Tensor networks and entanglement spectroscopy

Mike Zaletel Station Q

MagLab Theory Winter School 2015

Outline

- Day 1: Introduction to tensor network numerics
- Entanglement and the Schmidt decomposition
- 1D: the matrix product state ansatz
- DMRG
- 2D: the 'tensor network' ansatz
- Dimer \& RVB wavefunctions
- Open problems
- Day 2: Entanglement spectroscopy: detecting emergent anyons in numerics

Goal:

Find an unbiased method for numerically calculating the low energy properties of any local (perhaps frustrated) quantum Hamiltonian in a time which is polynomial in the system size (or independent of system size with translation invariance).

Some amusing cold water first:

[David Pérez-Garcia, Toby Cubitt \& Michael Wolf]

Our result (informal statement)

Theorem:
The Spectral Gap problem is undecidable.

There is no algorithm that on input h decides it

Corollary: There exist nearest neighbor interactions for which the existence or absence of gap cannot be proven within the axioms of mathematics.

The storage problem

Information linear in system size

Quantum

$$
\begin{aligned}
& |\Psi\rangle=\Psi_{0}|\uparrow \uparrow \cdots\rangle+\Psi_{1}|\downarrow \uparrow \cdots\rangle+\Psi_{2}|\uparrow \downarrow \cdots\rangle+\cdots \\
& \text { (floating points) } \\
& \quad\left\{\Psi_{i}\right\} \Rightarrow S \sim 4 \cdot 8 \cdot 2^{L}
\end{aligned}
$$

Information exponential in system size (limits exact-diagonalization)

Quantum compression?

```
mmz_thesis - bash - 63\times7
My thesis actually contains surprisingly little information...
```

We are interested in states which have low energy for local Hamiltonians

How big is the important space?

Hokey Estimate I

Parameterize space of ground states via space of local Hamiltonians:

$$
\hat{H}=\sum_{i=1}^{L} \hat{H}_{i}
$$

Finite info for each \hat{H}_{i}, so

$$
S \propto L
$$

Estimate II: the 'convenient illusion of Hilbert space’

```
from Poulin, et al., 2011
```

The Setup:
Start in a product state: $\quad|t=0\rangle=\otimes_{n=1}^{L}|\uparrow\rangle$
Time evolve under an arbitrary k-body Hamiltonian: $\hat{H}(t)$

After any time $t \sim \operatorname{poly}(L)$ we can only access a fraction

$$
\frac{\operatorname{Vol}(\{|t\rangle\})}{\operatorname{Vol}(\mathcal{H})}<L^{L} \epsilon^{2^{L}}, \epsilon<1
$$

of the many-body Hilbert space

Schmidt decomposition

$$
\begin{gathered}
\mathrm{A} \text { В } \mathcal{H}=\mathcal{H}_{L} \otimes \mathcal{H}_{R} \\
|\Psi\rangle=\sum_{i, j=1}^{D_{L}, D_{R}} \Psi_{i j}|i\rangle_{L}|j\rangle_{R} \quad D_{L} \times D_{R} \text { \#s }
\end{gathered}
$$

If A \& B are uncorrelated (not-entangled), there is a special basis in which

$$
|\Psi\rangle=|\alpha\rangle_{L}|\alpha\rangle_{R}
$$

$$
D_{L}+D_{R} \text { \#s }
$$

More generally, there is a special basis - the Schmidt basis in which

$$
|\Psi\rangle=\sum_{\alpha=1}^{\chi} \lambda_{\alpha}|\alpha\rangle_{L}|\alpha\rangle_{R} \quad \chi \times\left(D_{L}+D_{R}\right)
$$

Schmidt compression

$$
\begin{gathered}
\text { А B } \mathcal{H}=\mathcal{H}_{L} \otimes \mathcal{H}_{R} \\
|\Psi\rangle=\sum_{\alpha=1}^{\chi} \lambda_{\alpha}|\alpha\rangle_{L}|\alpha\rangle_{R} \quad \chi \times\left(D_{L}+D_{R}\right) \# \mathrm{~s}
\end{gathered}
$$

The "entanglement entropy:"

$$
\sum_{\alpha} \lambda_{\alpha}^{2}=1, \quad S_{E}=-\sum_{\alpha} \lambda_{\alpha}^{2} \log \left(\lambda_{\alpha}^{2}\right)
$$

When

$$
e^{S_{E}} \ll D_{L}
$$

we can keep only important contributions and compress the state!

A qubit of entanglement

$$
\begin{array}{cc}
|\psi\rangle=\frac{1}{2}\left(|\uparrow\rangle_{A}+|\downarrow\rangle_{A}\right)\left(|\uparrow\rangle_{B}+|\downarrow\rangle_{B}\right) & \Rightarrow S=0 \\
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{A}|\downarrow\rangle_{B}+|\downarrow\rangle_{A}|\uparrow\rangle_{B}\right) \quad \Rightarrow S=\log 2 \\
S=-\sum \lambda_{\gamma}^{2} \log \lambda_{\gamma}^{2} &
\end{array}
$$

Example: 1D transverse field Ising model

Cut length 2L chain in half:

The Area Law

[Srednicki]

Ground states: $S_{E}(\ell) \sim \ell^{D-1}$

Proven in 1D for gapped states [Hastings 2005]
Mild violations for certain critical systems ($1+1$ CFT, Fermi surfaces...)
Volume law expected at finite energy density (eigenstate thermalization)

The Area Law: $\quad S_{E}(\ell) \sim \ell^{D-1}$ for D $=1$ spin chain

The MPS Ansatz

Step 1:
cut state in half

$$
\begin{gathered}
|i\rangle A \\
\Psi_{i j}=\sum_{\alpha}^{\chi} A_{\alpha}^{i} \lambda_{\alpha} B_{\alpha}^{j}
\end{gathered}
$$

Step 2:
Split off 1 site from the right
$B_{\alpha}^{j}=\sum_{\beta=1}^{\chi} \Gamma_{\alpha \beta}^{p} \lambda_{\beta}^{\prime} B_{\beta}^{\prime j^{\prime}}$
Schmidt coefficients 1 bond to right

The MPS Ansatz

$$
=\sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}}^{\chi} \Gamma_{a_{1}}^{[1] i_{1}} \lambda_{\alpha_{1}}^{[1]} \Gamma_{\alpha_{1} \alpha_{2} \alpha_{2}}^{\left[2 i_{\alpha 2}\right.} \lambda_{\alpha_{2}}^{[2]} \ldots \lambda_{\alpha_{N N-1}}^{[N-1]} \Gamma_{\alpha_{N N}}^{[N] i i_{N}}
$$

Compressed L-site wavefunction into $\mathrm{L} d \cdot \chi \cdot \chi$ tensors

MPS: Computing observables

Exact diagonalization: $\sim \mathcal{O}\left(e^{\alpha L}\right)$

MPS: Computing observables

- Local expectation values

$$
\langle\psi| O^{[r]}|\psi\rangle=\left\lvert\, \begin{gathered}
\left.O^{[r]} \begin{array}{c}
\lambda \Gamma \lambda \\
-0-0 \\
0-0-0
\end{array}\right] \\
\lambda \Gamma^{*} \lambda
\end{gathered}\right.
$$

- Correlation functions

- Correlation length: Second largest eigenvalue of the transfer matrix

DMRG : Density Matrix Renormalization Group

[White 1992; McCullough 2008]
Given \hat{H}, how do we find good a MPS approximations to the g.s.?

$$
\text { MPS: } \quad\left\{\Gamma^{[j]} \lambda^{[j]}\right\} \rightarrow|\Psi\rangle
$$

Minimize $E\left(\Gamma^{[j]} \lambda^{[j]}\right)=\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}$
Non-linear minimization problem

Strategy:

1. Hold all tensors fixed but those at site j
2. Solve quadratic problem at site j
3. Move on to site $j+1$; repeat
$\langle\Psi| \hat{H}|\Psi\rangle$

Screws up MPS structure!

For local-ish Hamiltonians, generalize MPS to Matrix Product Operator (MPO)

$$
\text { Transverse Field Ising: } M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\sigma_{z} & 0 & 0 \\
g \sigma_{x} & \sigma_{z} & 1
\end{array}\right)
$$

$\langle\Psi| \hat{H}|\Psi\rangle$

Focus on

L
 R

 two sites$$
E=\langle\Theta| H_{e f f}|\Theta\rangle=
$$

Variational Wavefunction:

Orthonormal basis for
2 sites + L / R Schmidt states

Lower the energy by finding the ground state of effective Hamiltonian (Lanczos, etc.):

This is where you burn CPU hours:

Bring ansatz back to MPS form

$$
|\tilde{\Theta}\rangle=\sum_{\alpha=1}^{\chi}|\alpha\rangle_{A} \tilde{\Lambda}_{\alpha}|\alpha\rangle_{B}
$$

$$
\chi
$$

(iv)

Update L / R environments

(v)

"Sweep" until convergence

Comments

Algorithm works unchanged on an infinitely long system with periodic unit cell: "iDMRG"
[McCullough 2008]

Complexity: length / unit cell $=\mathbf{L}$
$\chi \sim e^{S_{E}}$
(holding Hamiltonian fixed)

$$
\begin{array}{rlr}
\text { CPU: } L \chi^{3} & \text { 1D gapped: } S_{E} \sim \text { const } \\
\text { RAM: } L \chi^{2} & \text { 1D CFT: } S_{E} \sim \frac{c}{6} \log (\xi / a) \\
& \text { 2D: } S_{E} \sim L_{y}
\end{array}
$$

Time evolution

Trotter-decompose U(dt) into 2-site gates:

TEBD [Vidal 03]

Dynamical structure factor: $S(k, \omega)$

$$
\begin{aligned}
& C(x, t)=\left\langle\psi_{0}\right| S_{x}^{-}(t) S_{0}^{+}(0)\left|\psi_{0}\right\rangle \\
& S(k, \omega)=\sum_{x} \int_{-\infty}^{\infty} d t e^{-i(k x+\omega t)} C(x, t)
\end{aligned}
$$

Time evolution

Experiments of Coldea, et al.: 1D TFI perturbed by order parameter

$$
\begin{align*}
H & =-J^{\prime} \sum_{n} S_{n}^{z} S_{n+1}^{z}-h^{x} \sum_{n} S_{n}^{x}-h^{z} \sum_{n} S_{n}^{z} \tag{2}\\
& -J_{p} \sum_{n}\left(S_{n}^{x} S_{n+1}^{x}+S_{n}^{y} S_{n+1}^{y}\right)+J_{B} \sum_{n} S_{n}^{z} S_{n+2}^{z} .
\end{align*}
$$

[from Kjäll 2011]
Near QCP: masses of emergent excitations root lattice of E_8

2D DMRG: The Kludge (alias - snake)

Order the 2D lattice into 1D chain with longer-range interactions

Entanglement scales with circumference: $S_{E} \sim L_{y}$

$$
\begin{array}{cc}
\text { Complexity: } \quad & L_{x} L_{y} e^{\alpha L_{y}} \\
\text { DMRG }
\end{array}
$$

$e^{\alpha L_{x} L_{y}}$
Exact Diagonalization

2D DMRG

> Works if you are lucky
> (i.e., near thermodynamic limit on small cylinders)

Frustrated magnetism \& Spin-liquids on cylinders

Science

Fractional quasiparticles in the fractional quantum hall effect

[Zaletel, Mong, Pollmann 2012]
[Yan, Huse, White 2010]
More on measuring topological order in these studies tomorrow

2D Tensor network: The Hope

[Verstraete \& Cirac, 2004]
(a)
(b) PEPS

$$
A_{\alpha \beta \gamma \delta}^{p}=\alpha<_{p}^{\beta}
$$

Example: dimer model

Kagome NN dimer covering:

[from Yejin Huh, 2011]

$$
\left.|\Psi\rangle=\sum_{\text {dimer coverings }} \mid \text { hardcore-dimers }\right\rangle
$$

TN for dimers $\quad|\Psi\rangle=\sum_{\text {dimer coverings }} \mid$ hardcore-dimers \rangle

$\mathrm{p}=0$: no dimer
$p=1$: dimer
Using different topology than square
TN: but you can always regroup things to turn it into "standard" form

$$
\chi=2: \quad \alpha \in\{0,1\}
$$

$$
A_{\alpha \beta}^{p}=\left\{\begin{array}{ll}
1 & \text { if } p=\alpha=\beta \\
0 & \text { if else }
\end{array} \quad B_{\alpha \beta \gamma \delta}= \begin{cases}1 & \text { if } \alpha+\beta+\gamma+\delta=1 \\
0 & \text { if else }\end{cases}\right.
$$

Glue presence of dimer to "virtual" index
The constraint (no physical index)

Why is Kagome still being studied with snakes?

Finding the 2D TN is hard!

Square-lattice

 J1
[from Stoudenmire 2011]

Why is Kagome still being studied with snakes?

*** Unsolved problem 0: which phases of matter can
be represented by finite dimensional 2D TN? ***
1D MPS: represents gapped states of local H
2D TN: not known (certain things can't be: fermi surface)
*** Unsolved problem 1: what is the right way to approximately calculate observables in a 2D TN? ***

Calculating expectation value in MPS exactly: linear complexity in size Calculating expectation value in 2d TN exactly: exponential complexity in size
*** Unsolved problem 2: what is the right way to find a 2D TN given H? ***

DMRG: it works. complexity χ^{3}
2D TN: algorithms proposed, but not fully understood what the nature of the approximations is. complexity $\chi^{8}-\chi^{10}$

Thanks!

Mike Zaletel
Station Q

MagLab Theory Winter School 2015

Tensor networks and entanglement spectroscopy

Mike Zaletel
Station Q

MagLab Theory Winter School 2015

Outline

- Day 1: Introduction to tensor network numerics
- Day 2: Entanglement spectroscopy: detecting emergent anyons in numerics
- Topological entanglement entropy \& quantum dimensions
- The entanglement spectrum
- Topological degeneracy of the cylinder
- Minimally entangled states
- The Kagome SL
- Topological Spin \& Momentum Polarization

‘Symmetry protected’ topological (SPT) order:

1. No anyonic excitations: distinction requires symmetries
2. Quantized responses to flux threading (+generalizations)
e.g. 1D spin-1 Haldane chain (AKLT), 2D IQHE, topological insulators
(also chiral order: $\mathrm{p}+\mathrm{ip}$ superconductor)

SSB.
Detect from order parameter

Topological order.
Need non-local order parameter: quantum entanglement

Nothing on symmetries today. Just "intrinsic:" TQFT
Goal: given ground state wavefunction, can we determine the topological order?

Yesterday: Entanglement Entropy

$$
S=-\operatorname{Tr}\left[\rho_{A} \log \left(\rho_{A}\right)\right]=-\sum_{\alpha} \lambda_{\alpha}^{2} \log \left(\lambda_{\alpha}^{2}\right)
$$

$$
S=\alpha \ell-\text { const }+\mathcal{O}\left(e^{-\ell / \xi}\right)
$$

Topological Entanglement Entropy

[Kitaev \& Preskill, Levin \& Wen 2006]

$$
S_{B}=\alpha|\partial B|+\sum_{i=1}^{\text {area law corners TEE }} c_{i}-\gamma+\mathcal{O}\left(e^{-\ell / \xi}\right)
$$

Garbage
Gold

Topological Entanglement Entropy

[Kitaev \& Preskill, Levin \& Wen 2006]

In the ground state:

$$
\left.-\gamma=S_{A B C}-S_{A B}-S_{B C}-S_{C A}+S_{A}+S_{B}+e_{C}^{-\ell / \xi}\right)
$$

Should be a universal quantity sensitive to 'non-local' part of S

TQFT says...

$$
\begin{equation*}
S_{\mathrm{topo}}=2 S_{3}-\frac{3}{2} S_{4}=-\log \mathcal{D} \equiv-\gamma \tag{15}
\end{equation*}
$$

Eq. (15) is our main result. Note that it follows if we

from Kitaev \& Preskill 2006

yes but what is

Quantum dimensions: a tiny intro

Pin down N anyons on a disc or sphere:

$d_{a} \geq 1: \quad$ the 'quantum dimension' of anyon a $d_{a}=1$: ‘abelian’ anyon
$d_{a}>1$: 'non-abelian' anyon

TEE: the 'total quantum dimension'

$$
\begin{array}{r}
-\gamma=S_{A B C}-S_{A B}-S_{B C}-S_{C A}+S_{A}+S_{B}+S_{C} \\
\gamma=\log (\mathcal{D}), \quad \mathcal{D}=\sqrt{\sum_{a=1}^{\# \text { species }} d_{a}^{2}} \\
\text { 'total quantum dimension' }
\end{array}
$$

Z_2 Gauge theory = toric code = Z_2 SL:
$a \in\{1, e, m, e m\}, d_{a}=1, \mathcal{D}=\sqrt{1+1+1+1}=2, \gamma=\log (2)$
'Trivial' phase: no anyons

$$
a \in\{1\}, d_{a}=1, \mathcal{D}=\sqrt{1}=1, \gamma=\log (1)=0
$$

This is hard to do in small systems:

We will return to the practical "cylinder" way shortly:
but we need to figure out some subtleties first!

Using entanglement to detect an anyon

Suppose you've taken note of the properties of a region (density, energy, etc...)

1
and an excitation wanders in

?

Can you tell if the excitation is an anyon?
Can you tell what type?

Using entanglement to detect an anyon
Of course! use mutual statistics

$$
S_{a b}
$$

$$
S_{a ?}=1 \forall a \Rightarrow ?=1
$$

Using entanglement to detect an anyon

Detecting an anyon requires a loop: just like a gaussian surface detects charge

Can an entanglement cut serve as a "gaussian surface" for detecting "anyon charge" ?

Using entanglement to detect an anyon

$$
|\Psi\rangle=\sum_{\alpha} \lambda_{\alpha}|\alpha\rangle_{A}|\alpha\rangle_{B}
$$

$$
\sum_{\alpha} \lambda_{\alpha}^{2}=1, \quad S_{E}=-\sum_{\alpha} \lambda_{\alpha}^{2} \log \left(\lambda_{\alpha}^{2}\right)
$$

The entanglement spectrum

$$
|\Psi\rangle=\sum_{\alpha} \lambda_{\alpha}|\alpha\rangle_{A}|\alpha\rangle_{B}
$$

Schmidt states can be assigned good quantum numbers: (here ang. momentum)

$$
\hat{L}^{z}|\alpha\rangle_{B}=L_{\alpha}|\alpha\rangle_{B}
$$

'Entanglement spectrum' vs momentum [Kitaev \& Preskill 06; Haldane \& Li 08]

from FQHE, Moore-Read state
[Zaletel, Mong \& Pollmann 2012]

Momentum

Aside:

It is not in general true that the low - energy part of the entanglement spectrum "is" like the low energy part of the physical edge theory

Certain averaged properties - like entanglement entropy are robust. These depend on the high energy part of ES.

Anomalies of physical edge = anomalies in entanglement edge (this is how charge pumping works)

Numerical experiment:

$$
E_{E}=-\log (p)
$$

If B is big, $E S$ changes if and only if? is an anyon!

Numerical experiment:

Anyon 1

Anyon 2

TEE: Take II

(continuum, smooth cut: no garbage)

$$
S_{B}=\alpha|\partial B|-\log (\mathcal{D})+\log \left(d_{a}\right)
$$

$$
\mathrm{a}=1 \text { (no anyon) is special case }
$$

Topological ground state degeneracy

Sphere: generically unique ground state

Torus:
 \mathfrak{m} degenerate ground states

$\mathfrak{M l}$: \# of anyon species

The cylinder has genus too!

Infinitely long cylinder: same gsd \mathfrak{m} as torus!

(we'll remind ourselves why shortly)

Great for numerics! No edge effects, uses full translation invariance, and still has gsd
[Cincio \& Vidal 2012; Zaletel, Pollmann \& Mong 2012]

Sorting out cylinders

Entanglement entropy of infinite cylinder vs circumference

$$
S=\alpha L-\gamma
$$

[Zaletel, Mong, Pollmann 2013]

Minimally entangled states

[Zhang, Grover, Turner, Oshikawa \& Vishwanath]

Infinite cylinder: $S=\alpha L-\gamma$

$$
\text { What's } \gamma ?
$$

Naive answer: like a disc, $\log (\mathcal{D})$
Answer: it depends!
There is an \mathfrak{M} dimensional manifold of ground states:
the E.E. depends continuously on the state

$$
S\left(c_{i}\right)=S\left[\sum_{a=1}^{\mathfrak{m}} c_{a}|a\rangle\right]
$$

Minimally entangled states

There is a special basis $\quad\{|a\rangle\}$
which are local minima of entanglement; in this basis

$$
S_{a}=\alpha L-\log (\mathcal{D})+\log \left(d_{a}\right)
$$

$$
|a\rangle \leftrightarrow \quad \text { anyon types }
$$

The minimally entangled states have "definite topological flux threading the cylinder"

What does this mean?

A more physical picture

a) Standard story:
a) (like strings in toric code)

\mathcal{F}_{y}^{b} separate $b \bar{b}$ pair around cylinder
\mathcal{F}_{x}^{c} separate $c \bar{c}$ pair out to infinity
(unitary operators in
ground state manifold)

A more physical picture of MES
a)

Statistics $\quad \mathcal{F}_{y}^{b} \mathcal{F}_{x}^{c}=\frac{S_{b c}}{S_{b 1}} \mathcal{F}_{x}^{c} \mathcal{F}_{y}^{b}$:

Fusion $\mathcal{F}_{x / y}^{b} \mathcal{F}_{x / y}^{c} \propto \mathcal{F}_{x / y}^{b \cdot c}, \quad b \cdot c=\sum_{d} N_{b c}^{d} \mathrm{~d}$

This algebra requires an \mathfrak{m} dimensional representation:

GSD

A more physical picture of MES ${ }^{\text {a) }}$

$$
\begin{aligned}
& \mathcal{F}_{x}^{b}|a\rangle=|b \cdot a\rangle \quad \text { Permutes MES } \\
& \mathcal{F}_{y}^{b}|a\rangle=|a\rangle \cdot \frac{S_{b a}}{S_{h \pi}} \quad \text { Diagonal in MES }
\end{aligned}
$$

Unless you try really hard DMRG always produces MES basis (for two reasons...)

Example: MES of the Kagome Heisenberg Model

[from Yan, Hus \& White 2010]
$S=3 / 2$ per unit cell: H.O.L.S.M.A. says either
[Lieb, Schultz \& Mattis 1961; Oshikawa 2000; Hastings 2003]

1. SSB (not seen in dmrg)
2. Gapless (DMRG gap $=0.05 \mathrm{~J})$
3. Topologically ordered

What type of topological order?

Kagome TEE

$$
S_{E}=\alpha L-\log (\mathcal{D})
$$

With J2

$\mathrm{J} 2=0$ (shakier)

Depenbrock, et al. PRL 2012

Enumerate all TQFTs with T-reversal \& $\mathcal{D} \leq \sqrt{5}$

Two contenders: Z2 gauge theory or double semion
Both have $\gamma=\log (2)$; close to numerics
Double semion impossible for subtle symmetry reasons
[Zaletel \& Vishwanath 2014]

Seems like Z_2 Gauge-Theory (toric code)

- just like we've heard about this week!

$$
\begin{gathered}
\{1, e, m, e m\} \Leftrightarrow\{1, b, v, f\} \\
\text { Bosonic spinon (b) } \\
\text { Vison (v) } \\
\text { Fermionic spinon }(f=v b)
\end{gathered}
$$

Spin-probability

$$
|\Psi\rangle=\sum_{\alpha} \lambda_{\alpha}|\alpha\rangle_{A}|\alpha\rangle_{B}
$$

$$
\hat{S}^{z}|\alpha\rangle_{A}=S_{\alpha}^{z}|\alpha\rangle_{A}
$$

$$
\hat{T}^{y}|\alpha\rangle_{A}=e^{i k_{\alpha}}|\alpha\rangle_{A}
$$

bosonic or fermionic spinon $(S=1 / 2)$

Which is bosonic spinon, and which is fermionic?

The "topological spin" $e^{2 \pi i h_{a}}$

Mutual statistics of b / f the same. Need to examine:

Bosonic spinon: $1=e^{i \cdot 0}$
Fermionic spinon: $-1=e^{i \cdot \pi}$

"Momentum polarization"

[Zaletel, Mong \& Pollmann 2012; Tu, Zhang, Qi 2012]

$$
\begin{array}{r}
|\Psi\rangle=\sum_{\alpha} \lambda_{\alpha}|\alpha\rangle_{A}|\alpha\rangle_{B} \\
\hat{T}^{y}|\alpha\rangle_{A}=e^{i k_{\alpha}}|\alpha\rangle_{A} \\
k_{\alpha} \in \frac{2 \pi}{L_{y}} \mathbb{Z}
\end{array}
$$

Spin-probability distribution in ES

Take "thermal average" of the momentum quantum \#s:

$$
e^{2 \pi i h_{a}-\eta L_{y}^{2}}=\left[\sum_{\alpha} \lambda_{\alpha}^{2} e^{i k_{\alpha}}\right]^{L_{y}}
$$

The topological spin!
[Details for Z_2 spin liquid in Zaletel, Lu \& Vishwanath]

Bosonic Spinon

Mike Zaletel Station Q

Thanks!

