m)2.

Real time formulation- While imaginary time formula-
tion is adequate for thermodynamics, it encounters di�-
culties in addressing transport due to di�culty of analytic
continuation to zero real frequency in the presence of the
emergent low energy scale Ec. Instead we reformulate the
problem in real time using Keldysh path integral. The
Keldysh formalism calculates the partition function Z =

Tr[⇢U]
Tr[⇢]

with ⇢ = e
��(H�µN) and U the identity evolution operator

U = e
�i(H�µN)(t0�t f )

e
�i(H�µN)(t f�t0) describing evolving for-

ward from t0 ! t f (with Keldysh label +) and backward
(Keldysh label �) identically. Paralleling the imaginary-time
development, we introduce collective variables Gx,ss0 (t, t0) =
�i

N

P
i c

s

ixt
c̄

s
0

ixt0
and ⌃x,ss0 with s, s0 = ± labeling Keldysh con-

tour, and integrate out the fermionic fields to obtain Z̄ =R
[dG][d⌃]eiNS K [32], with the Keldysh action

iS K =
X

x

ln det[�z(i@t + µ)�(t � t
0) � ⌃x(t, t0)] �
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X

x
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+
X

hx0xi

t
2
0 ss
0
Gx,ss0 (t, t0)Gx0,s0 s(t0, t)

i
(6)

where ⌃x in the determinant is to be understood as the ma-
trix [⌃x,ss0 ] and �z acts in Keldysh space. We obtain the nu-
merical solution to the Green’s functions[32] by solving for
the saddle point of S K . We plot in Fig. 2 the spectral weight
A(!) ⌘ �1

⇡ Im GR(!) (GR is retarded Green function) at fixed
U0/T = 104 for Ec/T = 0, 0.09, 1, 9, which illustrates the
crossover between the SYK4 and Fermi liquid regimes. For
! � Ec, we observe the quantum critical form of the SYK4
model, which displays !/T scaling, evident in the figure from
the collapse onto a single curve at large !/T . At low fre-
quency, the SYK4 model has A(! ⌧ T ) ⇠ 1/

p
U0T , whose

divergence as T ! 0 is cut-o↵ when T . Ec. This is seen
in the reduction of the peak height in Fig. 2,

p
U0T A(! = 0),

with increasing Ec/T . On a larger frequency scale (inset), the
narrow “coherence peak”, associated with the small spectral
weight of heavy quasiparticles, is clearly visible.

We now turn to transport, and for simplicity focus on
particle-hole symmetric case hereafter. The strategy is to ob-
tain electrical and heat conductivities from the fluctuations of
charge and energy, respectively, using the Einstein relations.
We first consider charge, and study the low-energy U(1) phase
fluctuation '(x, t), which is the conjugate variable to particle
number density N(x, t), around the saddle point of the action
S K . Allowing for phase fluctuations around the saddle point
solution amounts to taking

Gx,ss0 (t, t0)! Gx,ss0 (t � t
0)e�i('s(x,t)�'s0 (x,t0))

⌃x,ss0 (t, t0)! ⌃x,ss0 (t � t
0)e�i('s(x,t)�'s0 (x,t0)), (7)

where Gx,ss0 (t � t
0) and ⌃x,ss0 (t � t

0) are the saddle point solu-
tions. Expanding (6) to quadratic order in 's, S K = S

sp

K
+ S ',

yields the lowest order e↵ective action for the U(1) fluctu-
ations. This is most conveniently expressed in terms of the
“classical” and “quantum” components of the phase fluctua-

tions, defined as 'c/q = ('+ ± '�)/2 and in Fourier space:

iS ' =
X

p

Z
t f

t0

dtdt
0
⇥
⇤1(t � t

0)@t'c,p(t)@t'q,�p(t0)

��(p)⇤2(t � t
0)'c,p(t)'q,�p(t0)

⇤
+ · · · . (8)

Here the first term arises from the ln det[·] and the second from
the hopping (t2

0) term in (6). The function �(p) encodes the
band structure for the two-fermion hopping term, dependent
on lattice details, and the ellipses represent O('2

q
) terms which

do not contribute to the density correlations (and are omitted
hereafter –see [32] for reasons). The coe�cients ⇤1(t) and
⇤2(t) are expressed in terms of saddle point Green’s functions
in [32]. We remark here that any further approximations, e.g.,
conformal invariance, are not assumed to arrive at action (8),
and hence this derivation applies in all regimes.

FIG. 2. The spectral weight A(!) at fixed U0/T = 104, µ = 0, z = 2
for Ec/T = 0, 0.09, 1, 9, corresponding a crossover from SYK4 limit
to the “heavy Fermi liquid” regime. Inset shows the comparison of
green’s function for T/Ec = 9 with free fermion limit result.

In the low frequency limit, the Fourier transforms of
⇤1(t),⇤2(t) behave as ⇤1(!) ⇡ �2iK and ⇤2(!) ⇡ 2KD'!,
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In the low frequency limit, the Fourier transforms of
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Narrow “coherence peak” appears in 
spectral function: heavy quasiparticles 

form for T≪Ec

! = Ec
Quasiparticle weight  Z ~ t/U

We solve these equations in a real time Keldysh formulation 
numerically and determine asymptotics analytically.
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Entropy
Level repulsion: entropy is released for T<Ec!

2

t0 = 0, the U
2
0 term is invariant under ⌧! b⌧ and c! b

�1/4
c,

c̄ ! b
�1/4

c̄, fixing the scaling dimension � = 1/4 of the
fermion fields. Under this scaling c̄@⌧c term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t
2
0 ! bt

2
0, so two-fermion coupling is a relevant perturba-

tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t

2
0/U0. We expect the renormalization flow is to the

SYK2 regime. Indeed keeping the SYK2 term invariant fixes

� = 1/2, and U
2
0 ! b

�1
U

2
0 is irrelevant. Since the SYK2

Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 ⌧ U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(⌧, ⌧0) = �1

N

P
i cix⌧c̄ix⌧0 and a La-

grange multiplier ⌃x(⌧, ⌧0) enforcing the previous identity, one
obtains Z̄ =

R
[dG][d⌃]e�NS , with the action

S = �
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x

ln det
⇥
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77775
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X

hxx0i

Gx0 (⌧1, ⌧2)Gx(⌧2, ⌧1)
⌘
. (3)

The large N limit is controlled by the saddle point conditions
�S/�G = �S/�⌃ = 0, satisfied by Gx(⌧, ⌧0) = G(⌧ � ⌧0),
⌃x(⌧, ⌧0) = ⌃4(⌧ � ⌧0) + zt

2
0G(⌧ � ⌧0) (z is the coordination

number of the lattice of SYK dots), which obey

G(i!n)�1 = i!n + µ � ⌃4(i!n) � zt
2
0G(i!n),

⌃4(⌧) = �U
2
0G(⌧)2

G(�⌧), (4)

where !n = (2n + 1)⇡/� is the Matsubara frequency. We
solve them numerically and re-insert into (3) to obtain the
free energy, hence the full thermodynamics[32]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (/ N) entropy[13] in the T ! 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec ⌧ U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T ! 1) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S0(T/Ec), and
hence the low-temperature Sommerfeld coe�cient

� ⌘ lim
T!0

C

T
=
S
0(0)
Ec

(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coe�cient in the weak interaction limit
t0 � U0, which is of order t

�1
0 , there is an “e↵ective mass

enhancement” of m
⇤/m ⇠ t0/Ec ⇠ U0/t0. Thus the low tem-

perature state is a heavy Fermi liquid.
To establish that the low temperature state is truly a strongly

renormalized Fermi liquid with large Fermi liquid parame-
ters, we compute the compressibility, NK = @N/@µ|

T
. Be-

cause the compressibility has a smooth low temperature limit

S(T � �)

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0, T ⌧ U0(z = 2). C ! S

0(0)T/Ec as
T/Ec ! 0. Solid curves are guides to the eyes.

in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 ⌧ U0, we indeed have K ⇡ K|t0=0 =
c/U0 with the constant c ⇡ 1.04 regardless of T/Ec. For
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Conductivity
From the Kubo formula, we have the conductivity

Re[�(!)] / t20

Z
d⌦

f(! + ⌦)� f(⌦)

!
A(⌦)A(! + ⌦)

where A(!) = Im[GR(!)].
At T > Ec this yields

� ⇠ e2

h

t20
U

1

T
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The density-density correlator is expressed as

DRn(x,t; x
0,t0) ⌘ i✓(t � t

0)h[N(x,t),N(x
0,t0)]i

=
i

2
hNc(x,t)Nq(x

0,t0)i, (10)

where Ns ⌘
N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See Sec.B). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[31], the action (9)
yields the di↵usive form [32]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p

2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD'

e
2

~ a
2�d(a is lattice spacing).

Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads (Sec. B)

iS ✏ =
X

p

Z +1

�1

d! ✏c,!(2i�!2
T

2
� p

2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in Sec. B,
behaves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy dif-
fusion constant D✏ . This identification is seen from the corre-
lator for energy density modes "c/q ⌘

iN�S ✏
�✏̇c/q

,

DR"(p,!) =
i

2
h"c"qip,! =

�NT
2�D✏ p2

i! � D✏ p
2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-

tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0, T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0, T ⌧ U0) =
1
N

R⇣( T

Ec

) ⇣ 2 {', "}, (14)

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (B2), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T
2, (15)

(a)

(b)

FIG. 3. (a): For t0, T ⌧ U0, ⇢'/" “collapse” to R'/"( T

Ec
)/N. (b): The

Lorentz ratio ⇢
T

reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where the temperature coe�cient of resistivity A⇣ =
R
00

⇣ (0)
2NE

2
c

is
large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[33, 34].
We find here A'

(N�)2 =
R
00
' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary lin-
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that the Lorenz number, characterizing the Wiedemann-Franz
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More generally, the scaling form (B2) implies that L is a uni-
versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.

Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
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restoring all units,� = NKD'
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Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1
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where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-

tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0, T ⌧ U0, they collapse to
universal functions of one variable,
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where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (B2), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T
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More generally, the scaling form (B2) implies that L is a uni-
versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.
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versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
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Infecting a Fermi liquid and making it SYK
Mobile electrons (c, green) interacting with SYK quantum 

dots (f, blue) with exchange interactions.
This yields the first model agreeing with 

magnetotransport in strange metals !
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Exactly solvable in the large N,M limits! 
• Low-T phase: c electrons form a Marginal Fermi-liquid (MFL), f electrons are local SYK models

Infecting a Fermi liquid and making it SYK



Infecting a Fermi liquid and making it SYK

Gc(⌧) = � Ccp
1 + e�4⇡Ec

✓
T

sin(⇡T ⌧)

◆1/2

e�2⇡EcT⌧ , G(⌧) = � Cp
1 + e�4⇡E

✓
T

sin(⇡T ⌧)

◆1/2

e�2⇡ET⌧ , 0  ⌧ < �.

Gc(⌧) = � Ccp
1 + e�4⇡Ec

✓
T

sin(⇡T ⌧)

◆1/2

e�2⇡EcT⌧ , G(⌧) = � Cp
1 + e�4⇡E

✓
T

sin(⇡T ⌧)

◆1/2

e�2⇡ET⌧ , 0  ⌧ < �.

• High-T phase: c electrons form an “incoherent 
metal” (IM), with local Green’s function, and no notion 
of momentum; f electrons remain local SYK models



• Low-T phase: c electrons form a Marginal Fermi-liquid 
(MFL), f electrons are local SYK models

⌃c(i!n) =
ig2⌫(0)T

2J cosh1/2(2⇡E)⇡3/2

✓
!n

T
ln

✓
2⇡Te�E�1

J

◆
+
!n

T
 
⇣ !n

2⇡T

⌘
+ ⇡

◆
,

⌃c(i!n) !
ig2⌫(0)

2J cosh1/2(2⇡E)⇡3/2
!n ln

✓
|!n|e�E�1

J

◆
, |!n| � T (⌫(0) ⇠ 1/t)

Infecting a Fermi liquid and making it SYK



Linear-in-T resistivity

Both the MFL and the IM are not translationally-invariant 
and have linear-in-T resistivities!

�IM
0 = (⇡1/2/8)⇥MT�1J ⇥

✓
⇤

⌫(0)g2

◆
cosh1/2(2⇡E)
cosh(2⇡Ec)

.

[Can be obtained straightforwardly from Kubo formula in the large-N,M limits]

The IM is also a “Bad metal” with �IM
0 ⌧ 1

�MFL
0 = 0.120251⇥MT�1J ⇥

✓
v2F
g2

◆
cosh1/2(2⇡E). (vF ⇠ t)



Magnetotransport: Marginal-Fermi liquid
• Thanks to large N,M, we can also exactly derive the linear-

response Boltzmann equation for non-quantizing magnetic fields…

�MFL
L

= M
v2
F
⌫(0)

16T

Z 1

�1

dE1

2⇡
sech2

✓
E1

2T

◆
�Im[⌃c

R
(E1)]

Im[⌃c

R
(E1)]2 + (vF /(2kF ))2B2

,

�MFL
H

= �M
v2
F
⌫(0)

16T

Z 1

�1

dE1

2⇡
sech2

✓
E1

2T

◆
(vF /(2kF ))B

Im[⌃c

R
(E1)]2 + (vF /(2kF ))2B2

.

�MFL
L

⇠ T�1sL((vF /kF )(B/T )), �MFL
H

⇠ �BT�2sH((vF /kF )(B/T )).

sL,H(x ! 1) / 1/x2, sL,H(x ! 0) / x0.

Scaling between magnetic field and temperature in orbital magnetotransport!

(1� @!Re[⌃
c
R(!)])@t�n(t, k,!) + vF k̂ ·E(t) n0

f (!) + vF (k̂ ⇥ Bẑ) ·rk�n(t, k,!) = 2�n(t, k,!)Im[⌃c
R(!)],

(B = eBa2/~) (i.e. flux per unit cell)



Macroscopic magnetotransport in the MFL
• Let us consider the MFL with additional macroscopic disorder (charge 

puddles etc.)

Figure: N. Ramakrishnan et. al., arXiv: 1703.05478

• No macroscopic momentum, so equations describing charge transport are 
just

r · I(x) = 0, I(x) = �(x) ·E(x), E(x) = �r�(x).

• Very weak thermoelectricity for large FS, so charge effectively decoupled from 
heat transport.



Physical picture

Exact numerical solution of charge-transport equations in a random-resistor 
network. (M. M. Parish and P. Littlewood, Nature 426, 162 (2003))

• Current path length increases 
linearly with B at large B due 
to local Hall effect, which 
causes the global resistance 
to increase linearly with B at 
large B.



Solvable toy model: two-component disorder
• Two types of domains a,b with different carrier 

densities and lifetimes randomly distributed in 
approximately equal fractions over sample. 

• Effective medium equations can be solved 
exactly
✓
I+ �a � �e

2�e
L

◆�1

· (�a � �e) +

✓
I+ �b � �e

2�e
L

◆�1

· (�b � �e) = 0.

⇢e
L
⌘ �e

L

�e2
L

+ �e2
H

=

q
(B/m)2

�
�a�MFL

0a � �b�MFL
0b

�2
+ �2

a
�2
b

�
�MFL
0a + �MFL

0b

�2

�a�b(�MFL
0a �MFL

0b )1/2
�
�MFL
0a + �MFL

0b

� ,

⇢e
H

⌘ � �e

H
/B

�e2
L

+ �e2
H

=
�a + �b

m�a�b
�
�MFL
0a + �MFL

0b

� .

�a,b ⇠ T (i.e. effective transport scattering rates)

(m = kF /vF ⇠ 1/t)

⇢eL ⇠
p
c1T 2 + c2B2

Scaling between B and T at microscopic orbital level has been transferred to global MR!



Scaling between B and T

~ 50 T (a = 3.82 A)

nb/na = 0.8

�b/�a = 0.8

�a = 0.1kBT

(B = 0.0025)

(T = t/100)

t/100 



Magnetotransport in strange metals

• Engineered a model of a Fermi surface coupled

to SYK quantum dots which leads to a marginal

Fermi liquid with a linear-in-T resistance, with

a magnetoresistance which scales as B ⇠ T .

• Macroscopic disorder then leads to linear-in-B
magnetoresistance, and a combined dependence

which scales as ⇠
p
B2 + T 2

• Higher temperatures lead to an incoherent metal

with a local Green’s function and a linear-in-T
resistance, but negligible magnetoresistance.



• This simple two-component model describes

a new state of matter which is realized by

electrons in the presence of strong interac-

tions and disorder.

• Can such a model be realized as a fixed-point

of a generic theory of strongly-interacting

electrons in the presence of disorder?

• Can we start from a single-band Hubbard

model with disorder, and end up with such

two-band fixed point, with emergent local

conservation laws?
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FIG. 2. Comparison of measured normalized susceptibilities

g/gc„, ;; (circles) of insulating Si:P and Si:P,B samples with
theoretical calculation (dashed lines) described in the text.

T(K)
F1G. 1. Temperature dependence of normalized susceptibili-

ty g/gp, „~; of three Si:P,B samples with diA'erent normalized
electron densities, n/n, =0.58, I. I, and 1.8. Solid lines through
data are a guide to the eye.

terms. The ground state is tested for stability against
one- and two-electron hops. The susceptibility is then
calculated in the manner of BL using the antiferromag-
netic spin- & Heisenberg exchange Hamiltonian:

H QJ(rj)S; S/,
In Fig. 1 we show the enhancement of the susceptiblity

g (relative to gp.„„~;=3npa/2kaTF) as a function of tem-
perature for all three compensated samples. These data
are qualitatively similar to the uncompensated Si:P data
[4], i.e., the susceptibility increases towards lower tem-
peratures approximately as a power law @~T '. As
shown in Fig. 2, this temperature dependence is observed
over our entire temperature range for insulating samples.
In this figure we have compared the normalized suscepti-
bilities g/gc„„, ec T' ' (gc«,„=npa/3kaT) of compen-
sated and uncompensated Si:P and find, using least-
squares fits, that the exponent a=0.75+ 0.05 for Si:P,B
is somewhat larger than the value of 0.62 ~0.03 for Si:P.
The dashed lines in Fig. 2 represent a quantitative
theoretical calculation of the susceptibility using no ad-
justable parameters as explained below.
The susceptibility of uncompensated Si:P for n &n,

was explained by Bhatt and Lee (BL) using a quantum
spin- —, random Heisenberg antiferromagnetic Hamiltoni-
an [23]. We have performed a similar computer calcula-
tion of the susceptibility of a model appropriate for a
compensated doped semiconductor deep in the insulating
phase. The model consists of distributing donor and ac-
ceptor sites at random in a 3D continuum. The negative-
ly charged acceptors provide a fixed random Coulomb po-
tential while the electrons are allowed to occupy the
donor sites with the lowest-self-consistent energies,
neglecting quantum-mechanical (hopping, exchange)

where the sum over i and j includes the electron occupied
donor sites. For the exchange constant we use the asymp-
totic hydrogenic result [24] J(r) =Jo(r/a) / exp( —2r/
a), where a 16 A (n, / a=0.25 for Si:P) and Jo=I40
K. The high-temperature curvature of the theoretical
lines in Fig. 2 is due to the asymptotic formula chosen for
J(r). This formula underestimates J at small r and these
are the values relevant at high temperatures. A theoreti-
cal estimate of the exponent a, obtained from the low-
temperature behavior of the dashed lines in Fig. 2, is
found to be slightly larger in the compensated case. This
is due to the rearrangement of the electron occupied
donor sites, which results for the compensated case in a
distribution differing from the Poisson distribution at
short distances. In summary, the theory with no adjust-
able parameters is in remarkable agreement with the ex-
perirnental results for the insulating phase.
The difference between Si:P and Si:P,B is more

dramatic on the metallic side of the MI transition —the
susceptibility enhancement is unexpectedly large in
Si:P,B at the lowest temperatures even for the very rnetal-
lic sample n/n, =1.8. As shown in Fig. 3, comparing Si:P
and Si:P,B samples with similar values of n/n, =1.1, th.e
compensated system shows a factor of 3 to 5 larger local
moment fraction than the uncompensated one for T & 0.1
K. This is in contrast to the theoretical results of Milo-
vanovic, Sachdev, and Bhatt [16) who find for the disor-
dered Hubbard model that the fraction of local moments

1419

• Electrons in doped silicon appear to sepa-
rate into two components: localized spin mo-
ments and itinerant electrons

M. J. Hirsch, D.F. Holcomb, R.N. Bhatt, 
and M.A. Paalanen, PRL 68, 1418 (1992)

M. Milovanovic, S. Sachdev and R.N. Bhatt, 
PRL 63, 82 (1989)

A.C. Potter, M. Barkeshli, J. McGreevy, 
T. Senthil, PRL 109, 077205 (2012)




