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Overview

• Quantum entanglement as an �order parameter�

• SPT phases (free systems)
• (1+1)d CFTs
• Perturbed CFTs
• (2+1)d topologically ordered phases
• ...

• Developing theoretical/computational tools:
• DMRG, MPS, PEPS, MERA, and other tensor networks

• Other applications � ETH and many-body localization, thermalization and
chaos in dynamical systems, etc.

• Applications to physics of spacetime
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Entanglement and entropy of entanglement

• (0) States of your interest, e.g., ρtot = |Ψ〉〈Ψ|.

• (i) Bipartition Hilbert space H = HA ⊗HB .

• (ii) Partial trace:

ρA = TrB |Ψ〉〈Ψ| =
∑
j

pj |ψj〉A〈ψj |A (
∑
j

pj = 1) (1)

• (iii) von Neumann Entanglement entropy:

SA = −TrA [ρA ln ρA] = −
∑
j

pj ln pj (2)

• (iv) Entanglement spectrum ρA ∝ exp(−He)/Z:

{ξi} where pi =: exp(−ξi)/Z (3)



• Mutual information:

IA:B ≡ SA + SB − SA∪B (4)

• Rényi entropy:

R
(q)
A =

1

1− q ln(Tr ρqA). (5)

Note that SA = limq→1 R
(q)
A . {R(q)

A }q = entanglement spectrum.

• The Rényi mutual information:

I
(q)
A:B ≡ R

(q)
A +R

(q)
B −R

(q)
A∪B (6)

• Other entanglement measures, e.g., entanglement negativity.



Some key properties

• If ρtot is a pure state and B = Ā, SA = SB .

• If ρtot is a mixed state (e.g., ρtot = e−βH), SA 6= SB even when B = Ā,

• If B = ∅, SA = Sthermal.

• Subadditivity:

SA+B ≤ SA + SB . (7)

i.e., the positivity of the mutual information:
IA:B = SA + SB − SA+B ≥ 0.

• Strong subadditivity

SB + SABC ≤ SAB + SBC (8)

By setting C = ∅, we obtain the subadditivity relation.



ES in non-interacting systems

• Consider the ground states |GS〉 of free (non-interacting) systems, and
bipartitioning H = HL ⊗HR.

• When ρtot = |GS〉〈GS| is a Gaussian state, He is quadratic [Pesche (02)].

He =
∑
I,J∈L

ψ†IKIJψJ , I = r, σ, i, . . . (9)

• He can be reconstructed from 2pt functions: CIJ := 〈GS|ψ†IψJ |GS〉.

C =

(
CL CLR
CRL CR

)
, CRL = C†LR. (10)

• Correlation matrix is a projector:

C2 = C, Q2 = 1 (QIJ := 1− 2CIJ). (11)

• Entanglement Hamiltonian:

He =
∑
I,J∈L

ψ†IKIJψJ , K = ln[(1− CL)/CL]. (12)



E.g. the integer quantum Hall e�ect

• A prototype of topological phases

• Characterized by quantized Hall conductance σxy = (e2/h)× (integer).

• Gapped bulk, gapless edge

• Robust against disorder and interactions

• Chiral edge states in ES

Figure: Physical v.s. entanglement spectra of a Chern insulator [SR-Hatsugai (06)]



E.g. the SSH model

• 1d lattice fermion model:

H = t
∑
i

(
a†i bi + h.c.

)
+ t′

∑
i

(
b†iai+1 + h.c.

)
(13)

• Phase diagram:

• Physical spectrum, entanglement spectrum, entanglement entropy.

Figure: [SR-Hatsugai (06)]



Symmetry-protected degeneracy in ES

• Robust zero mode in ES; 2-fold degeneracy for each level.

• SA = A log ξ/a0 + log 2

• Degeneracy is symmetry-protected; Symmetry: ai → a†i , bi → −b
†
i . (Class

D or AIII/BDI topological insulator)

• Symmetry-protected degeneracy is an indicator of symmetry-protected
topological (SPT) phases. [Pollmann-Berg-Turner-Oshikawa (10)]



Symmetry-protected topological phases (SPT phases)

• "Deformable" to a trivial phase (state w/o entanglement) in the absence
of symmetries.

• (Unique ground state on any spatial manifold � "invertible")

• But sharply distinct from trivial state, once symmetries are enforced.

• Example: SSH model, time-reversal symmetric topological insulators, the
Haldane phase

• Symmetry-breaking paradigm does not apply: no local order parameter



Entanglement spec. and non-spatial symmetry

• How about symmetry ?

• Corr. matrix inherits symmetries of the Hamiltonian

ψI → UIJψJ , Hphys → U†HphysU = Hphys ,

Q→ U†QU = Q (14)

• Non-spatial symmetry, the sub block of corr. matrix inherits symmetries:

QL → U†QLU = QL (15)

So does the entanglement Hamiltonian. This may result in degeneracy in
the ES.



Another example

• Spin-1 Antiferromagnetic spin chain

H =
∑
j

Sj · Sj+1 + Uzz
∑
j

(Szj )2 (16)

Figure: [Pollmann-Berg-Turner-Oshikawa (10)]



View from Matrix product states

• Matrix product state representation:

Ψ(s1, s2, · · · ) =
∑

{in=1,··· }

As1i1i2A
s2
i2i3

As3i3i4 · · · sa = −1, 0, 1

• Symmetry action: for g, h ∈ Symmetry group, we have U(g) acting on
physical Hilbert space:

U(g)U(h) = U(gh)

U(g)s
′
s A

s = V −1(g)As
′
V (g)eiθg (17)

• Symmetry acts on the �internal� space projectively:

V (g)V (h) = eiα(g,h)V (gh) (18)

[Chen et al (11), Pollmann et al (10-12), Schuch et al (11)]



(Entanglement spec)2 and SUSY QM

• From C2 = C:

C2
L − CL = −CLRCRL,
QLCLR = −CLRQR,
CRLQL = −QRCReL,

C2
R − CR = −CRLCLR (19)

• Introduce:

S = 1−
(
Q2
L 0

0 Q2
R

)
, Q =

(
0 2CLR
0 0

)
, Q† =

(
0 0

2CRL 0

)
.

(20)

• SUSY algebra

[S,Q] = [S,Q†] = 0,

{Q,Q†} = S, {Q,Q} = {Q†,Q†} = 0 (21)



Entanglement spec. and spatial symmetries

• L/R = �fermionic�/�bosonic� sector; CL,R intertwines the two sectors:

HL
CLR←−−−−−−→
CRL

HR (22)

• Spatial symmetry O: choose bipartitioning s.t.

O : HL ←→ HR (23)

O =

(
0 OLR

ORL 0

)
, OLRO

†
LR = ORLO

†
RL = 1 (24)

• Symmetry of entanglement Hamiltonian:

QLCLRO
†
LR = CLRO

†
LRQ

∗
L (25)

[Turner-Zhang-Vishwanath (10), Hughes-Prodan-Bernevig (11),

Fang-Gilbert-Bernevig (12-13), Chang-Mudry-Ryu (14)]



Graphene with Kekule order

• Kekule distortion in graphene

• Degeneracy protected by inversion

• Entanglement spec. is more useful than physical spec.



Short notes: Conformal �eld theory in (1+1)d

• Scale invariance in (1+1)d → conformal symmetry (Polchinski)

• Conformal symmetry is in�nite dimensional. Holomorphi-anti-holomorphic
factorization

• In�nite symmetry generated by stress energy tensor

T (z) =

+∞∑
n=−∞

Lnz
−n−2, T̄ (z̄) =

+∞∑
n=−∞

L̄nz̄
−n−2, (26)

• Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n (27)

• Characterized by a number c �central charge� (among others)



Short notes: CFT in (1+1)d

• Structure of the spectrum: �tower of states�:

|h,N ; j〉 ⊗ |h̄, N̄ ; j̄〉,
L0|h,N ; j〉 = (h+N)|h,N ; j〉.
L̄0|h̄, N̄ ; j̄〉 = (h̄+ N̄)|h̄, N̄ ; j̄〉. (28)

• In other words:
H =

⊕
h,h̄

nh,h̄Vh ⊗ V h̄, (29)

nh,h̄: the number of distinct primary �elds with conformal weight (h, h̄).
(For simplicity, we only consider the diagonal CFTs with nh,h̄ = δh,h̄.)



Central charge

• c = Weyl anomaly; at critical points, there are emergent scale invariance,
but this emergent symmetry is broken by an anomaly.

• c ' (number of degrees of freedom)

• c shows up in free energy and speci�c heat, etc:

cV =
πc

3vβ
(30)

Note: v is non-universal.

• Can be extracted from the entanglement entropy scaling:

SA =
c

3
logR+ · · · (31)

• RG monotone. (Zamolodchikov c-function; entropic c-function)



Radial and angular quantization

• w(z) = log z

z = x+ iy

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

w(z) = log z

w = u+ iv

-3 -2 -1 0 1 2 3

• CFT on a plane ↔ CFT on a cylinder

• Radial evolution ↔ Hamiltonian

• Angular evolution (Entanglement or Rindler Hamiltonian) ↔ Hamiltonian
with boundary



Radial �ow � Finite size scaling

• CFT on a cylinder of circumference L

H =
1

2π

∫ L

0

dv Tuu(u0, v)

=
1

2π

∮
Cw

dw T (w) + (anti-hol) (32)

• Conformal map: cylinder → plane w = L
2π

log z∮
Cw

dw T (w) =

∮
Cz

dz
dw

dz

(
2π

L

)2 [
z2T (z)− c

24

]
=

∮
Cz

dz

(
L

2π

)[
zT (z)− c

24

1

z

]
(33)

• CFT Hamiltonian on a cylinder can be written in terms of dilatation
operator L0 + L̄0 on a plane:

H =
2π

L

(
L0 + L̄0 −

c

24

)
(34)



• Gives relation between stress tensor (on z-plane) to a �physical�
Hamiltonian on a �nite cylinder.

• Level spacing scales as 1/L.

• Levels are equally spaced (within a tower)

• The c/24× 1/L part allows us to determine c (numerically). (the
extensive part A× L has to be subtracted.)

• Degeneracy → full identi�cation of the theory



Radial �ow � Numerics

• XX model: H =
∑
j

(
Sxj S

x
j+1 + Syj S

y
j+1

)

• For a given tower, all levels are equally spaced.

• Level spacing scales as 1/L.



Angular �ow



Angular �ow � Corner transfer matrix

• Corner transfer matrix Aσ|σ′ and partition function Z = TrA4

[Baxter (80's); Figures:Wikipedia]



Angular �ow = Entanglement (Rindler) Hamiltonian

• In Euclidean signature, z = x+ iy = ew = eu+iv

maps the complex z-plane to a cylinder.

• In Minkowski signature: (t, x)→ (u, v) (Rindler
coordinate):

x = eu cosh v,

t = eu sinh v.

• In the Rindler coord., the half of the 2d spacetime
is inaccessible (�traced out�).

• Radial evolution in the complex z-plane
→ u-evolution in the cylinder

• Angular evolution in the complex z-plane
→ v-evolution in the cylinder
= entanglement (or Rindler) Hamiltonian

[Figures: Wikipedia]



Rindler Hamiltonian

• Constant u trajectories = World-lines of observer with constant
acceleration a where a = 1 in our case.
Accelerated observer in Minkowski space = Static observer in Rindler space

• Unruh e�ect: Vacuum is observer dependent. Observer in an accelerated
frame (Rindler observer) sees the vacuum of the Minkowski vacuum as a
thermal bath with Unruh temperature

T =
a

2π
=

1

2π
(35)

• This is due to a �Rindler horizon� and inability to access the other part of
spacetime. Rinder coordinates covers with metric

ds2 = e2au(−dv2 + du2) (36)

only covers x > |t| (the right Rindler wedge).

• Left Rindler wedge is de�ned by

x = eu cosh v,

t = −eu sinh v.



Entanglement Hamiltonian for �nite interval

• w(z) = ln(z +R)/(z −R)

-2 -1 1 2

-2

-1

1

2

-2 -1 0 1 2

• Entanglement hamiltonian on �nite interval [−R,+R] → Hamiltonian
with boundaries

• Transforming from strip to plane:

H =

∫
duTvv|v0=π =

∫ +R

−R
dx

(x2 −R2)

2R
Tyy|y=0 (37)

• Entanglement spec: 1/ log(R) scaling

E.g., Casini-Huerta-Myers (11), Cardy-Tonni (16)



SSH chain

• Entanglement spectrum of CFT GS: HE = const. L0
log(R/a)

H = t
∑
i

(
a†i bi + h.c.

)
+ t′

∑
i

(
b†iai+1 + h.c.

)
(38)

with t = t′
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Figure: [Cho-Ludwig-Ryu (16)]



Numerics

Figure: [Lauchli (13)]



Remarks:

• What is an analogue of the radial direction?

• It is related to the so-called sine-square deformation (SSD).
[Gendiar-Krcmar-Nishino (09), Hikihara-Nishino (11), ...]

• Evolution operator:

H =

∫ π

0

dv Tuu(u0, v) = r2
0

∫ 2π

0

dθ
cos θ + coshu0

sinhu0
Trr(r, θ) (39)

• In the limit R→ 0,

H ∼
∫ L

0

ds sin2
(πs
L

)
Trr

(
L

2π
,

2πs

L

)
(40)

[Ishibashi-Tada (15-16); Okunishi (16); Wen-Ryu-Ludwig (16)]



Perturbed CFT

• Add a relevant perturbation

S = S∗ + g

∫
d2z φ(z, z̄) (41)

and go into a massive phase; Consider the entanglement Hamiltonian for
half space.

• The above conformal map leads to an exponentially growing potential

S∗ + g

∫ u2

u1

du

∫ 2π

0

dv eyu Φ(w, w̄) (42)

with length scale log(ξ/a).



Entanglement Spectrum

• Entanglement spectrum for gapped phases is given by a CFT with
boundaries (Boundary CFT in short) of a nearby CFT

Partition function:

ZAB = TrAB e
−He (43)

Here, A = vacuum and B = SPT . [�RG domain wall� idea:]

• Spectrum is given by half of the full CFT:

He = const.
L0

log(ξ/a)



Numerics: SSH model

• Spectrum depends on type of boundaries (type of SPTs): There is
symmetry-protected degeneracy in the topological phase.
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BCFT and SPT

• Entanglement spectrum for gapped phases is given by BCFT

• When the gapped phase is an SPT, the topological invariant can also be
computed from BCFT. [Cho-Shiozaki-Ryu-Ludwig (16)]

• Switching space and time,

Z = Tr e−β/`L0 = 〈A|e−`/β(L0+L̄0)|B〉 (44)

we introduce boundary states |A〉 and |B〉:

(Ln − L̄−n)|B〉 = 0, ∀n ∈ Z (45)

• From |B〉, the corresponding SPT phase can be identi�ed by the phase

g|B〉h = εB(g|h)|B〉h, g, h ∈ G

where |B〉h is the boundary state in h-twisted sector. This phase is called the
discrete torsion phase εB(g|h) ∈ H2(G,U(1)).



Boundary states as gapped states

• Conformally invariant boundary states, (Ln − L̄−n)|B〉 = 0.

• Boundary states |B〉 do not have real-space correlations:

〈B|e−εHO1(x1) · · · On(xn)e−εH |B〉/〈B|e−2εH |B〉

where x1, · · · , xn refer n di�erent spacial positions. In the limit ε→ 0
with xi 6= xj the correlation function factorizes and does not depend on
xi − xj .

• Boundary states represent a highly excited state within the Hilbert space
of a gapless conformal �eld theory and can be viewed as gapped ground
states. [Miyaji-Ryu-Takayanagi-Wen (14), Cardy (17), Konechny (17)]



Free fermion example

• A massive free massive Dirac fermion in (1+1)d:

H =

∫
dx
[
−iψ†σz∂xψ +mψ†σxψ

]
, ψ = (ψL, ψR)

T

• The ground state of this Hamiltonian is given by

|GS〉 = exp

∑
k>0

m
√
m2 + k2 + k

(
ψ†LkψRk + ψ†R−kψL−k

) |GL〉 ⊗ |GR〉
where ψL,Rk is the Fourier component of ψL,R(x), and |GL,R〉 is the
Fock vacuum of the left- and right-moving sector. In the limit m→∞
(m/(vF k)→∞), |GS〉 reduces to the boundary states of the free
massless fermion theory.



More details

• SPT phases in (1+1)d are classi�ed by group cohomology H2(G,U(1)).
[Chen-Gu-Liu-Wen (02)] Recall:

V (g)V (h) = eiα(g,h)V (gh) (46)

• CFT context: Discrete torsion phases in CFT [Vafa (86) ...] and in BCFT
[Douglas (98) ...].

• Discrete torsion phases and entanglement spectrum (symmetry-protected
degeneracy):
Twisted partition function:

ZhAB = TrHAB

[
ĥe−βH

open
AB

]
vanishes when A 6= B. (symmetry-enforced vanishing of partition
function).

Exchange time and space, ZhAB = h〈A|e−
`
2
Hclosed |B〉h and insert g to

show

[εB(g|h)− εA(g|h)]ZhAB = 0



RG and entanglement: entropic c-theorem
• Entropic c-function [Casini (04)] :

cE(R) := 3R
dS(R)

dR
(47)

• At critical points, cE = c (central charge).
• From strong subadditivity:

SA + SB ≥ SA∩B + SA∪B (48)

can argue that S is concave w.r.t. logR:

•

t

x

t = xt = −x

A ∪ B

A ∩ B

A B

2S(
√
rR) ≥ S(R) + S(r) (49)

Taking the limit:r → R:

c′E(R)

3
= S′(R) +RS′′(R) ≤ 0 (50)



Remark: F-theorem

• Is there an analogue of c and c-theorem in (2+1)d? (No weyl anomaly in
(2+1)d)

• EE of a disc D of radius R [Ryu-Takayanagi (06), Myers-Sinha (10)]:

SD(R) = α
2πR

ε
− F (R) (51)

F at the critical point is a universal constant. C.f. topological
entanglement entropy.

• F is related to the partition functions on a sphere S3, F = − logZ(S3)
[Casini-Huerta-Myers (11)].
F-theorem: [Ja�eris et al (11), Klebanov et al (11)]:

FUV ≥ FIR

• Entropic F function: [Liu-Mezei (13)]

F(R) =

(
R
∂

∂R
− 1

)
SD(R) (52)

F(R)|CFT = F and F ′(R) ≤ 0 [Casini-Huerta (12)]

• Applications [Grover (12), ...] Stationarity ?



Topological phases of matter

• Topologically ordered phases: phases which support anyons (' support
topology dependent ground state degeneracy)

• E.g., fractional quantum Hall states,

Z2 quantum spin liquid, etc.

• Quantum phases which are not described by the symmetry-breaking
paradigm. (I.e., Landau-Ginzburg type of theories)

• Instead, characterized by properties of anyons (fusion, braiding, etc.) (I.e.,
topological quantum �eld theories)



Algebraic theory of anyons

• (Bosonic) topological orders are believed to be fully characterized by a
unitary modular tensor category (UMTC).

• (i) Finite set of anyons {1, a, b, . . .} equipped with quantum dimensions
{1, da, db, . . .} (da ≥ 1). Total quantum dimension D:

D =

√∑
a

d2
a (53)

• (ii) Fusion a× b =
∑
cN

c
abc.

• (iii) The modular T matrix, T = diag (1, θa, θb, . . .) where θa = exp 2πiha
is the self-statistical angle of a with ha the topological spin of a.

• (iv) The modular S matrix encodes the braiding between anyons, and
given by (�de�ned by�)

Sab =
1

D

∑
c

Nc
ab

θc
θaθb

dc. (54)



Chiral central charge

• There may be topologically ordered phases with the same braiding
properties, but di�erent values of c, the chiral central charge of the edge
modes.

• Albeit the same braiding properties, they cannot be smoothly deformed to
each other without closing the energy gap.

• Topological order is conjectured to be fully characterized by (S, T, c)



Ground states and S and T

• Ground state degeneracy depending on the topology of the space
(topological ground state degeneracy), related to the presence of anyons
[Wen (90)]

• Ground state degeneracy on a spatial torus, {|Ψi〉}.
• S and T are extracted from the transformation law of {|Ψi〉} [Wen (92)]



Topologically ordered phases and quantum entanglement

• Consider: the reduced density matrix ρA obtained from a ground state
|GS〉 of a topologically-ordered phase by tracing out half-space.

ρA ∝ TrR e
−εH |B .S .〉〈B .S .|e−εH

[Qi-Katsura-Ludwig (12), Fliss et al. (17), Wong (17)]

• Di�erent (Ishibashi) boundary states correspond to di�erent ground states

• With this explicit form of the reduced density matrix, various
entanglement measures can be computed: [Wen-Matsuura-SR]

• the entanglement entropy
• the mutual information
• the entanglement negativity



Bulk-boundary correspondence

• Bulk anyon ↔ twisted boundary conditions at edge:

• Bulk wfn |Ψi〉 ↔ boundary partition function χi

• Bulk S and T matrices acting on |Ψi〉 on spatial torus

↔
S and T matrices acting on boundary partition function χi on spacetime

torus [Cappelli (96), ...]

χa
(
e−

4πβ
l
)

=
∑
a′

Saa′χa′
(
e
−πl
β
)

(55)



• Conformal BC: Ln|b〉 = L−n|b〉 (∀n ∈ Z)

• Ishibashi boundary state:

|ha〉〉 ≡
∞∑
N=0

dha (N)∑
j=1

|ha, N ; j〉 ⊗ |ha, N ; j〉 (56)

• Topological sector dependent normalization (regularization):

|ha〉〉 =
e−εH√

na
|ha〉〉 so that 〈〈ha|hb〉〉 = δab. (57)

• More generically, one can consider a superposition |ψ〉 =
∑
a ψa|ha〉〉

• Reduced density matrix:

ρL,a = TrR(|ha〉〉〈〈ha|)

=
∑
N,j

1

na
e−

8πε
l

(ha+N− c
24

)|ha, N ; j〉〈ha, N ; j|. (58)



Some details

• Trance of the reduced density matrix:

TrL (ρL,a)n =
1

nna
χa
(
e−

8πnε
l
)

=
χa
(
e−

8πnε
l
)

χa
(
e−

8πε
l

)n (59)

• Modular transformation

χa
(
e−

8πnε
l
)

=
∑
a′

Saa′χa′
(
e−

πl
2nε
)

→ Sa0 × e
πcl
48nε (l/ε→∞), (60)

i.e., only the identity �eld I, labeled by �0� here, survives the limit.

• Hence, in the thermodynamic limit l/ε→∞:

TrL (ρL,a)n =

∑
a′ Saa′χa′

(
e−

πl
2nε
)[∑

a′ Saa′χa′
(
e−

πl
2ε

)]n → e
πcl
48ε (

1
n
−n)(Sa0)1−n, (61)



• Final result:

S
(n)
L =

1 + n

n
· πc

48
· l
ε
− lnD +

1

1− n ln d1−n
a

SvN
L =

πc

24
· l
ε
− lnD + ln da (62)

where

Sa0 = da/D (63)

is the quantum dimension.



Lessons

• Entanglement cut may be more useful than physical cut.

• Entanglement and universal information of many-body systems.

• Entanglement can tell the direction of the RG �ow.

• Entanglement and spacetime physics

• Entanglement has a topological interpretation in particular in topological
�eld theories.

• · · ·


