STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS

Classical spin liquids, emergent gauge fields and fractionalised excitations

John Chalker Physics Department, Oxford University

Outline

• Geometrically frustrated magnets

Experimental signatures of frustration

Classical models

Degeneracy of under-constrained ground states

Ground state selection: order from disorder

• Low temperature correlations

Mean field theory & large-n theory

Emergent fields & fractionalised excitations

In 2D — for triangular lattice Ising antiferromagnet

In 3D — for spin ice

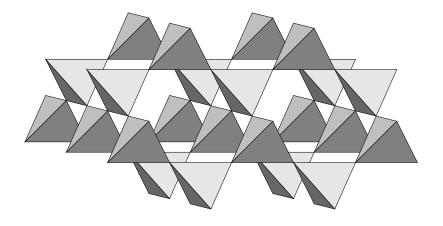
Correlations induced by ground state constraints

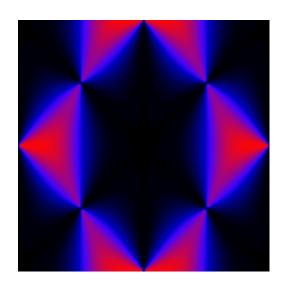
Local constraints

Long range correlations

 $\sum_{tet} \mathbf{S}_i = \mathbf{0}$

Sharp structure in $\left< S_{-q} \cdot S_{q} \right>$





Mean field theory?

Recall mean field approach:

Replace full Hamiltonian ${\cal H}$ by single-spin approximation ${\cal H}_0$

$$\mathcal{Z}^{-1}\mathrm{Tr}\left(e^{-\beta\mathcal{H}}\ldots\right)\equiv\langle\ldots\rangle \Rightarrow \mathcal{Z}_{0}^{-1}\mathrm{Tr}\left(e^{-\beta\mathcal{H}_{0}}\ldots\right)\equiv\langle\ldots\rangle_{0}$$

Variational free energy

$$F \leq \langle \mathcal{H} \rangle_0 - TS_0 = \sum_{ij} J_{ij} m_i m_j + ck_{\rm B}T \sum_i m_i^2 + \dots$$
$$\equiv \underline{m}^{\rm T} \cdot (\mathbb{J} + ck_{\rm B}T \,\mathbb{I}) \cdot \underline{m} + \dots$$

Mean field theory?

Recall mean field approach:

Variational free energy

$$F \leq \langle \mathcal{H} \rangle_0 - TS_0 = \underline{m}^{\mathrm{T}} \cdot (\mathbb{J} + ck_{\mathrm{B}}T\mathbb{I}) \cdot \underline{m} + \dots$$

Pick $\{m_i\}$ to minimise estimate for F

High T: $m_i = 0$ Low T: $m_i \neq 0$

Spectrum of \mathbb{J} fixes mean field T_c and ordering pattern

Mean field theory?

Recall mean field approach:

Variational free energy

$$F \leq \langle \mathcal{H} \rangle_0 - TS_0 = \underline{m}^{\mathrm{T}} \cdot (\mathbb{J} + ck_{\mathrm{B}}T \,\mathbb{I}) \cdot \underline{m} + \dots$$

Pick $\{m_i\}$ to minimise estimate for F

High T: $m_i = 0$ Low T: $m_i \neq 0$

Spectrum of $\mathbb J$ fixes mean field $T_c~$ and ordering pattern Geometric frustration

 \Rightarrow flat lowest band in $\mathbb{J} \Rightarrow$ ordering undetermined

Self-consistent Gaussian approximation (large-*n* limit)

Soften constraint on spin lengths:

Tr...
$$\equiv \prod_{i} \int d\vec{S}_{i} \,\delta(|\vec{S}_{i}| - 1) \dots \approx \prod_{i} \int d\vec{S}_{i} \,e^{-\frac{\lambda}{2}|\vec{S}_{i}|^{2}} \dots$$

— with λ chosen so that $\langle |\vec{S}_{i}|^{2} \rangle = 1$

Then

$$\langle \ldots \rangle = \mathcal{Z}^{-1} \int \mathrm{d} \{S_i\} \ldots e^{-\frac{1}{2}S^{\mathrm{T}}(\beta \mathbb{J} + \lambda \mathbb{I})S}$$

Self-consistent Gaussian approximation (large-n limit)

$$\langle \ldots \rangle = \mathcal{Z}^{-1} \int \mathrm{d} \{S_i\} \ldots e^{-\frac{1}{2}S^{\mathrm{T}}(\beta \mathbb{J} + \lambda \mathbb{I})S}$$

— with λ chosen so that $\langle |\vec{S_i}|^2 \rangle = 1$

So that

$$\langle S_i S_j \rangle = \left[(\beta \mathbb{J} + \lambda \mathbb{I})^{-1} \right]_{ij}$$

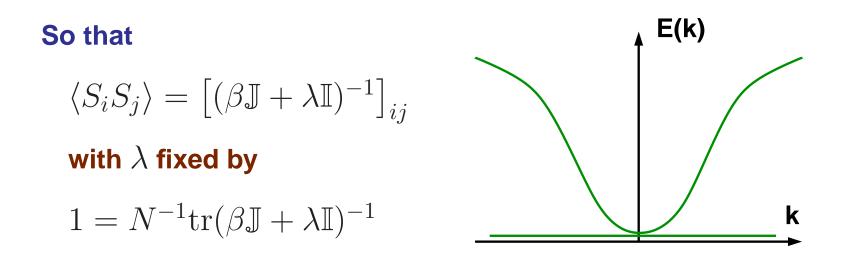
with λ fixed by

 $1 = N^{-1} \mathrm{tr}(\beta \mathbb{J} + \lambda \mathbb{I})^{-1}$

Self-consistent Gaussian approximation (large-n limit)

$$\langle \ldots \rangle = \mathcal{Z}^{-1} \int \mathrm{d} \{S_i\} \ldots e^{-\frac{1}{2}S^{\mathrm{T}}(\beta \mathbb{J} + \lambda \mathbb{I})S}$$

— with λ chosen so that $\langle |\vec{S}_i|^2 \rangle = 1$

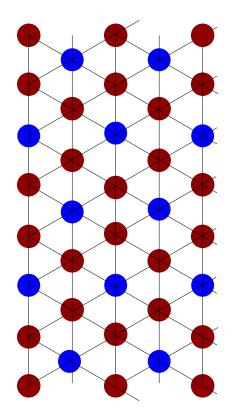


Low T: correlator is projector \mathbb{P} onto flat band $\langle S_i S_j \rangle \propto \mathbb{P}_{ij}$

Ground states of TLIAFM

Triangular lattice Ising antiferromagnet is disordered at ${\cal T}=0$

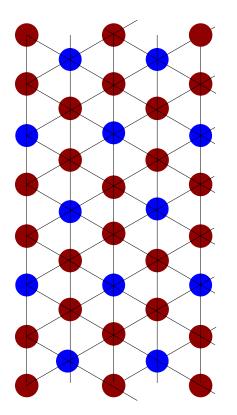
Six $\sqrt{3} \times \sqrt{3}$ ordered states



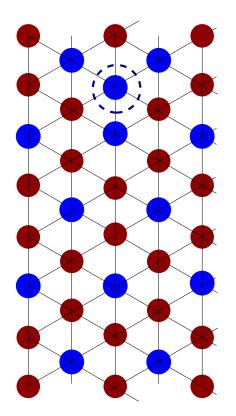
Ground states of TLIAFM

Triangular lattice Ising antiferromagnet is disordered at T=0

Six $\sqrt{3}\times\sqrt{3}$ ordered states



with defects at no energy cost

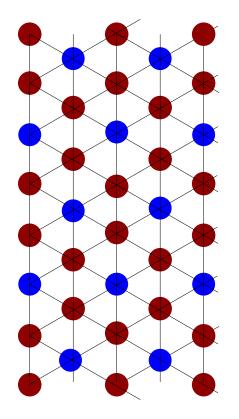


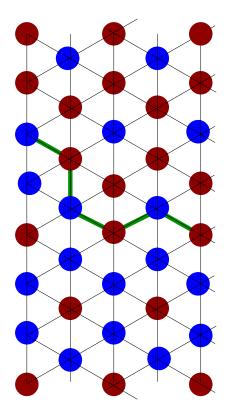
Ground states of TLIAFM

Triangular lattice Ising antiferromagnet is disordered at T=0

Six $\sqrt{3} \times \sqrt{3}$ ordered states

and domain walls at no energy cost





... but with entropy cost

TLIAFM & height model

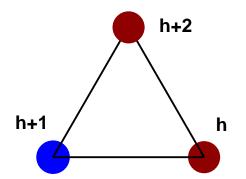
Blöte and Hilhorst (1982)

Height differences

- e.g. clockwise around up triangle
 - $\Delta h = -2$ parallel spins $\Delta h = +1$ opposite spins

Heights at triangle centres

 $h(\mathbf{r}) = \mathsf{integer} \ \mathsf{mod} \ \mathbf{6}$



 $h({f r})$ is flat in the six $\sqrt{3} imes\sqrt{3}$ states – has steps of ± 1 at domain walls

Ground state fluctuations: entropic weight

$$P[h(\mathbf{r})] \sim e^{-\mathcal{H}}$$
 with $\mathcal{H} = \frac{K}{2} \int \mathrm{d}^2 \mathbf{r} \, |\nabla h(\mathbf{r})|^2$

TLIAFM & height model

Spins in terms of heights

$$\sigma_{\mathbf{r}} \sim \cos[\pi h(\mathbf{r})/3 + \varphi_{\mathbf{r}}]$$

Spin correlations

$$\langle \sigma_{\mathbf{r}} \sigma_{\mathbf{r}'} \rangle \sim |\mathbf{r} - \mathbf{r}'|^{-1/2} \times \begin{cases} +1 & \text{same sublattice} \\ -1/2 & \text{different sublattices} \end{cases}$$

Discreteness of heights \Rightarrow **pinning potential**

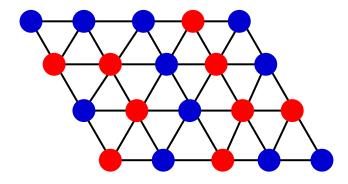
$$\mathcal{H} \Rightarrow \mathcal{H} - g \int \mathrm{d}^2 \mathbf{r} \, \cos 2\pi h(\mathbf{r})$$

— irrelevant under RG

Excitations in TLIAFM & height model

triangles with three spins parallel \equiv height field vortices

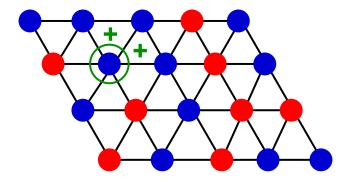
One spin flip creates vortex-antivortex pair



Height differences clockwise around up triangle

 $\Delta h = -2$ parallel spins $\Delta h = +1$ opposite spins

Height changes by ± 6 around down/up triangle with all spins parallel

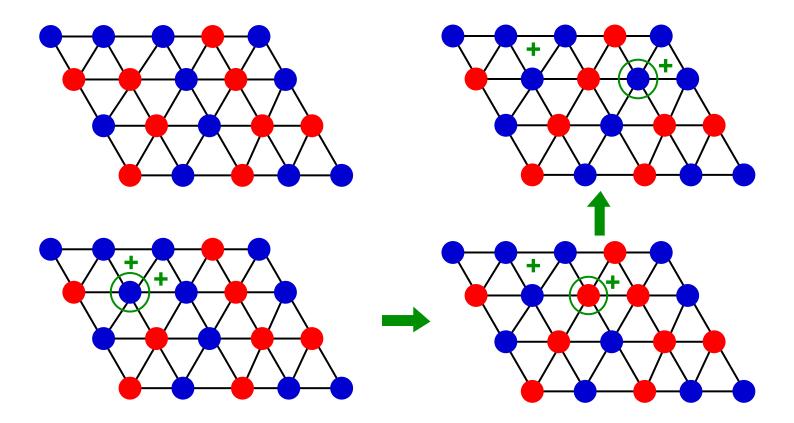


Excitations in TLIAFM & height model

triangles with three spins parallel \equiv height field vortices

One spin flip creates vortex-antivortex pair

Further spin flips separate vortex-antivortex pair



Interaction between vortex-antivortex pairs

$$P[h(\mathbf{r})] \sim e^{-\mathcal{H}}$$
 with $\mathcal{H} = \frac{K}{2} \int d^2 \mathbf{r} |\nabla h(\mathbf{r})|^2$

For isolated vortex at origin

$$|\nabla h(\mathbf{r})| = \frac{6}{2\pi r}$$

In system of size L

$$\int \mathrm{d}^2 \mathbf{r} \, |\nabla h(\mathbf{r})|^2 \propto \log(L)$$

Log interaction potential between vortices $V(R) \propto K \log R$ — but also entropy gain $2 \log R$

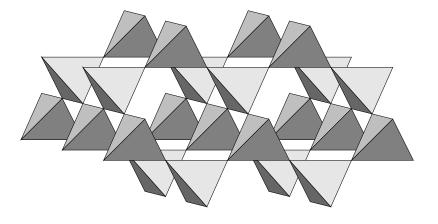
from separation

Unbound for small $K \Rightarrow$ Correlation length $\xi \sim \exp(4\beta J)$

Correlations and excitations in 3D

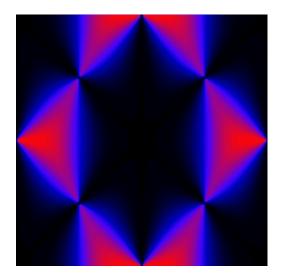
Local constraints

$\sum_{tet} \mathbf{S}_i = \mathbf{0}$



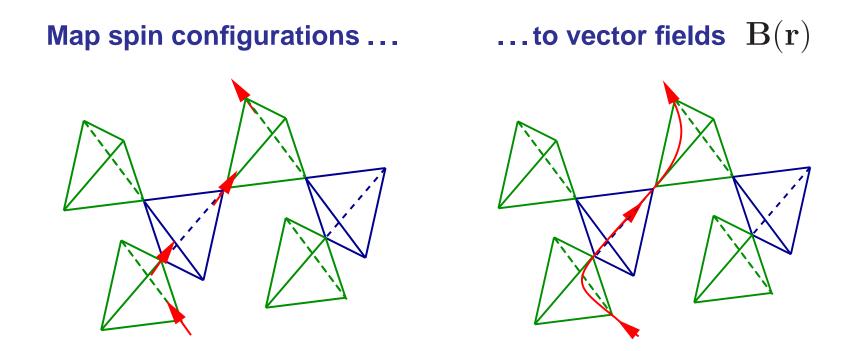
Long range correlations

Sharp structure in $\left\langle S_{-q}\cdot S_{q}\right\rangle$



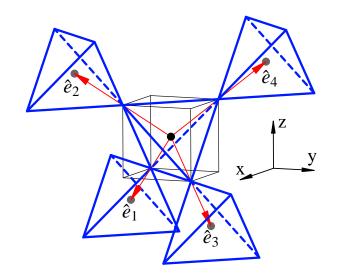
Gauge theory of ground state correlations

Youngblood et al (1980), Huse et al (2003), Henley (2004)



'two-in two out' groundstates \dots map to divergenceless $~{f B}({f r})$

Details of mapping



Construct vector fields \vec{B}^l from

each spin component S^l :

 $\vec{B}_i^l = \hat{e}_i S_i^l$

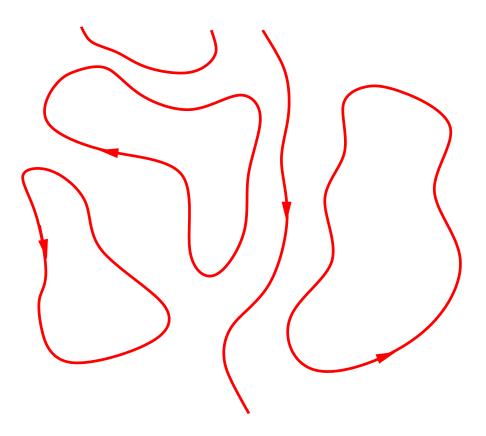
becomes flux conservation law:

Coarse-grained distribution:

$$\sum_{tet} S_i^l = 0 \to \nabla \cdot \vec{B}^l = 0$$
$$\vec{B}^l = \nabla \times \vec{A}^l$$

$$P(\vec{A}) \propto \exp(-\frac{\kappa}{2} \int [\nabla \times \vec{A}]^2)$$

Ground states as flux loops

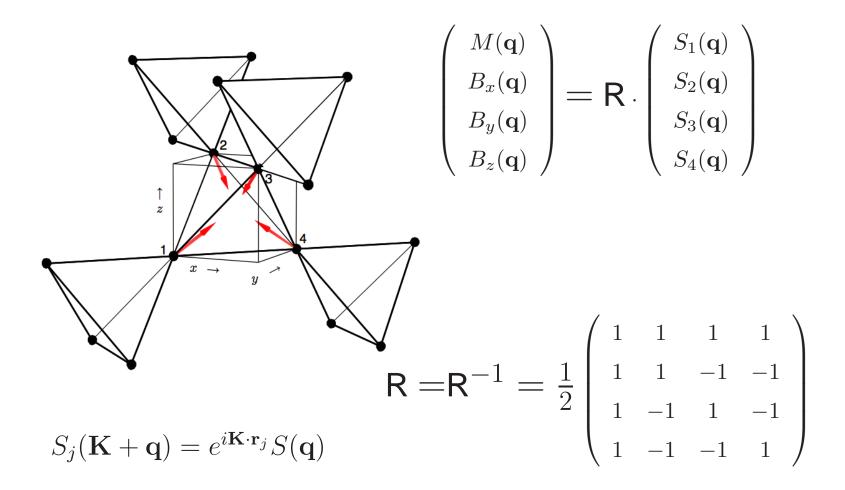


Entropic distribution: $P[\mathbf{B}(\mathbf{r})] \propto \exp(-\frac{\kappa}{2} \int \mathbf{B}^2(\mathbf{r}) d^3\mathbf{r})$

Power-law correlations:

$$\langle B_i(\mathbf{r})B_j(\mathbf{0})\rangle = \frac{3r_ir_j - r^2\delta ij}{4\pi\kappa r^5}$$

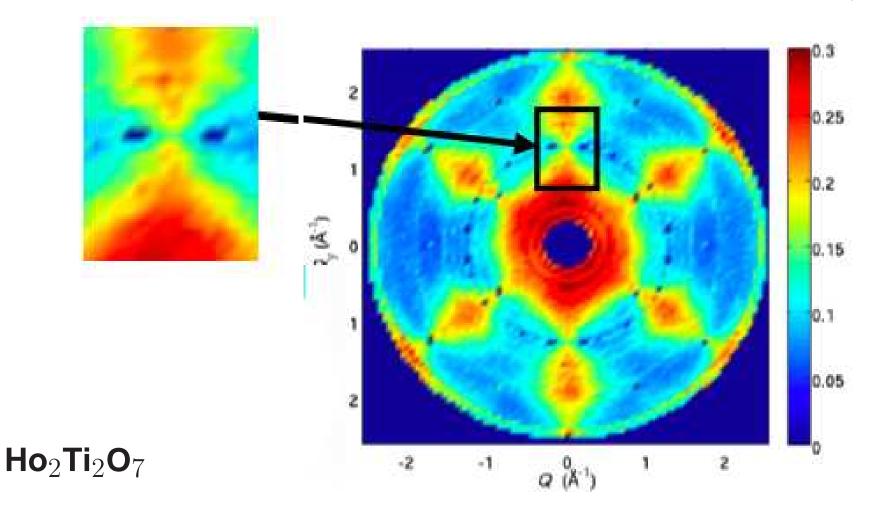
Translating between fluxes and spins



Small-q structure in $\vec{B}(\mathbf{q})$ appears near Bragg points \mathbf{K} with $\mathbf{K} \neq 0$

Low T correlations from neutron diffraction

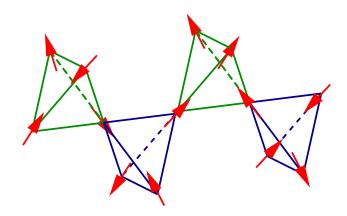
Fennell, Bramwell and collaborators (2009)



Monopoles in spin ice

Monopole excitations

Ground state



Castelnovo, Moessner and Sondhi (2008)

Excited states

Interactions between monopoles

Interactions from two origins:

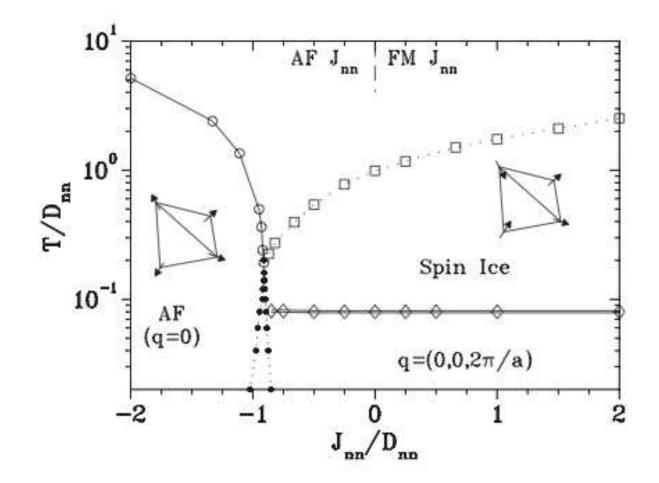
• Influence of monopoles on entropy of spin ice ground states

$$\begin{split} P[\mathbf{B}(\mathbf{r})] \propto \exp(-\tfrac{\kappa}{2}\int \mathbf{B}^2(\mathbf{r})\mathrm{d}^3\mathbf{r}) \\ &-\text{implies} \quad \beta V(R) \propto R^{-1} \end{split}$$

• Effects of further neighbour (dipolar) spin interactions

- lifts ground state degeneracy of nearest-neighbour model

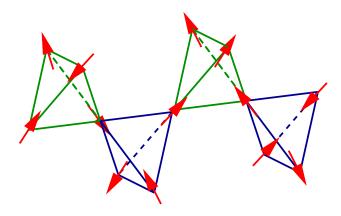
Effect of dipolar interactions on equilibrium behaviour in spin ice



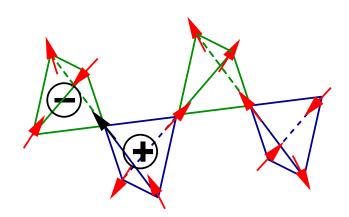
Melko and Gingras (2004).

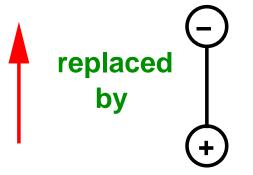
Coulomb potential between monopoles from dipolar spin interactions

View spins as extended dipoles



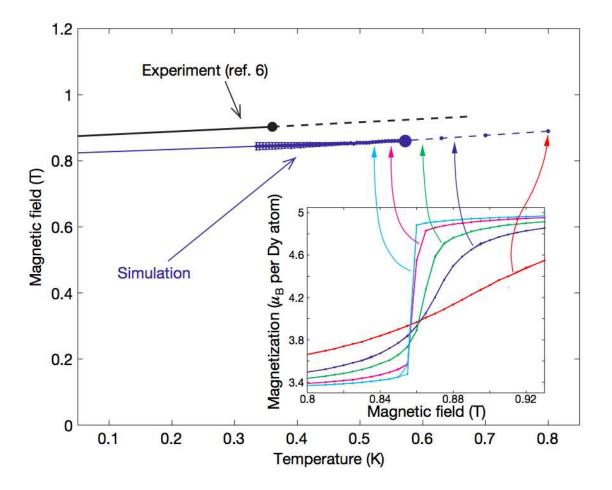
zero net charge





Probing interactions between monopoles

Use [111] magnetic field to control monopole density — observe monopole 'liquid-gas' transition



Castelnovo, Moessner and Sondhi, Nature 451, 42 (2008).

Summary

Geometric frustration

leads to macroscopic classical ground state degeneracy possibility of order-by-disorder . . . but long-range order avoided

At low T: strong correlations + large fluctuations emergent degrees of freedom within ground-state manifold stable power-law correlations fractionalised excitations Coulomb interactions from dipolar coupling