Elements of theory of Heavy Fermion superconductors

(NHMFL Winter school, Jan.2013)

Cooper effect and BCS \rightarrow SC order parameter \rightarrow Parity \rightarrow Spin-orbit interaction \rightarrow Lattice group representations \rightarrow Energy spectrum

Classes: crystalline classes \rightarrow magnetic classes \rightarrow the formal approach and simple examples \rightarrow superconducting classes \rightarrow Landau functional \rightarrow two-and three - dimensional representations

Magnetic moments \rightarrow energy spectrum \rightarrow difference between the symmetry and topologically stable zeroes

Summary

(Literature)

The Cooper paper, 1956

Consider two interacting particles $\stackrel{\Gamma}{p_1} + \stackrel{\Gamma}{p_2} = 0 \quad \Psi(\stackrel{\Gamma}{r_1} - \stackrel{\Gamma}{r_2}) \rightarrow \Psi(\stackrel{\Gamma}{p})$ $[p^2/m - E]\Psi(\stackrel{\Gamma}{p}) = -\int V(\stackrel{\Gamma}{p,p'})\Psi(\stackrel{\Gamma}{p'})[d^3\stackrel{\Gamma}{p'}/(2\pi)^3]$

Let $V(p, p') = V \rightarrow$ with the notation $\Psi(p) \equiv \Phi / [p^2 / m - E] \Rightarrow$

$$\Phi = -V \Phi \int \frac{p'^2 dp' d\Omega}{(2\pi)^3} \left(\frac{1}{p'^2 / m - E} \right)$$
 i.e., the integral converges at large *p*
In 3D to form a bound state one needs a finite *V*

! Cooper: not so for two electrons near the Fermi surface

$$\begin{split} \Phi &= -V \Phi \int \frac{p'^2 dp' d\Omega}{(2\pi)^3} \left(\frac{1}{p'^2 / m - E} \right) \Rightarrow |V| \Phi \int v(E_F) d\xi \left(\frac{1}{2\xi + \varepsilon} \right) \propto |V/2| \Phi v(E_F) \ln(\overline{\omega} / \varepsilon) \\ E &= 2E_F - \varepsilon; \xi = v_F (p - p_F); \varepsilon > 0 \\ ! \text{ integrated over } \xi \subseteq \{0, \overline{\omega}\} \text{ One finds: } \varepsilon = \overline{\omega} \exp\{-[2/gv(E_F)]\} (g = |V|) \end{split}$$

The solution always exists! The Fermi surface is unstable with respect to pairing at the arbitrary weak attractive interaction ! (BCS, 1958)

the e-e interaction:

$$\begin{aligned} \hat{H}_{\text{int}} &= \frac{1}{2} \sum_{k,k',q} V_{\alpha\beta;\lambda\mu} (\stackrel{\mathbf{r}}{k}, \stackrel{\mathbf{r}}{k'}) \hat{a}_{-k+q/2,\alpha}^{+} \hat{a}_{k+q/2,\beta}^{+} \hat{a}_{k'+q/2,\lambda} \hat{a}_{-k'+q/2,\mu} \\ G_{\alpha\beta} (\stackrel{\mathbf{i}}{k}; \tau_{1} - \tau_{2}) &= -\{\hat{T}_{\tau} (\hat{a}_{k,\alpha} (\stackrel{\mathbf{i}}{k}, \tau_{1}) \hat{a}_{k,\beta}^{+} (\stackrel{\mathbf{i}}{k}, \tau_{2}))\} \end{aligned}$$

Now

$$\sum_{k} < \hat{a}_{k,\alpha} \hat{a}_{-k,\beta} > \neq 0: N/2$$

$$\sum_{k} < \hat{a}_{k,\alpha}^{+} \hat{a}_{-k,\beta}^{+} > \neq 0: N/2$$

(Gor'kov, 1958)

The anomalous functions:

$$F_{\alpha,\beta}(\overset{\mathbf{i}}{k};\tau_{1}-\tau_{2}) = \{\hat{T}_{\tau}(\hat{a}_{k,\alpha}(\tau_{1})\hat{a}_{-k,\beta}(\tau_{2}))\}$$

$$F_{\alpha\beta}^{+}(\overset{\mathbf{i}}{k};\tau_{1}-\tau_{2}) = \{\hat{T}_{\tau}(\hat{a}_{-k,\alpha}^{+}(\tau_{1})\hat{a}_{k,\beta}^{+}(\tau_{2}))\}$$

In the equations for the new Green functions:

$$(i\omega_n - \xi(\vec{k}))G_{\alpha\beta}(\vec{k}, \omega_n) + \Delta_{\alpha\gamma}(\vec{k})F_{\gamma\beta}^+(\vec{k}, \omega_n) = \delta_{\alpha\beta}$$
$$(i\omega_n + \xi(\vec{k}))F_{\alpha\beta}^+(\vec{k}, \omega_n) + \Delta_{\alpha\gamma}^+(\vec{k})G_{\gamma\beta}(\vec{k}, \omega_n) = 0$$

the "gaps" $\hat{\Delta}(k), \hat{\Delta}^{+}(k)$ are the superconducting order parameters :

$$\begin{split} &\Delta_{\alpha\beta}(\overset{\mathbf{I}}{k}) = -\sum_{k'} V_{\beta\alpha,\mu\lambda}(\overset{\mathbf{I}}{k},\overset{\mathbf{I}}{k'}) < \hat{a}_{k',\alpha}(\tau) \hat{a}_{-k',\alpha}(\tau) > \equiv -\sum_{k'} V_{\beta\alpha,\mu\lambda}(\overset{\mathbf{I}}{k},\overset{\mathbf{I}}{k'}) F_{\lambda\mu}(\overset{\mathbf{I}}{k'},0+) \\ &\Delta_{\alpha,\beta}^{+}(\overset{\mathbf{I}}{k}) = -\sum_{k'} V_{\lambda\mu,\beta\alpha}(\overset{\mathbf{I}}{k},\overset{\mathbf{I}}{k'}) < \hat{a}_{-k',\lambda}^{+}(\tau) \hat{a}_{k',\mu}^{+}(\tau) > \equiv -\sum_{k'} V_{\lambda\mu,\beta\alpha}(\overset{\mathbf{I}}{k},\overset{\mathbf{I}}{k'}) F_{\lambda,\mu}^{+}(\overset{\mathbf{I}}{k'},0+) \end{split}$$

Definition of the transition temperature *Tc* from the linearized gap equation:

$$\Delta_{\alpha\beta}(\vec{k}) = -T_c \sum_{n:k'} V_{\beta\alpha,\gamma\delta}(\vec{k},\vec{k}') \Delta_{\gamma\delta}(\vec{k}') \{\omega_n^2 + \xi^2(\vec{k}')\}^{-1}$$

$$T\sum_{\omega_n,k'} \hat{V}\hat{\Delta}(\overset{\mathbf{r}}{k'}) < \dots > \Longrightarrow \int \frac{d^3 \overset{\mathbf{r}}{k'}}{(2\pi)^3} \hat{V}\hat{\Delta}(\overset{\mathbf{r}}{k'}) \{ \frac{th(\xi_{k'}/2T)}{\xi_{k'}} \} \Longrightarrow (\ln(\overline{W}/T_c) \int \hat{V}(\overset{\mathbf{r}}{k}, \overset{\mathbf{r}}{k'}) \hat{\Delta}(\overset{\mathbf{r}}{k'}) d\Omega_{F,k'}$$

Energy spectrum: $i\omega_n \Rightarrow E$

$$(i\omega_n - \xi(\overset{\mathbf{I}}{k}))\hat{G}(\overset{\mathbf{I}}{k}, \omega_n) + \hat{\Delta}(\overset{\mathbf{I}}{k})\hat{F}^+(\overset{\mathbf{I}}{k}, \omega_n) = \delta_{\alpha\beta}$$
$$(i\omega_n + \xi(\overset{\mathbf{I}}{k}))\hat{F}^+(\overset{\mathbf{I}}{k}, \omega_n) + \hat{\Delta}^+(\overset{\mathbf{I}}{k})\hat{G}(\overset{\mathbf{I}}{k}, \omega_n) = 0$$

Det
$$\begin{bmatrix} E - \xi(\vec{k}) \end{bmatrix} \hat{I} & \hat{\Delta}(\vec{k}) \\ \hat{\Delta}^{+}(\vec{k}) & [E + \xi(\vec{k})] \hat{I} \end{bmatrix} = 0$$

($\hat{I}~$ is the unit spin matrix)

$$Det \| [E^2 - \xi^2(k)] \hat{I} - \hat{\Delta}(k) \times \hat{\Delta}^+(k) \| = 0$$

$$<\hat{a}_{k,\alpha}\hat{a}_{-k,\beta}>=-<\hat{a}_{-k,\beta}\hat{a}_{k,\alpha}>$$

$$\Delta_{\alpha\beta}(\overset{\mathbf{I}}{k}) = -\sum_{k'} V_{\beta\alpha,\mu\lambda}(\overset{\mathbf{I}}{k},\overset{\mathbf{I}}{k'}) < \hat{a}_{k',\alpha}(\tau)\hat{a}_{-k',\alpha}(\tau) > = -\Delta_{\beta\alpha}(\overset{\mathbf{I}}{-k})$$

Strong spin-orbit coupling:

$$S \Rightarrow P$$

Peven: a"singlet", S=0 $\Delta_{\alpha\beta}(\overset{\mathbf{I}}{k}) = i(\hat{\sigma}_2)_{\alpha\beta}f(\overset{\mathbf{I}}{k}) \implies f(-\overset{\mathbf{I}}{k}) = f(\overset{\mathbf{I}}{k})$

 $\begin{array}{l} \mathbf{P} \text{ odd:} \\ \text{a "triplet", S=1} \end{array} \quad \Delta_{\alpha\beta} \begin{pmatrix} \mathbf{i} \\ k \end{pmatrix} = i\{(\overset{\mathbf{F}}{\sigma} \overset{\mathbf{i}}{gd}(\overset{\mathbf{i}}{k}))\hat{\sigma}_2\} \\ \Rightarrow \overset{\mathbf{I}}{d}(-\overset{\mathbf{I}}{k}) = -\overset{\mathbf{I}}{d}(\overset{\mathbf{I}}{k}) \end{array}$

the interaction V expanded over representations of the point group:

$$V_{\alpha,\beta;\mu\lambda}(\vec{k},\vec{k}') \Longrightarrow \sum_{j} A_{j} \hat{\varphi}_{j}(\vec{k}) \otimes \hat{\varphi}_{j}(\vec{k}')$$

$$\hat{\Delta}(\overset{\mathbf{I}}{k}) = (\ln(\overline{W}/T_c) \int \hat{V}(\overset{\mathbf{I}}{k}, \overset{\mathbf{I}}{k}') \hat{\Delta}(\overset{\mathbf{I}}{k}') d\Omega_{F, k'} \implies \hat{\Delta}(\overset{\mathbf{I}}{k}) \propto \hat{\varphi}^{g, u}(\overset{\mathbf{I}}{k})$$

(Here in $(\dots)^{g.u}$ g stands for an even and u- for an odd representations)

 $\hat{\Delta}(\overset{\mathbf{I}}{k}) \propto \hat{\varphi}^{g,u}(\overset{\mathbf{I}}{k})$ \rightarrow Arises only as the solution for the gap at T=Tc

What is the gap structure?

?Strong coupling (say, higher order corrections in V)? Non-linear corrections below *Tc* from other representations

? The multi-dimensional representation : what is the structure of the order parameter just below *Tc* ? in the ground state ?

<Common Crystalline classes and the Space Group>

The total Symmetry Group in the normal phase:

$G \times R \times U(1)$

G –the point group of all rotations and reflections U(1) -multiplication by a phase factor *R*- the time reversal $t \rightarrow -t$. Applying to a wave function: corresponds to the complex conjugation

To warm up: how one builds the non-trivial magnetic classes?

Then the Group of Symmetry in the normal phase is:

$G \times R$

General (formal) approach: single out a subgroup H of the group G

Take all elements $G_i \notin \hat{H}$ and form all products $G_1 \hat{H}, G_2 \hat{H}, ... G_i \hat{H}$

These termed the left classes. Similarly, form the right classes :

$$\hat{H}G_1, \hat{H}G_2, \dots \hat{H}G_i$$

If two manifolds coincide, \hat{H} is the *invariant* sub-group or the *normal*

divisor of \hat{G} . Let g be the number of elements in \hat{G} and h in \hat{H}

Then: g = h(i+1) i+1 is called the *index* of the sub-group

Multiplication of the classes \rightarrow multiply as the elements constituting the classes: $\hat{G_i}\hat{H} \times \hat{G_k}\hat{H} \Rightarrow (\hat{G_i}\hat{G_k})\hat{H}$ The new group of i+1 elements is called the factor-group: F

Two transformation (1, R) constitute the two elements forming the group: R

The method for building all non-trivial magnetic classes is now clear: first find a sub-group of index 2 and distribute the remaining elements over its classes . Next step, form the direct product :

 $\hat{F} \times \hat{R}$

In practice, the method is that all elements from each class, i.e., the elements of the factor group, except the <u>identical class</u> formed by the sub-group \hat{H} Itself, appear combined with the time reversal transformation $R: t \rightarrow t$.

A couple of simple examples below !

Return to superconductivity and to the solutions for the gap at T_c

$$V_{\alpha,\beta;\mu\lambda}(\overset{\mathbf{l}}{k},\overset{\mathbf{l}}{k}') \Rightarrow \sum_{j} A_{j}\hat{\varphi}_{j}(\overset{\mathbf{l}}{k}) \otimes \hat{\varphi}_{j}(\overset{\mathbf{l}}{k}')$$
$$\hat{\Delta}(\overset{\mathbf{l}}{k}) = (\ln(\overline{W}/T_{c})\int \hat{V}(\overset{\mathbf{l}}{k},\overset{\mathbf{l}}{k}')\hat{\Delta}(\overset{\mathbf{l}}{k}')d\Omega_{FS,k'} \implies \hat{\Delta}(\overset{\mathbf{l}}{k}) \propto \hat{\varphi}^{g,u}(\overset{\mathbf{l}}{k})$$

Symmetry Group in the normal phase:

 $G \times R \times U(1)$

For the crystal groups with the center of inversion one may write:

$$G = G' \times C_i$$

where G' is the group of the rotations only and study cases of the even and the odd parity separately

As one example, consider again $D_{\!\scriptscriptstyle A}$. In the normal state:

 $D_4 \times R \times U(1)$

From the product $R \times U(1)$ one may construct the following groups: (In applying to the pair function ->R means taking the complex conjugate) a) The only two groups with index 2: R and $U(1) \Rightarrow (1, e^{-i\pi})$ b) the product of $(1, e^{i\pi/2}, e^{i\pi}, e^{-i\pi/2}) \times R$ E C₂ 2C₄ 2U₂ 2U'₂ a) Do as before: A1 | 1 1 1 1 1 A₂, z D₄(C₄) (E C₂ 2C₄ 2RU₂ 2RU₂) A₂, z | 1 1 1 -1 -1 D4(C4) (E C2 2C4 2 $e^{i\pi}$ U2 2 $e^{i\pi}$ U2) B₁ 1 1 -1 1 -1 B₂ 1 1 -1 -1 1 $D_4(D_2)$ (E C₂ 2RC₄ 2RU₂ 2U'₂) B₂ E; x, y 2 -2 0 0 0 $D_4(D_2)$ (E C₂ 2 $e^{i\pi}C_4$ 2 $e^{i\pi}U_2$ 2U'2)

! for one "gap" the magnetic superconducting phases in a) do not appear at T_c

b) !? Non-Abelian group($1, e^{i\pi/2}, e^{i\pi}, e^{-i\pi/2}$) × R is isomorphic D_4 (index 8 !) (See below)

 \mathcal{D}_{A} The wave functions for the representations of the group $A_1(S = 0)$: Symm. function $A_1(S = 1)$: $a_z^T k_z + b(x_x^T k_x + y_x^T k_v)$ $A_{2}(S=0):k_{x}k_{y}(k_{x}^{2}-k_{y}^{2}) \qquad A_{2}(S=1):(x^{T}k_{y}+y^{T}k_{x})(k_{y}^{2}-k_{y}^{2})$ $D_{A}(C_{A}): (E, C_{2}, 2C_{A}, 2e^{i\pi}U_{2}, 2e^{i\pi}U_{2}')$ $B_1(S=0):(k_x^2-k_v^2) \quad B_1(S=1): xk_x - yk_v \quad \text{"d-wave"}!$ $B_2(S=0): k_x k_y \qquad B_2(S=1): x k_y + y k_y$ $D_4(D_2)(E,C_2,2e^{i\pi}C_4,2e^{i\pi}U_2,2U_2')$ r -

$$E(S = 0): k_z k_x; k_z k_y$$
 $E(S = 1): z k_x; z k_y$

b) !? Non-Abelian group $(1, e^{i\pi/2}, e^{i\pi}, e^{-i\pi/2}) \times R$ is isomorphic D_4 (index 8 !) (For the classes that can be constructed on basis of the two-dimensional representation $E \longrightarrow$ see below)

Symmetry Class and positions of zeroes

$$\hat{A}\psi(\stackrel{r}{p}) = \psi(\stackrel{r}{A}\stackrel{r}{p}) \longrightarrow \hat{A}\stackrel{i}{d}(\stackrel{r}{p}) = \hat{A}\stackrel{i}{d}(\stackrel{r}{A}\stackrel{r}{p})$$

$$D_4(C_4) (E, C_2, 2C_4, 2e^{i\pi} \cup_2, 2e^{i\pi} \cup_2)$$
S=0:

$$\stackrel{r}{p} = (x, 0, p_z)$$

$$\nabla(\stackrel{r}{b}) = e_{yx} \bigcap_{z(x)} \nabla(\stackrel{r}{b}) = -\bigcap_{z(x)} \nabla(\stackrel{r}{b}) = -\nabla(x, 0, -b^z) = -\nabla(x, 0, b^z) \equiv 0$$

$$\stackrel{p}{p} = (x, x, p_z)$$

$$\Delta(\stackrel{r}{p}) = e^{i\pi} U_{2(x-y)} \Delta(\stackrel{r}{p}) = -U_{2(x-y)} \Delta(\stackrel{r}{p}) = -\Delta(x, x, -p_z) = -\Delta(x, x, p_z) \equiv 0$$

Gap is zero on intersections of FS with the vertical symmetry planes

Spin
$$p_0 = (0, 0, p_z); d_0 = (0, 0, d_z)$$

 $p_0 = (0, 0, p_z); d_0 = (0, 0, d_z)$
 $d(p) = e^{i\pi}U_{2(x)}d(p) = -[U_{2(x)}d(U_{2(x)}p)] \Rightarrow d_z(0, 0, -p_z) = -d(p_0)$

Gap is zero on FS at intersection with the 4-fold axis C4

Now let $\varphi_x(k); \varphi_y(k)$ be two functions realizing the representation E. Then the superconducting order parameter, i.e., the "gap" can be presented as:

$$\Delta(k) = \sum_{i=1,2} \eta_i \varphi_i(k)$$

Find Free energy minimum? Consider the second order transitions from the normal state

Near $T_c \rightarrow$ the Landau functional $\Phi(T)$ has the following general form:

$$\Phi(T) = \alpha(T - T_c)(\eta \cdot \eta^*) + \beta_1(\eta \cdot \eta^*)^2 + \beta_2 |\eta^2|^2 + \beta_3(|\eta_x|^4 + |\eta_y|^4)$$

Depending on the coefficients, its minimization leads to the following solutions:

(1,i):

$$k_z(k_x + ik_y) \Rightarrow k_z \exp(i\varphi)$$
 $f(k_x + ik_y) \Rightarrow f(i\varphi)$
Superconducting class

D₄(E):
$$(E, e^{i\pi}C_2, e^{i\pi/2}C_4, e^{-i\pi/2}C_4^3, e^{i\pi}RU_{2x}, RU_{2y}, 2e^{\pm i\pi/2}RU_2')$$

Magnetic class!(the moment is along the z-axis)? !Omit the U(1)-elements(E
$$C_2 2C_4 2RU_2 2RU_2)$$
and compare with $D_4(C_4)$:

 $D_4(E)$ is the most symmetric class that can be constructed from this two-dimensional representation without lowering symmetry of the lattice (of the crystalline class)

In fact, compare
$$\rightarrow$$
 (1,0): $k_z k_x (or \rightarrow k_z k_y)$ (1,1): $k_z (k_x \pm k_y)$

Two symmetric classes preserving the crystalline symmetry for the cubic lattices :

The cubic symmetry

Two symmetric new classes that are possible **O(T)**, **O(D**₂)

A2
$$(E, 8C_3, 3C_2, 6e^{-i\pi}C_2, 6e^{-i\pi}C_4)$$
 O(T)

Another high symmetric class formed from E: O(D2)		Εä	BC3	3C 2	6C2	6C4	
(Somewhat lengthy !) $O(D_2) \Rightarrow (E, 3C_2, 2U_2^{(perp)x} RC_4^x R, 2C_4^y \varepsilon R, 2C_4^z \varepsilon^2 R,$ $AC_4^{-2} AC_4^2 = 2U_4^{(perp)x} R - 2U_4^{(perp)y} R - 2U_4^{(perp)z} R^2 R,$	A 1	1	1	1	1	1	
$4C_3\varepsilon^2, 4C_3^2\varepsilon, 2U_2^{(polp)x}R, 2U_2^{(polp)y}\varepsilon R, 2U_2^{(polp)z}\varepsilon^2 R)$	A2	1	1	1	-1	-1	
Symmetry phases for representations E, F_1 , F_2 just below $T_c \rightarrow$ from the Landau functional	E	2	-1	2	0	0	
	F2	3	0	-1	1	-1	
Qualitative new results from F1 and F2	F1 <i>x, y; z</i>	3	0	-1	-1	1	

→ For the three dimensional representations there are three parameters in

$$\Delta(\vec{k}) = \sum_{i \in \mathcal{I}} \eta_i \varphi_i(\vec{k})$$

The Landau functional at T_c is analogous to that one for the 2D representation of D₄:

$$\Phi(T) = \alpha(T - T_c)(\eta \cdot \eta^*) + \beta_1(\eta \cdot \eta^*)^2 + \beta_2 |\eta^2|^2 + \beta_3(|\eta_x|^4 + |\eta_y|^4 + |\eta_z|^4)$$

The analysis leads to the phase diagram:

In
$$(1, \varepsilon, \varepsilon^2)$$
 $\varepsilon = e^{i\pi/3}$

Three components (η_x, η_y, η_z) play role of the vector $\dot{\eta}$ in the 3D space of F₁ or F₂.

 $\frac{\beta_2}{\beta_1}$ (1,1,0) $\frac{\beta_2}{\beta_1}$ In the above case the components are complex: $\eta = \eta' + i\eta''$ and one may form the third vector $\dot{m} = [\dot{\eta}' \times \dot{\eta}'']$

that has the meaning of a magnetic moment

Excitations to be found from

$$Det \| [E^{2} - \xi^{2}(\vec{k})] \hat{I} - \hat{\Delta}(\vec{k}) \times \hat{\Delta}^{+}(\vec{k}) \| = 0$$

$$Det \| [E^{2} - \xi^{2}(\vec{k})] \hat{I} - \hat{\Delta}(\vec{k}) \times \hat{\Delta}^{+}(\vec{k}) \| = 0$$

For P-even ("singlet")
$$E^2 = \xi^2 (k) + |\Delta(k)|^2$$

For P-odd ("triplet"):

 $\eta(k) = \eta'(k) + i\eta''(k) \text{ and } m(k) = [\eta'(k) \times \eta''(k)]$

with
$$\hat{\Delta}(\overset{\mathbf{r}}{k}) = i\{(\overset{\mathbf{r}}{\sigma}\overset{\mathbf{r}}{d}(\overset{\mathbf{r}}{k}))\hat{\sigma}_{2}\}$$
 using: $(\overset{\mathbf{r}}{\sigma}\cdot\overset{\mathbf{r}}{d})g(\overset{\mathbf{r}}{\sigma}\cdot\overset{\mathbf{r}}{d}^{*}) = (\overset{\mathbf{r}}{d}\cdot\overset{\mathbf{r}}{d}^{*})\hat{I} + i(\overset{\mathbf{r}}{\sigma}\cdot[\overset{\mathbf{r}}{d}\times\overset{\mathbf{r}}{d}^{*}])$
 $\rightarrow \det ||[E^{2} - \xi^{2}(\overset{\mathbf{r}}{k}) - |\Delta(\overset{\mathbf{r}}{k})|^{2}]\hat{I} - \overset{\mathbf{r}}{m}(\overset{\mathbf{r}}{k})|| = 0$

one finds that the excitations are split into the two and two branches

$$E_{1,2}^{\pm}(k) = \pm \sqrt{\xi_k^2 + |d(k)|^2 \pm |m(k)|}$$

(compare with two directions of spin for the "s-wave" superconductors)

The basis functions:

("singlet"): $[k_{x}k_{z}(k_{x}^{2}-k_{z}^{2})]; [k_{z}k_{x}(k_{z}^{2}-k_{x}^{2})]; [k_{y}k_{x}(k_{x}^{2}-k_{y}^{2})]$ F₁ ("triplet"): $[yk_z - zk_y]; [zk_x - xk_z]; [xk_y - yk_x]$ $k_{v}k_{z};k_{z}k_{x};k_{x}k_{v}$ ("singlet"): F₂ $yk_z + zk_y; zk_x + xk_z; xk_y + yk_x$ ("triplet"): (1,1,1) Symmetry zeros *versus* the point zeroes: $(1,\varepsilon,\varepsilon^2)$ "singlet" gaps may have zeroes on the symmetry elements of the group (unstable at perturbations) "triplet" gaps may have zeroes at the symmetry $\frac{\beta_2}{\beta_1}$ points on the Fermi surface. In the magnetic classes (1, 0, 0)zeroes correspond to the non-zero magnetic moments: hence, are topologically stable $\beta_3 = -2\beta_2$

What is achieved by the above methods?

a) Knowing the symmetry class allows to identify the positions of the gap zeroes without model assumptions concerning the basis functions

b) <u>Lines</u> of zeroes possible for "singlet" phases; "triplet" phases may possess zeroes <u>only at the points</u> on the Fermi surface. *T-square or T-cube* dependence of the specific heat at low *T*, *c*orrespondingly.

c) Topologically stable magnetic moments in some "triplet" phases

d) For two-and three-dimensional representations the phase transitions at T_c can be split by external perturbations (? UBe₁₃ and UPt₃)

e) Ordinary impurities decrease T_c and may result in "gapless" SC.Lines of zeroes are absolutely unstable at the arbitrary small impurity concentration \rightarrow nonzero DOS

f)The upper critical field can be anisotropic for some symmetry directions directly at *T c* in the cubic and tetragonal lattices $\rightarrow H_{c2}(\varphi)$

g) Non-trivial (phase-sensitive) boundary conditions with significant implications to the Josephson effect $F_s \propto w(\Delta_L \Delta_R^* + c.c)$

Literature(textbooks)

L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics

a) Elements of Group Theory: Quantum mechanics, Non-relativistic Theory, Pergamon, 1977.

b) Crystalline Classes: Statistical Physics, p.1, Pergamon, 1980.

c) Magnetic Classes: Electrodynamics of Continuous Media, Pergamon, 1983.

A. A. Abrikosov, L. P. Gor'kov and I. E. Dzyaloshinskii ,*Methods of Quantum Field Theory in Statistical Physics,* Prentice-Hall, 1963.

V. P. Mineev and K. V. Samokhin, *Introduction to Unconventional Superconductivity*, Gordon and Breach (1999)

Original papers

UBe13: P. W. Anderson, Phys. Rev. B**30**,1549, 4000 (1984); G. E. Volovik and L. P. Gor'kov, JETP Lett. **39**, 674 (1984);

Superconducting Classes: G. E. Volovik and L. Gor'kov, JETP 61, 843 (1986)

Anisotropy of Hc2 at Tc:L. P. Gor'kov, JETP Lett. 40, 1155 (1984)

Instability of lines of zeroes in the presence of deffects: L. P. Gor'kov and P. A. Kalugin, JETP Lett. **41**, 253 (1985)

On magnetism of SCs: G. E. Volovik and V. P. Mineev, JETP **56**, 579 (1982); *ibid*. **54**, 524 (1981); **59**, 972 (1984)

Boundary conditions and the Josephson effect : V. B. Geshkenbein and A. I. Larkin JETP Lett. **43**, 395 (1986)

Why MUST Tc decrease?

$$\hat{\Delta}(\stackrel{\mathbf{r}}{p}) \propto \int V(\stackrel{\mathbf{r}}{p}, \stackrel{\mathbf{r}}{p'}) \left[\underbrace{\stackrel{\mathbf{P}'}{\longrightarrow}} \hat{\Delta}(\stackrel{\mathbf{r}}{p'}) d\stackrel{\mathbf{r}}{p'} + \int V(\stackrel{\mathbf{r}}{p}, \stackrel{\mathbf{r}}{p'}) d\stackrel{\mathbf{r}}{p'} \right] \int V(\stackrel{\mathbf{r}}{p'}, \stackrel{\mathbf{r}}{p'}) \left[\underbrace{\stackrel{\mathbf{P}''}{\longrightarrow}} \hat{\Delta}(\stackrel{\mathbf{r}}{p'}) d\stackrel{\mathbf{r}}{p''} \right] + \dots$$

 $= \int V(p',p') \int \int V(p',p') \int \int V(p'') dp'' = 0$ If gap belongs to any non-identical representation!

Density of states (DOS):
$$v_S / v_N = 4\tau^2 \Delta_0^2 \exp(-2\tau \Delta_0)$$

<u>Appendix</u> : Symmetry Class and positions of zeroes

$$\hat{A}\psi(\stackrel{\mathbf{r}}{p}) = \psi(\stackrel{\hat{A}\stackrel{\mathbf{r}}{p}) \Longrightarrow \hat{A}\stackrel{\mathbf{r}}{d}(\stackrel{\mathbf{r}}{p}) = \hat{A}\stackrel{\mathbf{r}}{d}(\stackrel{\hat{A}\stackrel{\mathbf{r}}{p})$$

Example D₄(C₄) (E, C₂, 2C₄, 2 $e^{i\pi}$ U₂, 2 $e^{i\pi}$ U'₂)

$$\nabla({}_{\mathbf{l}}^{\mathbf{l}}) = e_{i\mu} \Omega^{5(x=h)} \nabla({}_{\mathbf{l}}^{\mathbf{l}}) = -\Omega^{5(x=h)} \nabla({}_{\mathbf{l}}^{\mathbf{l}}) = -\nabla(x, x, -b^{z}) = -\nabla(x, x, b^{z}) = 0$$

$$\Delta({}_{\mathbf{l}}^{\mathbf{l}}) = e^{i\pi} U_{2(x)} \Delta({}_{\mathbf{p}}^{\mathbf{l}}) = -U_{2(x)} \Delta({}_{\mathbf{p}}^{\mathbf{l}}) = -\Delta(x, 0, -p_{z}) = -\Delta(x, 0, p_{z}) \equiv 0$$

$$\sum_{\mathbf{l}}^{\mathbf{l}} = (x, 0, b^{z})$$

Gap is zero on intersections of FS with the vertical symmetry planes

Spin
$$p_0 = (0, 0, p_z); d_0 = (0, 0, d_z)$$

 $p_0 = (0, 0, p_z); d_0 = (0, 0, d_z)$
 $d(p) = e^{i\pi}U_{2(x)}d(p) = -[U_{2(x)}d(U_{2(x)}p)] \Rightarrow d_z(0, 0, -p_z) = -d(p_0)$

Gap is zero on FS at intersection with the 4-fold axis C4

Appendix: Multi band SCs

 $\lambda_{\alpha\beta} = \lambda \, \delta_{\alpha\beta} + \mu (1 - \delta_{\alpha\beta}).$

Three X points in a cubic lattice.

$$\Delta_{\alpha}^{*} \frac{2 \pi^{2}}{m p_{0}} = -\sum_{\beta} \lambda_{\alpha\beta} \Delta_{\beta}^{*} \ln \left(\frac{2 \gamma \omega_{D}}{\pi T_{c}} \right).$$

$$l = (\Delta_1 + \Delta_2 + \Delta_3)/\sqrt{3} \qquad T_{c,A} = \frac{2\gamma\omega_D}{\pi} \exp\left(\frac{2\pi^2}{mp_0(\lambda + 2\mu)}\right) \quad (1D)$$

$$\eta_1 = (\Delta_1 + \epsilon\Delta_2 + \epsilon^2\Delta_3)/\sqrt{3}, \qquad T_{c,E} = \frac{2\gamma\omega_D}{\pi} \exp\left(\frac{2\pi^2}{mp_0(\lambda - \mu)}\right)$$

$$\begin{split} &\frac{2\,\pi^2}{mp_0} \delta F = \frac{T - T_{c,E}}{T_{c,E}} (|\eta_1|^2 + |\eta_2|^2) + \ln(T_{c,E}/T_{c,A})|l|^2 \\ &\quad + \frac{7\,\zeta(3)}{48\,\pi^2 T_{c,E}^2} (|\eta_1|^4 + |\eta_2|^4 + 4|\eta_1|^2|\eta_2|^2 + F_{l\eta}^{(4)}), \end{split}$$

!?Iron pnictides: "1111"

$$"d - wave" \rightarrow x^{2} - y^{2}$$
$$\Delta_{1h} = \Delta_{2h} = 0; \ \Delta_{3e} = -\Delta_{4e} = \Delta$$