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The density functional theory (DFT) [1, 2] proved to be a good starting point for deriving model 

Hamiltonians [3, 4], that can be studied with more elaborated methods able to treat correlations. While early 

approaches to solve the realistic many-body problem in solids focused on perturbative treatments of the 

interactions [5], over the last two decades several non-perturbative methodologies have emerged. 

Dynamical mean field theory (DMFT) was combined with realistic electronic structure methods, for 

example in the LDA+DMFT approach [6, 7]. This methodology can be thought as a spectral density 

functional [8], and is nowadays widely used to study 3d, 4d, 5d, 4f and 5f systems, see, e.g., Refs. [9-13]. 

LDA+DMFT has been implemented in different basis sets, such as linearized augmented planewave 

(LAPW) [14, 15] plane wave pseudopotentials, [16] projector augmented wave method [17] and linearized 

muffin-tin orbitals [18]. Another important approach  which is not as accurate as DMFT, but has the 

advantage to be less computationally demanding  is the GA [19], which was first implemented to study 

real solids in Ref. [20]. The GA approximation has been thereafter extensively developed [21-27], and it 

has been formulated and implemented in combination with realistic electronic structure calculations such 

as the LDA+GA approach [23, 28], which has been applied successfully to many systems [29-36]. A third 

important many-body technique is the slave boson approach (SB) [37, 38], which is, in principle, an exact 

reformulation of the quantum many-body problem for model Hamiltonians, and reproduces the results of 

the GA at the saddle-point level [24, 39]. This technique was recently extended to treat full rotationally 

invariant [38, 40, 41]. This approach, which is commonly named Rotationally Invariant Slave Boson 

(RISB) mean field theory has also been combined with LDA for the study of real materials [8, 42, 43]. The 

three above-mentioned methods are closely connected, and largely complementary of each other. 

In this lecture we introduce the RISB theory [37, 38, 40], and we show that the mean field 

approximation can be derived from an exact operatorial reformulation of the many-body problem, see Ref. 

[41], which reproduces the Gutzwiller approximation [19] at the mean-field level [24, 39]. Furthermore, we 

present several mathematical ideas that result into substantial algorithmic advancements, which enable us, 

e.g., to study interesting low-symmetry phases of matter and to derive accurate equations of state for 

materials currently far beyond the reach of LDA+DMFT. In particular, we display a connection between 

the SB amplitudes and the coefficients of the Schmidt decomposition [44] and show that, based on this 

connection, it is possible to formulate an algorithm which consists in calculating recursively the ground 

state of a series of Anderson impurity Hamiltonians, whose baths have the same dimension as the 

corresponding impurities.  

The following hands-on session will focus on the practical applications of the RISB mean field 

approximation in combination with DFT. For this purpose, the participants will employ the numerical 

implementation of the RISB equations formulated in Refs. [41, 46], where the LAPW interface with the 

DFT WIEN2K [45] code is implemented as following Ref. [14]. In this session, the participants will learn 

how to perform in practice elementary LDA+RISB simulations based on a few simple examples of strongly 

correlated materials and to extract several key physical quantities from the calculation. 
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