Lecture on quantum entanglement in condensed matter systems

Shinsei Ryu

University of Chicago
January 12, 2018

Overview

- Quantum entanglement as an "order parameter"
- SPT phases (free systems)
- $(1+1) \mathrm{d}$ CFTs
- Perturbed CFTs
- $(2+1)$ d topologically ordered phases
- ...
- Developing theoretical/computational tools:
- DMRG, MPS, PEPS, MERA, and other tensor networks
- Other applications - ETH and many-body localization, thermalization and chaos in dynamical systems, etc.
- Applications to physics of spacetime

Phases of matter

Entanglement and entropy of entanglement

- (0) States of your interest, e.g., $\rho_{t o t}=|\Psi\rangle\langle\Psi|$.
- (i) Bipartition Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
- (ii) Partial trace:

$$
\begin{equation*}
\rho_{A}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi|=\sum_{j} p_{j}\left|\psi_{j}\right\rangle_{A}\left\langle\left.\psi_{j}\right|_{A} \quad\left(\sum_{j} p_{j}=1\right)\right. \tag{1}
\end{equation*}
$$

- (iii) von Neumann Entanglement entropy:

$$
\begin{equation*}
S_{A}=-\operatorname{Tr}_{A}\left[\rho_{A} \ln \rho_{A}\right]=-\sum_{j} p_{j} \ln p_{j} \tag{2}
\end{equation*}
$$

- (iv) Entanglement spectrum $\rho_{A} \propto \exp \left(-H_{e}\right) / Z:$

$$
\begin{equation*}
\left\{\xi_{i}\right\} \quad \text { where } \quad p_{i}=: \exp \left(-\xi_{i}\right) / Z \tag{3}
\end{equation*}
$$

- Mutual information:

$$
\begin{equation*}
I_{A: B} \equiv S_{A}+S_{B}-S_{A \cup B} \tag{4}
\end{equation*}
$$

- Rényi entropy:

$$
\begin{equation*}
R_{A}^{(q)}=\frac{1}{1-q} \ln \left(\operatorname{Tr} \rho_{A}^{q}\right) \tag{5}
\end{equation*}
$$

Note that $S_{A}=\lim _{q \rightarrow 1} R_{A}^{(q)} .\left\{R_{A}^{(q)}\right\}_{q}=$ entanglement spectrum.

- The Rényi mutual information:

$$
\begin{equation*}
I_{A: B}^{(q)} \equiv R_{A}^{(q)}+R_{B}^{(q)}-R_{A \cup B}^{(q)} \tag{6}
\end{equation*}
$$

- Other entanglement measures, e.g., entanglement negativity.

Some key properties

- If $\rho_{\text {tot }}$ is a pure state and $B=\bar{A}, S_{A}=S_{B}$.
- If ρ_{tot} is a mixed state (e.g., $\rho_{\mathrm{tot}}=e^{-\beta H}$), $S_{A} \neq S_{B}$ even when $B=\bar{A}$,
- If $B=\emptyset, S_{A}=S_{\text {thermal }}$.
- Subadditivity:

$$
\begin{equation*}
S_{A+B} \leq S_{A}+S_{B} . \tag{7}
\end{equation*}
$$

i.e., the positivity of the mutual information:
$I_{A: B}=S_{A}+S_{B}-S_{A+B} \geq 0$.

- Strong subadditivity

$$
\begin{equation*}
S_{B}+S_{A B C} \leq S_{A B}+S_{B C} \tag{8}
\end{equation*}
$$

By setting $C=\emptyset$, we obtain the subadditivity relation.

ES in non-interacting systems

- Consider the ground states $|G S\rangle$ of free (non-interacting) systems, and bipartitioning $\mathcal{H}=\mathcal{H}_{L} \otimes \mathcal{H}_{R}$.
- When $\rho_{t o t}=|G S\rangle\langle G S|$ is a Gaussian state, H_{e} is quadratic [Pesche (02)].

$$
\begin{equation*}
H_{e}=\sum_{I, J \in L} \psi_{I}^{\dagger} K_{I J} \psi_{J}, \quad I=\mathbf{r}, \sigma, i, \ldots \tag{9}
\end{equation*}
$$

- H_{e} can be reconstructed from 2 pt functions: $C_{I J}:=\langle G S| \psi_{I}^{\dagger} \psi_{J}|G S\rangle$.

$$
C=\left(\begin{array}{cc}
C_{L} & C_{L R} \tag{10}\\
C_{R L} & C_{R}
\end{array}\right), \quad C_{R L}=C_{L R}^{\dagger}
$$

- Correlation matrix is a projector:

$$
\begin{equation*}
C^{2}=C, \quad Q^{2}=1 \quad\left(Q_{I J}:=1-2 C_{I J}\right) \tag{11}
\end{equation*}
$$

- Entanglement Hamiltonian:

$$
\begin{equation*}
H_{e}=\sum_{I, J \in L} \psi_{I}^{\dagger} K_{I J} \psi_{J}, \quad K=\ln \left[\left(1-C_{L}\right) / C_{L}\right] \tag{12}
\end{equation*}
$$

E.g. the integer quantum Hall effect

- A prototype of topological phases
- Characterized by quantized Hall conductance $\sigma_{x y}=\left(e^{2} / h\right) \times$ (integer).
- Gapped bulk, gapless edge
- Robust against disorder and interactions
- Chiral edge states in ES

Figure: Physical v.s. entanglement spectra of a Chern insulator [SR-Hatsugai (06)]

E.g. the SSH model

- 1d lattice fermion model:

$$
H=t \sum_{i}\left(a_{i}^{\dagger} b_{i}+h . c .\right)+t^{\prime} \sum_{i}\left(b_{i}^{\dagger} a_{i+1}+h . c .\right)
$$

- Phase diagram:

- Physical spectrum, entanglement spectrum, entanglement entropy.

Figure: [SR-Hatsugai (06)]

Symmetry-protected degeneracy in ES

- Robust zero mode in ES; 2-fold degeneracy for each level.

- $S_{A}=A \log \xi / a_{0}+\log 2$
- Degeneracy is symmetry-protected; Symmetry: $a_{i} \rightarrow a_{i}^{\dagger}, b_{i} \rightarrow-b_{i}^{\dagger}$. (Class D or AllI/BDI topological insulator)
- Symmetry-protected degeneracy is an indicator of symmetry-protected topological (SPT) phases. [Pollmann-Berg-Turner-Oshikawa (10)]

Symmetry-protected topological phases (SPT phases)

- "Deformable" to a trivial phase (state w/o entanglement) in the absence of symmetries.
- (Unique ground state on any spatial manifold - "invertible")
- But sharply distinct from trivial state, once symmetries are enforced.

- Example: SSH model, time-reversal symmetric topological insulators, the Haldane phase
- Symmetry-breaking paradigm does not apply: no local order parameter
$\xrightarrow[\langle M\rangle \neq 0]{ } \quad\langle M\rangle=0$

Entanglement spec. and non-spatial symmetry

- How about symmetry ?
- Corr. matrix inherits symmetries of the Hamiltonian

$$
\begin{align*}
& \psi_{I} \rightarrow U_{I J} \psi_{J}, \quad H_{p h y s} \rightarrow U^{\dagger} H_{p h y s} U=H_{p h y s} \\
& Q \rightarrow U^{\dagger} Q U=Q \tag{14}
\end{align*}
$$

- Non-spatial symmetry, the sub block of corr. matrix inherits symmetries:

$$
\begin{equation*}
Q_{L} \rightarrow U^{\dagger} Q_{L} U=Q_{L} \tag{15}
\end{equation*}
$$

So does the entanglement Hamiltonian. This may result in degeneracy in the ES.

Another example

- Spin-1 Antiferromagnetic spin chain

$$
\begin{equation*}
H=\sum_{j} \boldsymbol{S}_{j} \cdot \boldsymbol{S}_{j+1}+U_{z z} \sum_{j}\left(S_{j}^{z}\right)^{2} \tag{16}
\end{equation*}
$$

Figure: [Pollmann-Berg-Turner-Oshikawa (10)]

View from Matrix product states

- Matrix product state representation:

$$
\begin{gathered}
\Psi\left(s_{1}, s_{2}, \cdots\right)=\sum_{\left\{i_{n}=1, \cdots\right\}} A_{i_{1} i_{2}}^{s_{1}} A_{i_{2} i_{3}}^{s_{2}} A_{i_{3} i_{4}}^{s_{3}} \cdots \quad s_{a}=-1,0,1 \\
A_{s_{1}}^{i_{1}} A s_{2}^{i_{2}} A s_{s_{3}}^{i_{3}} A s_{4}^{i_{4}} A
\end{gathered}
$$

- Symmetry action: for $g, h \in$ Symmetry group, we have $U(g)$ acting on physical Hilbert space:

$$
\begin{align*}
& U(g) U(h)=U(g h) \\
& U(g)_{s}^{s^{\prime}} A^{s}=V^{-1}(g) A^{s^{\prime}} V(g) e^{i \theta_{g}} \tag{17}
\end{align*}
$$

- Symmetry acts on the "internal" space projectively:

$$
\begin{equation*}
V(g) V(h)=e^{i \alpha(g, h)} V(g h) \tag{18}
\end{equation*}
$$

[Chen et al (11), Pollmann et al (10-12), Schuch et al (11)]

(Entanglement spec) ${ }^{2}$ and SUSY QM

- From $C^{2}=C$:

$$
\begin{align*}
C_{L}^{2}-C_{L} & =-C_{L R} C_{R L}, \\
Q_{L} C_{L R} & =-C_{L R} Q_{R}, \\
C_{R L} Q_{L} & =-Q_{R} C_{R e L}, \\
C_{R}^{2}-C_{R} & =-C_{R L} C_{L R} \tag{19}
\end{align*}
$$

- Introduce:

$$
\mathcal{S}=1-\left(\begin{array}{cc}
Q_{L}^{2} & 0 \tag{20}\\
0 & Q_{R}^{2}
\end{array}\right), \quad \mathcal{Q}=\left(\begin{array}{cc}
0 & 2 C_{L R} \\
0 & 0
\end{array}\right), \quad \mathcal{Q}^{\dagger}=\left(\begin{array}{cc}
0 & 0 \\
2 C_{R L} & 0
\end{array}\right) .
$$

- SUSY algebra

$$
\begin{align*}
& {[\mathcal{S}, \mathcal{Q}]=\left[\mathcal{S}, \mathcal{Q}^{\dagger}\right]=0,} \\
& \left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}=\mathcal{S}, \quad\{\mathcal{Q}, \mathcal{Q}\}=\left\{\mathcal{Q}^{\dagger}, \mathcal{Q}^{\dagger}\right\}=0 \tag{21}
\end{align*}
$$

Entanglement spec. and spatial symmetries

- $\mathrm{L} / \mathrm{R}=$ "fermionic" /"bosonic" sector; $C_{L, R}$ intertwines the two sectors:

$$
\begin{equation*}
\mathcal{H}_{L} \stackrel{\stackrel{C_{L R}}{\leftrightarrows}}{\underset{C_{R L}}{\leftrightarrows}} \mathcal{H}_{R} \tag{22}
\end{equation*}
$$

- Spatial symmetry \mathcal{O} : choose bipartitioning s.t.

$$
\begin{equation*}
\mathcal{O}: \mathcal{H}_{L} \longleftrightarrow \mathcal{H}_{R} \tag{23}
\end{equation*}
$$

$$
O=\left(\begin{array}{cc}
0 & O_{L R} \tag{24}\\
O_{R L} & 0
\end{array}\right), \quad O_{L R} O_{L R}^{\dagger}=O_{R L} O_{R L}^{\dagger}=1
$$

- Symmetry of entanglement Hamiltonian:

$$
\begin{equation*}
Q_{L} C_{L R} O_{L R}^{\dagger}=C_{L R} O_{L R}^{\dagger} Q_{L}^{*} \tag{25}
\end{equation*}
$$

[Turner-Zhang-Vishwanath (10), Hughes-Prodan-Bernevig (11),
Fang-Gilbert-Bernevig (12-13), Chang-Mudry-Ryu (14)]

Graphene with Kekule order

- Kekule distortion in graphene

- Degeneracy protected by inversion

- Entanglement spec. is more useful than physical spec.

Short notes: Conformal field theory in (1+1)d

- Scale invariance in (1+1)d \rightarrow conformal symmetry (Polchinski)
- Conformal symmetry is infinite dimensional. Holomorphi-anti-holomorphic factorization
- Infinite symmetry generated by stress energy tensor

$$
\begin{equation*}
T(z)=\sum_{n=-\infty}^{+\infty} L_{n} z^{-n-2}, \quad \bar{T}(\bar{z})=\sum_{n=-\infty}^{+\infty} \bar{L}_{n} \bar{z}^{-n-2} \tag{26}
\end{equation*}
$$

- Virasoro algebra

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m,-n} \tag{27}
\end{equation*}
$$

- Characterized by a number c "central charge" (among others)

Short notes: CFT in (1+1)d

- Structure of the spectrum: "tower of states":

$$
\begin{align*}
& |h, N ; j\rangle \otimes|\bar{h}, \bar{N} ; \bar{j}\rangle, \\
& L_{0}|h, N ; j\rangle=(h+N)|h, N ; j\rangle . \\
& \bar{L}_{0}|\bar{h}, \bar{N} ; \bar{j}\rangle=(\bar{h}+\bar{N})|\bar{h}, \bar{N} ; \bar{j}\rangle . \tag{28}
\end{align*}
$$

- In other words:

$$
\begin{equation*}
\mathcal{H}=\bigoplus_{h, \bar{h}} n_{h, \bar{h}} \mathcal{V}_{h} \otimes \overline{\mathcal{V}}_{\bar{h}} \tag{29}
\end{equation*}
$$

$n_{h, \bar{h}}$: the number of distinct primary fields with conformal weight (h, \bar{h}).
(For simplicity, we only consider the diagonal CFTs with $n_{h, \bar{h}}=\delta_{h, \bar{h}}$.)

Central charge

- $c=$ Weyl anomaly; at critical points, there are emergent scale invariance, but this emergent symmetry is broken by an anomaly.
- $c \simeq$ (number of degrees of freedom)
- c shows up in free energy and specific heat, etc:

$$
\begin{equation*}
c_{V}=\frac{\pi c}{3 v \beta} \tag{30}
\end{equation*}
$$

Note: v is non-universal.

- Can be extracted from the entanglement entropy scaling:

$$
\begin{equation*}
S_{A}=\frac{c}{3} \log R+\cdots \tag{31}
\end{equation*}
$$

- RG monotone. (Zamolodchikov c-function; entropic c-function)

Radial and angular quantization

- $w(z)=\log z$

- CFT on a plane \leftrightarrow CFT on a cylinder
- Radial evolution \leftrightarrow Hamiltonian
- Angular evolution (Entanglement or Rindler Hamiltonian) \leftrightarrow Hamiltonian with boundary

Radial flow - Finite size scaling

- CFT on a cylinder of circumference L

$$
\begin{align*}
H & =\frac{1}{2 \pi} \int_{0}^{L} d v T_{u u}\left(u_{0}, v\right) \\
& =\frac{1}{2 \pi} \oint_{C_{w}} d w T(w)+\text { (anti-hol) } \tag{32}
\end{align*}
$$

- Conformal map: cylinder \rightarrow plane $w=\frac{L}{2 \pi} \log z$

$$
\begin{align*}
\oint_{C_{w}} d w T(w) & =\oint_{C_{z}} d z \frac{d w}{d z}\left(\frac{2 \pi}{L}\right)^{2}\left[z^{2} T(z)-\frac{c}{24}\right] \\
& =\oint_{C_{z}} d z\left(\frac{L}{2 \pi}\right)\left[z T(z)-\frac{c}{24} \frac{1}{z}\right] \tag{33}
\end{align*}
$$

- CFT Hamiltonian on a cylinder can be written in terms of dilatation operator $L_{0}+\bar{L}_{0}$ on a plane:

$$
\begin{equation*}
H=\frac{2 \pi}{L}\left(L_{0}+\bar{L}_{0}-\frac{c}{24}\right) \tag{34}
\end{equation*}
$$

- Gives relation between stress tensor (on z-plane) to a "physical" Hamiltonian on a finite cylinder.
- Level spacing scales as $1 / L$.
- Levels are equally spaced (within a tower)
- The $c / 24 \times 1 / L$ part allows us to determine c (numerically). (the extensive part $A \times L$ has to be subtracted.)
- Degeneracy \rightarrow full identification of the theory

Radial flow - Numerics

- XX model: $H=\sum_{j}\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}\right)$

$$
\frac{E-E_{G S}}{E_{1}-E_{G S}}
$$

- For a given tower, all levels are equally spaced.
- Level spacing scales as $1 / L$.

Angular flow

Angular flow - Corner transfer matrix

- Corner transfer matrix $A_{\sigma \mid \sigma^{\prime}}$ and partition function $Z=\operatorname{Tr} A^{4}$

[Baxter (80's); Figures:Wikipedia]

Angular flow $=$ Entanglement (Rindler) Hamiltonian

- In Euclidean signature, $z=x+i y=e^{w}=e^{u+i v}$ maps the complex z-plane to a cylinder.
- In Minkowski signature: $(t, x) \rightarrow(u, v)$ (Rindler coordinate):

$$
\begin{aligned}
x & =e^{u} \cosh v, \\
t & =e^{u} \sinh v .
\end{aligned}
$$

- In the Rindler coord., the half of the 2d spacetime is inaccessible ("traced out").
- Radial evolution in the complex z-plane $\rightarrow u$-evolution in the cylinder

- Angular evolution in the complex z-plane $\rightarrow v$-evolution in the cylinder
$=$ entanglement (or Rindler) Hamiltonian

Rindler Hamiltonian

- Constant u trajectories $=$ World-lines of observer with constant acceleration a where $a=1$ in our case. Accelerated observer in Minkowski space $=$ Static observer in Rindler space
- Unruh effect: Vacuum is observer dependent. Observer in an accelerated frame (Rindler observer) sees the vacuum of the Minkowski vacuum as a thermal bath with Unruh temperature

$$
\begin{equation*}
T=\frac{a}{2 \pi}=\frac{1}{2 \pi} \tag{35}
\end{equation*}
$$

- This is due to a "Rindler horizon" and inability to access the other part of spacetime. Rinder coordinates covers with metric

$$
\begin{equation*}
d s^{2}=e^{2 a u}\left(-d v^{2}+d u^{2}\right) \tag{36}
\end{equation*}
$$

only covers $x>|t|$ (the right Rindler wedge).

- Left Rindler wedge is defined by

$$
\begin{aligned}
x & =e^{u} \cosh v \\
t & =-e^{u} \sinh v
\end{aligned}
$$

Entanglement Hamiltonian for finite interval

- $w(z)=\ln (z+R) /(z-R)$

- Entanglement hamiltonian on finite interval $[-R,+R] \rightarrow$ Hamiltonian with boundaries
- Transforming from strip to plane:

$$
\begin{equation*}
H=\left.\int d u T_{v v}\right|_{v_{0}=\pi}=\left.\int_{-R}^{+R} d x \frac{\left(x^{2}-R^{2}\right)}{2 R} T_{y y}\right|_{y=0} \tag{37}
\end{equation*}
$$

- Entanglement spec: $1 / \log (R)$ scaling
E.g., Casini-Huerta-Myers (11), Cardy-Tonni (16)

SSH chain

- Entanglement spectrum of CFT GS: $H^{E}=$ const. $\frac{L_{0}}{\log (R / a)}$

$$
\begin{equation*}
H=t \sum_{i}\left(a_{i}^{\dagger} b_{i}+h . c .\right)+t^{\prime} \sum_{i}\left(b_{i}^{\dagger} a_{i+1}+h . c .\right) \tag{38}
\end{equation*}
$$

with $t=t^{\prime}$

Figure: [Cho-Ludwig-Ryu (16)]

Numerics

Figure: [Lauchli (13)]

Remarks:

- What is an analogue of the radial direction?
- It is related to the so-called sine-square deformation (SSD). [Gendiar-Krcmar-Nishino (09), Hikihara-Nishino (11), ...]
- Evolution operator:

$$
\begin{equation*}
H=\int_{0}^{\pi} d v T_{u u}\left(u_{0}, v\right)=r_{0}^{2} \int_{0}^{2 \pi} d \theta \frac{\cos \theta+\cosh u_{0}}{\sinh u_{0}} T_{r r}(r, \theta) \tag{39}
\end{equation*}
$$

- In the limit $R \rightarrow 0$,

$$
\begin{equation*}
H \sim \int_{0}^{L} d s \sin ^{2}\left(\frac{\pi s}{L}\right) T_{r r}\left(\frac{L}{2 \pi}, \frac{2 \pi s}{L}\right) \tag{40}
\end{equation*}
$$

[Ishibashi-Tada (15-16); Okunishi (16); Wen-Ryu-Ludwig (16)]

Perturbed CFT

- Add a relevant perturbation

$$
\begin{equation*}
S=S_{*}+g \int d^{2} z \phi(z, \bar{z}) \tag{41}
\end{equation*}
$$

and go into a massive phase; Consider the entanglement Hamiltonian for half space.

- The above conformal map leads to an exponentially growing potential

$$
\begin{equation*}
S_{*}+g \int_{u_{1}}^{u_{2}} d u \int_{0}^{2 \pi} d v e^{y u} \Phi(w, \bar{w}) \tag{42}
\end{equation*}
$$

with length scale $\log (\xi / a)$.

Entanglement Spectrum

- Entanglement spectrum for gapped phases is given by a CFT with boundaries (Boundary CFT in short) of a nearby CFT

Partition function:

$$
\begin{equation*}
Z_{A B}=\operatorname{Tr}_{A B} e^{-H_{e}} \tag{43}
\end{equation*}
$$

Here, $A=$ vacuum and $B=S P T$. ["RG domain wall" idea:]

- Spectrum is given by half of the full CFT:

$$
H_{e}=\text { const. } \frac{L_{0}}{\log (\xi / a)}
$$

Numerics: SSH model

- Spectrum depends on type of boundaries (type of SPTs): There is symmetry-protected degeneracy in the topological phase.

BCFT and SPT

- Entanglement spectrum for gapped phases is given by BCFT
- When the gapped phase is an SPT, the topological invariant can also be computed from BCFT. [Cho-Shiozaki-Ryu-Ludwig (16)]
- Switching space and time,

$$
\begin{equation*}
Z=\operatorname{Tr} e^{-\beta / \ell L_{0}}=\langle A| e^{-\ell / \beta\left(L_{0}+\bar{L}_{0}\right)}|B\rangle \tag{44}
\end{equation*}
$$

we introduce boundary states $|A\rangle$ and $|B\rangle$:

$$
\begin{equation*}
\left(L_{n}-\bar{L}_{-n}\right)|B\rangle=0, \quad \forall n \in \mathbb{Z} \tag{45}
\end{equation*}
$$

- From $|B\rangle$, the corresponding SPT phase can be identified by the phase

$$
g|B\rangle_{h}=\varepsilon_{B}(g \mid h)|B\rangle_{h}, \quad g, h \in G
$$

where $|B\rangle_{h}$ is the boundary state in h-twisted sector. This phase is called the discrete torsion phase $\varepsilon_{B}(g \mid h) \in H^{2}(G, U(1))$.

Boundary states as gapped states

- Conformally invariant boundary states, $\left(L_{n}-\bar{L}_{-n}\right)|B\rangle=0$.
- Boundary states $|B\rangle$ do not have real-space correlations:

$$
\langle B| e^{-\epsilon H} \mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{n}\left(x_{n}\right) e^{-\epsilon H}|B\rangle /\langle B| e^{-2 \epsilon H}|B\rangle
$$

where x_{1}, \cdots, x_{n} refer n different spacial positions. In the limit $\epsilon \rightarrow 0$ with $x_{i} \neq x_{j}$ the correlation function factorizes and does not depend on $x_{i}-x_{j}$.

- Boundary states represent a highly excited state within the Hilbert space of a gapless conformal field theory and can be viewed as gapped ground states. [Miyaji-Ryu-Takayanagi-Wen (14), Cardy (17), Konechny (17)]

Free fermion example

- A massive free massive Dirac fermion in $(1+1) \mathrm{d}$:

$$
H=\int d x\left[-i \psi^{\dagger} \sigma_{z} \partial_{x} \psi+m \psi^{\dagger} \sigma_{x} \psi\right], \quad \psi=\left(\psi_{L}, \psi_{R}\right)^{T}
$$

- The ground state of this Hamiltonian is given by

$$
|G S\rangle=\exp \left[\sum_{k>0} \frac{m}{\sqrt{m^{2}+k^{2}}+k}\left(\psi_{L k}^{\dagger} \psi_{R k}+\psi_{R-k}^{\dagger} \psi_{L-k}\right)\right]\left|G_{L}\right\rangle \otimes\left|G_{R}\right\rangle
$$

where $\psi_{L, R k}$ is the Fourier component of $\psi_{L, R}(x)$, and $\left|G_{L, R}\right\rangle$ is the Fock vacuum of the left- and right-moving sector. In the limit $m \rightarrow \infty$ $\left(m /\left(v_{F} k\right) \rightarrow \infty\right),|G S\rangle$ reduces to the boundary states of the free massless fermion theory.

More details

- SPT phases in (1+1)d are classified by group cohomology $H^{2}(G, U(1))$. [Chen-Gu-Liu-Wen (02)] Recall:

$$
\begin{equation*}
V(g) V(h)=e^{i \alpha(g, h)} V(g h) \tag{46}
\end{equation*}
$$

- CFT context: Discrete torsion phases in CFT [Vafa (86) ...] and in BCFT [Douglas (98) ...].
- Discrete torsion phases and entanglement spectrum (symmetry-protected degeneracy):
Twisted partition function:

$$
Z_{A B}^{h}=\operatorname{Tr}_{\mathcal{H}_{A B}}\left[\hat{h} e^{-\beta H_{A B}^{o p e n}}\right]
$$

vanishes when $A \neq B$. (symmetry-enforced vanishing of partition function).
Exchange time and space, $Z_{A B}^{h}={ }_{h}\langle A| e^{-\frac{\ell}{2} H^{\text {closed }}}|B\rangle_{h}$ and insert g to show

$$
\left[\varepsilon_{B}(g \mid h)-\varepsilon_{A}(g \mid h)\right] Z_{A B}^{h}=0
$$

RG and entanglement: entropic c-theorem

- Entropic c-function [Casini (04)] :

$$
\begin{equation*}
c_{E}(R):=3 R \frac{d S(R)}{d R} \tag{47}
\end{equation*}
$$

- At critical points, $c_{E}=c$ (central charge).
- From strong subadditivity:

$$
\begin{equation*}
S_{A}+S_{B} \geq S_{A \cap B}+S_{A \cup B} \tag{48}
\end{equation*}
$$

can argue that S is concave w.r.t. $\log R$:

$$
\begin{equation*}
2 S(\sqrt{r R}) \geq S(R)+S(r) \tag{49}
\end{equation*}
$$

Taking the limit: $r \rightarrow R$:

$$
\begin{equation*}
\frac{c_{E}^{\prime}(R)}{3}=S^{\prime}(R)+R S^{\prime \prime}(R) \leq 0 \tag{50}
\end{equation*}
$$

Remark: F-theorem

- Is there an analogue of c and c-theorem in ($2+1$)d? (No weyl anomaly in $(2+1) \mathrm{d})$
- EE of a disc D of radius R [Ryu-Takayanagi (06), Myers-Sinha (10)]:

$$
\begin{equation*}
S_{D}(R)=\alpha \frac{2 \pi R}{\epsilon}-F(R) \tag{51}
\end{equation*}
$$

F at the critical point is a universal constant. C.f. topological entanglement entropy.

- F is related to the partition functions on a sphere $S^{3}, F=-\log Z\left(S^{3}\right)$ [Casini-Huerta-Myers (11)].
F-theorem: [Jafferis et al (11), Klebanov et al (11)]:

$$
F_{U V} \geq F_{I R}
$$

- Entropic \mathcal{F} function: [Liu-Mezei (13)]

$$
\begin{equation*}
\mathcal{F}(R)=\left(R \frac{\partial}{\partial R}-1\right) S_{D}(R) \tag{52}
\end{equation*}
$$

$\left.\mathcal{F}(R)\right|_{C F T}=F$ and $\mathcal{F}^{\prime}(R) \leq 0$ [Casini-Huerta (12)]

- Applications [Grover (12), ...] Stationarity?

Topological phases of matter

- Topologically ordered phases: phases which support anyons (\simeq support topology dependent ground state degeneracy)
- E.g., fractional quantum Hall states,

\mathbb{Z}_{2} quantum spin liquid, etc.
- Quantum phases which are not described by the symmetry-breaking paradigm. (I.e., Landau-Ginzburg type of theories)
- Instead, characterized by properties of anyons (fusion, braiding, etc.) (I.e., topological quantum field theories)

Algebraic theory of anyons

- (Bosonic) topological orders are believed to be fully characterized by a unitary modular tensor category (UMTC).
- (i) Finite set of anyons $\{1, a, b, \ldots\}$ equipped with quantum dimensions $\left\{1, d_{a}, d_{b}, \ldots\right\}\left(d_{a} \geq 1\right)$. Total quantum dimension D :

$$
\begin{equation*}
D=\sqrt{\sum_{a} d_{a}^{2}} \tag{53}
\end{equation*}
$$

- (ii) Fusion $a \times b=\sum_{c} N_{a b}^{c} c$.
- (iii) The modular T matrix, $T=\operatorname{diag}\left(1, \theta_{a}, \theta_{b}, \ldots\right)$ where $\theta_{a}=\exp 2 \pi i h_{a}$ is the self-statistical angle of a with h_{a} the topological spin of a.
- (iv) The modular S matrix encodes the braiding between anyons, and given by ("defined by")

$$
\begin{equation*}
S_{a b}=\frac{1}{D} \sum_{c} N_{a b}^{c} \frac{\theta_{c}}{\theta_{a} \theta_{b}} d_{c} . \tag{54}
\end{equation*}
$$

Chiral central charge

- There may be topologically ordered phases with the same braiding properties, but different values of c, the chiral central charge of the edge modes.
- Albeit the same braiding properties, they cannot be smoothly deformed to each other without closing the energy gap.
- Topological order is conjectured to be fully characterized by (S, T, c)

Ground states and S and T

- Ground state degeneracy depending on the topology of the space (topological ground state degeneracy), related to the presence of anyons [Wen (90)]
- Ground state degeneracy on a spatial torus, $\left\{\left|\Psi_{i}\right\rangle\right\}$.
- S and T are extracted from the transformation law of $\left\{\left|\Psi_{i}\right\rangle\right\}$ [Wen (92)]

Topologically ordered phases and quantum entanglement

- Consider: the reduced density matrix ρ_{A} obtained from a ground state $|G S\rangle$ of a topologically-ordered phase by tracing out half-space.

$L \quad R$

$$
\rho_{A} \propto \operatorname{Tr}_{R} e^{-\epsilon H}|B . S .\rangle\langle B . S .| e^{-\epsilon H}
$$

[Qi-Katsura-Ludwig (12), Fliss et al. (17), Wong (17)]

- Different (Ishibashi) boundary states correspond to different ground states
- With this explicit form of the reduced density matrix, various entanglement measures can be computed: [Wen-Matsuura-SR]
- the entanglement entropy
- the mutual information
- the entanglement negativity

Bulk-boundary correspondence

- Bulk anyon \leftrightarrow twisted boundary conditions at edge:

Edge

- Bulk wfn $\left|\Psi_{i}\right\rangle \leftrightarrow$ boundary partition function χ_{i}
- Bulk S and T matrices acting on $\left|\Psi_{i}\right\rangle$ on spatial torus \leftrightarrow
S and T matrices acting on boundary partition function χ_{i} on spacetime torus [Cappelli (96), ...]

$$
\begin{equation*}
\chi_{a}\left(e^{-\frac{4 \pi \beta}{l}}\right)=\sum_{a^{\prime}} \mathcal{S}_{a a^{\prime}} \chi_{a^{\prime}}\left(e^{-\frac{\pi l}{\beta}}\right) \tag{55}
\end{equation*}
$$

- Conformal BC: $L_{n}|b\rangle=\bar{L}_{-n}|b\rangle(\forall n \in \mathbb{Z})$
- Ishibashi boundary state:

$$
\begin{equation*}
\left.\left|h_{a}\right\rangle\right\rangle \equiv \sum_{N=0}^{\infty} \sum_{j=1}^{d_{h_{a}}(N)}\left|h_{a}, N ; j\right\rangle \otimes \overline{\left|h_{a}, N ; j\right\rangle} \tag{56}
\end{equation*}
$$

- Topological sector dependent normalization (regularization):

$$
\begin{equation*}
\left.\left.\left|\mathfrak{h}_{a}\right\rangle\right\rangle=\frac{e^{-\epsilon H}}{\sqrt{\mathfrak{n}_{a}}}\left|h_{a}\right\rangle\right\rangle \quad \text { so that } \quad\left\langle\left\langle\mathfrak{h}_{a} \mid \mathfrak{h}_{b}\right\rangle\right\rangle=\delta_{a b} . \tag{57}
\end{equation*}
$$

- More generically, one can consider a superposition $\left.|\psi\rangle=\sum_{a} \psi_{a}\left|\mathfrak{h}_{a}\right\rangle\right\rangle$
- Reduced density matrix:

$$
\begin{align*}
& \rho_{L, a}=\operatorname{Tr}_{R}\left(\left|\mathfrak{h}_{a}\right\rangle\right\rangle\left\langle\left\langle\mathfrak{h}_{a}\right|\right) \\
& =\sum_{N, j} \frac{1}{\mathfrak{n}_{a}} e^{-\frac{8 \pi \epsilon}{l}\left(h_{a}+N-\frac{c}{24}\right)}\left|h_{a}, N ; j\right\rangle\left\langle h_{a}, N ; j\right| . \tag{58}
\end{align*}
$$

Some details

- Trance of the reduced density matrix:

$$
\begin{equation*}
\operatorname{Tr}_{L}\left(\rho_{L, a}\right)^{n}=\frac{1}{\mathfrak{n}_{a}^{n}} \chi_{a}\left(e^{-\frac{8 \pi n \epsilon}{l}}\right)=\frac{\chi_{a}\left(e^{-\frac{8 \pi n \epsilon}{l}}\right)}{\chi_{a}\left(e^{-\frac{8 \pi \epsilon}{l}}\right)^{n}} \tag{59}
\end{equation*}
$$

- Modular transformation

$$
\begin{align*}
\chi_{a}\left(e^{-\frac{8 \pi n \epsilon}{l}}\right) & =\sum_{a^{\prime}} \mathcal{S}_{a a^{\prime}} \chi_{a^{\prime}}\left(e^{-\frac{\pi l}{2 n \epsilon}}\right) \\
& \rightarrow \mathcal{S}_{a 0} \times e^{\frac{\pi c l}{48 n \epsilon}} \quad(l / \epsilon \rightarrow \infty), \tag{60}
\end{align*}
$$

i.e., only the identity field I, labeled by " 0 " here, survives the limit.

- Hence, in the thermodynamic limit $l / \epsilon \rightarrow \infty$:

$$
\begin{equation*}
\operatorname{Tr}_{L}\left(\rho_{L, a}\right)^{n}=\frac{\sum_{a^{\prime}} \mathcal{S}_{a a^{\prime}} \chi_{a^{\prime}}\left(e^{-\frac{\pi l}{2 n \epsilon}}\right)}{\left[\sum_{a^{\prime}} \mathcal{S}_{a a^{\prime}} \chi_{a^{\prime}}\left(e^{-\frac{\pi l}{2 \epsilon}}\right)\right]^{n}} \rightarrow e^{\frac{\pi c l}{48 \epsilon}\left(\frac{1}{n}-n\right)}\left(\mathcal{S}_{a 0}\right)^{1-n} \tag{61}
\end{equation*}
$$

- Final result:

$$
\begin{align*}
S_{L}^{(n)} & =\frac{1+n}{n} \cdot \frac{\pi c}{48} \cdot \frac{l}{\epsilon}-\ln \mathcal{D}+\frac{1}{1-n} \ln d_{a}^{1-n} \\
S_{L}^{\mathrm{N}} & =\frac{\pi c}{24} \cdot \frac{l}{\epsilon}-\ln \mathcal{D}+\ln d_{a} \tag{62}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{S}_{a 0}=d_{a} / \mathcal{D} \tag{63}
\end{equation*}
$$

is the quantum dimension.

Lessons

- Entanglement cut may be more useful than physical cut.
- Entanglement and universal information of many-body systems.
- Entanglement can tell the direction of the RG flow.
- Entanglement and spacetime physics
- Entanglement has a topological interpretation in particular in topological field theories.

