Entanglement Entropy, Maxwell's Demon and Quantum Error Correction

Experiment

 Michel Devoret Luigi Frunzio Rob SchoelkopfAndrei Petrenko Nissim Ofek
Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian Vlastakis +.....
 QuantumInstitute.yale.edu

Theory SMG Liang Jiang Leonid Glazman M. Mirrahimi **

Shruti Puri
Yaxing Zhang
Victor Albert** Kjungjoo Noh** Richard Brierley Claudia De Grandi Zaki Leghtas Juha Salmilehto Matti Silveri Uri Vool Huaixui Zheng Marios Michael +.....

Quick Review of the Basics of Quantum Information

Quantum bits ('qubits')

Quantum information is stored in the physical states of a quantum system:

- atoms, molecules, ions, superconducting circuits, photons, mechanical oscillators, ...

Quantum Information is Paradoxical

Is quantum information carried by waves or by particles?

YES!

Is quantum information analog or digital?

YES!

Quantum information is digital:

Energy levels of a quantum system are discrete.
We use only the lowest two.

ENERGY

Measurement of the state of a qubit yields 1 classical bit of information.

Stern-Gerlach surprise.

excited state $1=|e\rangle=|\uparrow\rangle$
ground state $0=|g\rangle=|\downarrow\rangle$

Quantum information is analog:

A quantum system with two distinct states can exist in an Infinite number of physical states ('superpositions') intermediate between $|\downarrow\rangle$ and $|\uparrow\rangle$.
(Requires infinite number of classical bits to specify)

$$
|\psi\rangle=\cos \left(\frac{\theta}{2}\right)|\downarrow\rangle+e^{i \varphi} \sin \left(\frac{\theta}{2}\right)|\uparrow\rangle
$$

Quantum information is analog/ digital:

$$
\begin{aligned}
& \stackrel{\stackrel{\mathrm{r}}{S}=\frac{\mathrm{h}}{2}(X, Y, Z)}{\text { Lie Algebra: }} \\
& {[X, Y]=2 i Z}
\end{aligned}
$$

State defined by ‘spin polarization vector' on Bloch sphere.

Every two-level system is equivalent to a spin $1 / 2$.

ENERGY

$$
\begin{aligned}
& X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& Y=\left(\begin{array}{cc}
0 & -i \\
+i & 0
\end{array}\right) \\
& Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Quantum information is analog/ digital:

Equivalently: a quantum bit is like a classical bit except there are an infinite number of encodings (aka 'quantization axes').

Alice

Bob

If Alice gives Bob a $Z=+1$, Bob measures:

$$
\begin{aligned}
& Z^{\prime}=+1 \text { with probability } P_{+}=\cos ^{2} \frac{\theta}{2} \\
& Z^{\prime}=-1 \text { with probability } P_{-}=\sin ^{2} \frac{\theta}{2}
\end{aligned}
$$

'Back action' of Bob's measurement changes the state, but this is invisible to Bob.

The huge information content of quantum superpositions comes with a price:

Great sensitivity to noise perturbations and dissipation.

The quantum phase of superposition states is well-defined only for a finite 'coherence time' T_{2}

Example: qubit transition frequency noise

$$
\begin{aligned}
& H(t)=\frac{\omega_{0}+\delta \omega(t)}{2} \sigma_{z} ; \quad|\psi(t)\rangle=e^{+i\left[\omega_{0} t+\varphi(t)\right] / 2} \alpha|\downarrow\rangle+e^{-i\left[\omega_{0} t+\varphi(t)\right] / 2} \beta|\uparrow\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{T_{2}}=\frac{1}{2 T_{1}}+\frac{1}{T_{\varphi}}
\end{aligned}
$$

Defeating noise through clever engineering and qubit design.

Exponential Growth in SC Qubit Coherence

R. Schoelkopf and M. Devoret

Oliver \& Welander, MRS Bulletin (2013)

Girvin's Law:

There is no such thing as too much coherence.

We need quantum error correction!

The

Quantum Error Correction

Problem

I am going to give you an unknown quantum state.

If you measure it, it will change randomly due to state collapse ('back action').

If it develops an error, please fix it.

Mirable dictu: It can be done!

Quantum Error Correction for an unknown state requires storing the quantum information non-locally in (nonclassical) correlations (entanglement) over multiple physical qubits.
'Logical' qubit

Non-locality: No single physical qubit can "know" the state of the logical qubit.

Quantum Error Correction

'Logical' qubit
Cold bath

N qubits have errors N times faster. Maxwell demon must overcome this factor of N - and not introduce errors of its own! (or at least not uncorrectable errors)

Quantum Error Correction

'Logical' qubit
Cold bath

QEC is an emergent collective phenomenon: adding $\mathrm{N}-1$ worse qubits to the 1 best qubit gives an improvement!

Let's start with classical error heralding

Classical duplication code: $\quad 0 \rightarrow 00 \quad 1 \rightarrow 11$
Herald error if bits do not match.

In	Out	\# of Errors	Probability	Herald?
00	00	0	$(1-p)^{2}$	Yes
00	01	1	$(1-p) p$	Yes
00	10	1	$(1-p) p$	Yes
00	11	2	p^{2}	Fail

And similarly for 11 input.

Using duplicate bits:
-lowers channel bandwidth by factor of 2
(bad)
-lowers the fidelity from $(1-p)$ to $(1-p)^{2}$
(bad)
-improves unheralded error rate from p to $p^{2} \quad$ (good)

In	Out	\# of Errors	Probability	Herald?
00	00	0	$(1-p)^{2}$	Yes
00	01	1	$(1-p) p$	Yes
00	10	1	$(1-p) p$	Yes
00	11	2	p^{2}	Fail

And similarly for 11 input.

Quantum Duplication Code

No cloning prevents duplication

Proof of no-cloning theorem:
α and β are unknown; Hence U cannot depend on them.
No such unitary can exist if QM is linear.
Q.E.D.

Don't clone - entangle!

Quantum circuit notation:

Heralding Quantum Errors

$$
Z_{1}, Z_{2}= \pm 1
$$

Measure the Joint Parity operator:

$$
\Pi_{12}=Z_{1} Z_{2}
$$

$$
\begin{aligned}
& \Pi_{12}|\uparrow\rangle|\uparrow\rangle=+|\uparrow\rangle|\uparrow\rangle \\
& \Pi_{12}|\downarrow\rangle|\downarrow\rangle=+|\downarrow\rangle|\downarrow\rangle \\
& \Pi_{12}|\uparrow\rangle|\downarrow\rangle=-|\uparrow\rangle|\downarrow\rangle \\
& \Pi_{12}|\downarrow\rangle|\uparrow\rangle=-|\downarrow\rangle|\uparrow\rangle
\end{aligned}
$$

$$
\Pi_{12}(\alpha|\downarrow\rangle|\downarrow\rangle+\beta|\uparrow\rangle|\uparrow\rangle)=+(\alpha|\downarrow\rangle|\downarrow\rangle+\beta|\uparrow\rangle|\uparrow\rangle)
$$

$\Pi_{12}=-1$ heralds single bit flip errors

Heralding Quantum Errors

$$
\Pi_{12}=Z_{1} Z_{2}
$$

Not easy to measure a joint operator while not accidentally measuring individual operators!
(Typical 'natural' coupling is $M_{Z}=Z_{1}+Z_{2}$)
$|\uparrow\rangle|\uparrow\rangle$ and $|\downarrow\rangle|\downarrow\rangle$ are very different, yet we must make that difference invisible

But it can be done if you know the right experimentalists...

Heralding Quantum Errors

Example of error heralding:
$|\Psi\rangle=\alpha|\downarrow\rangle|\downarrow\rangle+\beta|\uparrow\rangle|\uparrow\rangle$
Introduce single qubit rotation error on 1 (say)
$\mathrm{e}^{i \frac{\theta}{2} X_{1}}|\Psi\rangle=\cos \frac{\theta}{2}|\Psi\rangle+i \sin \frac{\theta}{2} X_{1}|\Psi\rangle \begin{aligned} & \text { Coherent superposition of } \\ & \text { no error and bit-fip error) }\end{aligned}$
Relative weight of α, β is untouched.
Probability of error: $\sin ^{2} \frac{\theta}{2}$
If no error is heralded, state collapses to $|\Psi\rangle$ and there is no error!

Heralding Quantum Errors

Example of error heralding:
$|\Psi\rangle=\alpha|\downarrow\rangle|\downarrow\rangle+\beta|\uparrow\rangle|\uparrow\rangle$
Introduce single qubit rotation error on 1 (say)
$\mathrm{e}^{i \frac{\theta}{2} X_{1}}|\Psi\rangle=\cos \frac{\theta}{2}|\Psi\rangle+i \sin \frac{\theta}{2} X_{1}|\Psi\rangle \begin{aligned} & \text { Coherent superposition of } \\ & \text { no error and bit-fip error) }\end{aligned}$
Relative weight of α, β is untouched.
Probability of error: $\sin ^{2} \frac{\theta}{2}$
If error is heralded, state collapses to $\mathrm{X}_{1}|\Psi\rangle$
and there is a full bitflip error. We cannot correct it
because we don't know which qubit flipped.

Heralding Quantum Errors

Quantum errors are continuous (analog!).
But the detector result is discrete.

The measurement back action renders the error discrete (digital!)

- either no error or full bit flip.

Correcting Quantum Errors

Extension to 3-qubit code allows full correction of bit flip errors (only)

$$
\begin{aligned}
& |\Psi\rangle=\alpha|\downarrow\rangle|\downarrow\rangle|\downarrow\rangle+\beta|\uparrow\rangle|\uparrow\rangle|\uparrow\rangle \\
& \Pi_{12}=Z_{1} Z_{2} \text { and } \Pi_{32}=Z_{3} Z_{2}
\end{aligned}
$$

Provide two classical bits of information to diagnose and correct all 4 possible bitflip errors:

$$
I, X_{1}, X_{2}, X_{3}
$$

Correcting Quantum Errors

Extension to 5,7 ,or 9 -qubit code allows full correction of ALL single qubit errors
I (no error)
$\mathrm{X}_{1}, \ldots, X_{N}$ (single bit flip)
Z_{1}, \ldots, Z_{N} (single phase flip; no classical analog)
Y_{1}, \ldots, Y_{N} (single bit AND phase flip; no classical analog)
For $N=5$, there are 16 errors and 32 states
$32=16 \times 2$
Just enough room to encode which error occurred and still have one qubit left to hold the quantum information.

Now for the Mathematical Details...

There are only two possible errors for a classical channel:

$$
\begin{array}{ll}
1 \rightarrow 0 & \text { with probability } p_{10} \\
0 \rightarrow 1 & \text { with probability } p_{01}
\end{array}
$$

$$
\begin{aligned}
& p_{11}+p_{10}=1 \\
& p_{00}+p_{01}=1
\end{aligned}
$$

Most general unitary for a

$$
U=\exp \left\{i \frac{\theta}{2} \hat{n} \cdot \stackrel{\mathrm{r}}{\sigma}\right\}=\cos \frac{\theta}{2} \hat{I}+i \sin \frac{\theta}{2}\left[n_{x} \sigma_{x}+n_{y} \sigma_{y}+n_{z} \sigma_{z}\right]
$$ single qubit:

Coherent superposition of 4 possible errors:

identity

Random unitaries:

$$
\rho_{\text {out }}=\sum_{j=1}^{N} p_{j} U_{j}\left|\Psi_{\text {in }}\right\rangle\left\langle\Psi_{\text {in }}\right| U_{j}^{\dagger}
$$

$$
\operatorname{Tr} \rho_{\text {out }}=\sum_{j=1}^{N} p_{j}=1
$$

More generally: $\quad \rho_{\text {out }}=\sum_{j=1}^{N} p_{j} U_{j} \rho_{\text {in }} U_{j}^{\dagger}$

$\underset{\text { unitaries: }}{\text { Random }} \rho_{\text {out }}=\sum_{j=1}^{N} p_{j} U_{j} \rho_{\text {in }} U_{j}^{\dagger}$
Example: depolarizing channel

$$
\begin{array}{ll}
U_{1}=I, & p_{1}=1-3 \dot{U} / 4, \\
U_{2}=\sigma_{x}, & p_{2}=\dot{U} / 4 \\
U_{3}=\sigma_{y}, & p_{3}=\dot{U} / 4 \\
U_{4}=\sigma_{z}, & p_{4}=\dot{U} / 4
\end{array}
$$

$\operatorname{Tr}\left\{\rho_{\text {out }} \ln \rho_{\text {out }}\right\} \geq \operatorname{Tr}\left\{\rho_{\text {in }} \ln \rho_{\text {in }}\right\}$

Homework exercise:

$\underset{\text { unitaries: }}{\text { Random }} \rho_{\text {out }}=\sum_{j=1}^{N} p_{j} U_{j} \rho_{\text {in }} U_{j}^{\dagger}$
$\operatorname{Tr}\left\{\rho_{\text {out }} \ln \rho_{\text {out }}\right\} \geq \operatorname{Tr}\left\{\rho_{\text {in }} \ln \rho_{\text {in }}\right\}$
N.B. Random unitaries are not the most general possible quantum channel. (They are always unital, mapping $/$ to I.)

Most general possible quantum channel:

$$
\rho_{\mathrm{env}}=\left|e_{0}\right\rangle\left\langle e_{0}\right|
$$

$$
\begin{aligned}
& \rho_{\mathrm{sys}} \longrightarrow \quad U \\
& \rangle\left\langle e_{0}\right| \longrightarrow \rho_{\mathrm{sys}}^{\prime} \\
& \hline
\end{aligned}
$$

Drain

$$
\rho_{\mathrm{sys}}^{\prime}=\operatorname{Tr}_{\mathrm{env}}\left\{U\left[\rho_{\mathrm{sys}} \otimes \rho_{\mathrm{env}}\right] U^{\dagger}\right\}=\sum_{k=1}^{d^{2}} E_{k} \rho_{\mathrm{sys}} E_{k}^{\dagger}
$$

$$
\sum_{k=1}^{d^{2}} E_{k}^{\dagger} E_{k}=I
$$

$d=\operatorname{dim}$ sys Hilbert space
Kraus operators E_{k} need not be unitary
$\mathrm{E}_{k}=\left\langle e_{k}\right| U\left|e_{0}\right\rangle$ is an operator on the system space
dim env Hilbert space need only be* d^{2}
*See however: Phys. Rev. B 95, 134501 (2017) where we prove that repeated unitaries and measurements of a single $d=2$ ancilla can synthesize any quantum channel

Most general possible quantum channel:

$$
\rho_{\text {env }}=\left|e_{0}\right\rangle\left\langle e_{0}\right|
$$

$$
\begin{aligned}
& \rho_{\text {sys }}^{\prime}=\sum_{k=1}^{d^{2}} E_{k} \rho_{\text {sys }} E_{k}^{\dagger} \\
& \sum_{k=1}^{d^{2}} E_{k}^{\dagger} E_{k}=I
\end{aligned}
$$

CPTP:

completely positive, trace-preserving map

Kraus representation $E_{k} \rightarrow K_{k}=S_{k m} E_{m}$ is not unique:
is equivalent for any unitary mapping S among the errors

Most general possible quantum channel:

$$
\rho_{\text {env }}=\left|e_{0}\right\rangle\left\langle e_{0}\right|
$$

$$
\begin{aligned}
& \rho_{\mathrm{env}}=1 \\
& \rho_{\mathrm{sys}}^{\prime}=\sum_{k=1}^{d^{2}} E_{k} \rho_{\mathrm{sys}} E_{k}^{\dagger} \\
& \sum_{k=1}^{d^{2}} E_{k}^{\dagger} E_{k}=I
\end{aligned}
$$

Arbitrary channel can decrease the entropy!

Example:
"Reset channel"

$$
\begin{aligned}
& \text { If } \quad E_{k}=|1\rangle\langle k| \\
& \text { then } \rho_{\text {sys }}^{\prime}=|1\rangle\langle 1|
\end{aligned}
$$

An arbitrary quantum channel is the most general possible operation on a quantum system.

Therefore if quantum error correction is possible, it can be performed via a quantum channel

$$
\begin{aligned}
& \rho_{\text {sys }}^{\prime}=\sum_{k=1}^{d^{2}} E_{k} \rho_{\text {sys }} E_{k}^{\dagger} \quad \text { 'error map' } \\
& \rho_{\text {sys }}=\sum_{k=1}^{d^{2}} R_{k} \rho_{\text {sys }}^{\prime} R_{k}^{\dagger} \quad \text { 'recovery map' }
\end{aligned}
$$

Let the 'system' be N physical qubits. A logical qubit encoded in sys consists of two orthogonal 'words' in the Hilbert of sys
code $=\operatorname{span}\left\{\left|W_{0}\right\rangle,\left|W_{1}\right\rangle\right\}$
$P_{\text {code }}=\left|W_{0}\right\rangle\left\langle W_{0}\right|+\left|W_{1}\right\rangle\left\langle W_{1}\right|$

Knill-Laflamme condition

A recovery map for a set of errors $\left\{E_{1}, E_{2}, \ldots, E_{N}\right\}$ exists if

$$
P_{\mathrm{code}} E_{i}^{\dagger} E_{j} P_{\mathrm{code}}=\alpha_{i j} P_{\mathrm{code}}
$$

where α is a Hermitian matrix.

Knill-Laflamme condition

A recovery map for a set of errors $\left\{E_{1}, E_{2}, \ldots, E_{N}\right\}$ exists if

$$
P_{\text {code }} E_{i}^{\dagger} E_{j} P_{\text {code }}=\alpha_{i j} P_{\text {code }}
$$

where α is a Hermitian matrix.
"Proof:" Let $S \alpha S^{\dagger}=d$ diagonalize α. Let $K=S E$.

$$
P_{\text {code }} K_{i}^{\dagger} K_{j} P_{\text {code }}=d_{i j} P_{\text {code }}
$$

Different error states are orthogonal and hence identifiable by measurement of the projector

$$
\Pi_{j}=\frac{K_{j} P_{\text {code }} K_{j}^{\dagger}}{d_{j j}}, \quad\left(\Pi_{j}\right)^{2}=\Pi_{j}
$$

Given knowledge of which error occurred, there exists a unitary map from the error state back to the original state in the code space.

Errors can be non-unitary (increase entropy) But Knill-Laflamme condition says we can correct them with unitaries if the choice of unitary is conditioned on measurement result.

$$
\Pi_{j}=\frac{K_{j} P_{\mathrm{code}} K_{j}^{\dagger}}{d_{j j}}, \quad\left(\Pi_{j}\right)^{2}=\Pi_{j}
$$

Next up: Quantum Error Correction Codes for Bosonic Modes (microwave photons)

