Topological Quantum Computing

Nick Bonesteel

Florida State University

NHMFL 2014 Winter School, Jan. 8, 2014

The iStone

The iStone: 1 bit

The iStone 5: ~ 20 bits

Modern Digital Memory

The iPhone 5: ~ 5.5 x 10¹¹ bits

Modern Digital Memory

The iPod: ~ 1.4×10^{12} bits

Modern Digital Memory

http://en.wikipedia.org/wiki/Hard_disk_drive

Magnetic Order

Magnetic Order

Magnetic Order

н

н

н

н

н

н

н

Is it a 0 or a 1?

Is it a 0 or a 1?

Is it a |0> or a |1>?

Is it a $|0\rangle$ or a $|1\rangle$?

Is it a |0> or a |1>?

																					_			-							-	-		-	_	-	-			
6	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	-		•	•	•	•	•	•	•	•	•	•			•		•	•		
																					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		·																																						
																								-							-	-					-			
•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•									•											
							-														•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		·																																						
																															-	_		-	-	_	-			
	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
						-				-	-			-							•					•	•				•	•	•	•	•	•	•	•	•	
•		,																																						
•	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	P
					-	-		-	-																															
				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•																				Ľ
																																								1
•	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Þ
•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•																				
																					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
Ĩ				Ť	Ť	Ť	- T	- T	Ť	Ŭ		Ť	- T		Ť			Ť		Ť																				
																					-			-			-			-				-		-				
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•																				
Ľ			Ť.,																								Ť													I
P	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	P
1																																								
-1			Ť.,				Ť														Ť	Ť				- T	Ť	Ť	Ť											1
1																																								
1	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
											-			-		-	-		-																					
ľ																																								
Þ	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				-	-	-		-	-		-	_	_	-	_	-	-	-		_	-	-				-	-		-			-		-		-				
ľ			•	•	•	•	•	•	•	•	•			•							•	•	•		•	•			•	•										1
																																								1
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
																																		~	-					
•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•		•		
•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
																																								
-			•	•	•	•	•	•	•	•	•	•	•			•	-	-					-			-				•	•	•	•	•	•	•	•	•		•
		_																																						

Topological Order (Wen & Niu, PRB 41, 9377 (1990))

Conventionally Ordered States: Multiple "broken symmetry" ground states characterized by a locally observable order parameter.

Nature's classical error correction

Topologically Ordered States: Multiple ground states on topologically nontrivial surfaces with no locally observable order parameter.

Nature's quantum error correction

Topological Order: Excitations

Breaking a bond creates an excitation with $S_z = 1$

Breaking a bond creates an excitation with $S_z = 1$

Breaking a bond creates an excitation with $S_z = 1$

Fractionalization

 $S_z = 1$ excitation *fractionalizes* into two $S_z = \frac{1}{2}$ excitations

Fractional Quantum Hall States

A two dimensional gas of electrons in a strong magnetic field **B**.

Fractional Quantum Hall States

An **incompressible quantum liquid** can form when the Landau level filling fraction $v = n_{elec}(hc/eB)$ is a rational fraction.

Charge Fractionalization

When an electron is added to a FQH state it can be **fractionalized** ---- i.e., it can break apart into **fractionally charged quasiparticles.**

Charge Fractionalization

When an electron is added to a FQH state it can be fractionalized --- i.e., it can break apart into fractionally charged quasiparticles.

Topological Degeneracy

As in our spin-liquid example, FQH states on **topologically nontrivial surfaces** have degenerate ground states which **can only be distinguished by global measurements**.

"Non-Abelian" FQH States (Moore & Read '91)

Essential features:

A degenerate Hilbert space whose dimensionality is **exponentially large in the number of quasiparticles**.

States in this space **can only be distinguished by global measurements** provided quasiparticles are far apart.

A perfect place to hide quantum information!

Exchanging Particles in 2+1 Dimensions

Particle "world-lines" form braids in 2+1 (=3) dimensions

Exchanging Particles in 2+1 Dimensions

Particle "world-lines" form braids in 2+1 (=3) dimensions

Many Non-Abelian Anyons

Many Non-Abelian Anyons

Matrix depends only on the topology of the braid swept out by anyon world lines! Robust quantum computation?

Possible Non-Abelian FQH States

J.S. Xia et al., PRL (2004).

v = 5/2: Probable Moore-Read Pfaffian state.

Charge *e*/4 quasiparticles are **Majorana fermions**. Moore & Read '91

v = 12/5: Possible Read-Rezayi "Parafermion" state. Read & Rezayi, '99

Charge *e*/5 quasiparticles are **Fibonacci anyons.** Slingerland & Bais '01

Universal for Quantum Computation! Freedman, Larsen & Wang '02

 \bigcap

2 dimensional Hilbert space

Quantum states are protected from environment if particles are kept far apart

Need to measure all the way around both particles to determine what state they are in

3 dimensional Hilbert space

3 dimensional Hilbert space

b can be 0 or 1

The F Matrix

The F Matrix

 $F = \begin{pmatrix} F_{00} & F_{01} \\ F_{10} & F_{11} \end{pmatrix}$

The Pentagon Equation

Unique unitary solution (up to irrelevant phase factors):

$$F = \begin{pmatrix} \varphi^{-1} & \varphi^{-1/2} \\ \varphi^{-1/2} & -\varphi^{-1} \end{pmatrix} \qquad \qquad \varphi = \frac{\sqrt{5}+1}{2} \approx 1.618 \cdots$$

Golden Mean

Hilbert Space Dimensionality

Hilbert Space Dimensionality

Hilbert Space Dimensionality States are paths in "charge" the fusion diagram N

Hilbert Space Dimensionality "charge" Here's another one Ν

Hilbert Space Dimensionality

Hilbert space dimensionality grows as the Fibonacci sequence!

 Exponentially large in the number of quasiparticles (deg ~ φ^N), so big enough for quantum computing.

Problem 1. Pentagon Equation for Fibonacci Anyons.

For Fibonacci anyons the 2×2 F matrix,

$$F = \left(\begin{array}{cc} F_{00} & F_{01} \\ F_{10} & F_{11} \end{array}\right),$$

describes the following basis change,

$$\textcircled{O}_{a} \textcircled{O}_{1} = \sum_{b} F_{ab} \textcircled{O}_{b}$$

The **pentagon equation** then equates the results of two distinct ways of using the F matrix to express a four anyon state from the basis,

as a superposition of states from the basis,

For each of the seven pentagon diagrams that follow, use the fact that the two paths (top and bottom) should yield the same amplitude for the contribution of the rightmost state in the expansion of the leftmost state to derive seven polynomial equations for F_{00} , F_{11} and the product $F_{01}F_{10}$.

Now solve these equations. You should find two solutions, only one of which yields a unitary F matrix if you take $F_{01} = F_{10} = \sqrt{F_{01}F_{10}}$. Find this 2×2 unitary F matrix.

You may find it convenient to express your answer in terms of $\tau = (\sqrt{5} - 1)/2 \simeq 0.62$, where τ is the inverse of the golden mean $\phi = (\sqrt{5} + 1)/2 \simeq 1.62$.

Problem 2. Hexagon Equation for Fibonacci Anyons.

For Fibonacci anyons the $2 \times 2 R$ matrix,

$$R = \left(\begin{array}{cc} R_0 & 0\\ 0 & R_1 \end{array}\right),$$

describes the phase factor acquired when anyons with a given total topological charge are exchanged in a clockwise manner,

$$\bigcirc \ \ \bullet \ \ a = R_a$$

The **hexagon equation** then describes two different ways to use the F and R matrices to compute the effect of moving two anyons around a third.

For each of the four hexagon diagrams that follow, use the fact that the two paths (top and bottom) should yield the same amplitude for the contribution of the rightmost state to the expansion of the state obtained by carrying out the anyon exchanges on the leftmost state to derive four polynomial equations for R_0 and R_1 . (In this calculation you should use the unitary F matrix obtained in Problem 1).

Again you should find two solutions, this time corresponding to the two possible choices for the 'handedness' of the anyons.

The following identities might be useful in simplifying your results for R_0 and R_1 ,

$$\sin\left(\frac{3\pi}{5}\right) = \frac{\sqrt{10 - 2\sqrt{5}}}{4}, \quad \cos\left(\frac{3\pi}{5}\right) = \frac{1 - \sqrt{5}}{4}.$$

