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U(1) lattice gauge theory 
(summary)



A U(1) gauge theory can be defined on any lattice, in any 
number of dimensions.  

Gauge (unphysical) variables Amn = – Amn live on links mn. 
Physical variables are electric fluxes on links Emn and 
magnetic fluxes through plaquettes Φmnpq. 

Emn = �Ȧmn �mnpq = Amn +Anp+Apq +Aqn
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Quantum phase transition in d=3 spatial dimensions. 
The order parameter is string tension for a pair of test charges.
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where Qa denotes the total magnetic charge at site a in the diamond
lattice, and rab is the distance between two sites. The finite ‘self-
energy’ u0/2 is required to reproduce the net nearest-neighbour inter-
action correctly. Equation (2)—which is derived in detail in the
Supplementary Information—is equivalent to the dipolar energy
equation (1), up to corrections that are small everywhere, and vanish
with distance at least as fast as 1/r5.

We consider first the ground states of the system. The total energy
is minimized if each diamond lattice site is net neutral, that is, we
must orient the dumbbells so that Qa 5 0 on each site. But this is just
the above-mentioned ice rule, as illustrated in Fig. 2. Thus, one of the
most remarkable features of spin ice follows directly from the dumb-
bell model: the measured low-T entropy agrees with the Pauling
entropy (which follows from the short-distance ice rules), even
though the dipolar interactions are long-range.

We now turn to the excited states. Naively, the most elementary
excitation involves inverting a single dipole / dumbbell to generate a

local net dipole moment 2m. However, this is misleading in a crucial
sense. The inverted dumbbell in fact corresponds to two adjacent
sites with net magnetic charge Qa 5 6qm 5 62m/ad—a nearest-
neighbour monopole–antimonopole pair. As shown in Fig. 2e, the
monopoles can be separated from one another without further viola-
tions of local neutrality by flipping a chain of adjacent dumbbells. A
pair of monopoles separated by a distance r experiences a Coulombic
interaction, {m0q2

m

!
4prð Þ, mediated by monopolar magnetic fields,

see Fig. 3.
This interaction is indeed magnetic, hence the presence of the

vacuum permeability m0, and not 1/e0, the inverse of the vacuum
permittivity. It takes only a finite energy to separate the monopoles
to infinity (that is, they are deconfined), and so they are the true
elementary excitations of the system: the local dipolar excitation
fractionalizes.

By taking the pictures from the dumbbell representation seriously,
we may be thought somehow to be introducing monopoles where
there were none to begin with. In general, it is of course well known
that a string of dipoles arranged head to tail realizes a monopole–
antimonopole pair at its ends17. However, to obtain deconfined
monopoles, it is essential that the cost of creating such a string of
dipoles remain bounded as its length grows, that is, the relevant string
tension should vanish. This is evidently not true in a vacuum (such as
that of the Universe) where the growth of the string can only come at
the cost of creating additional dipoles. Magnetic materials, which
come equipped with vacua (ground states) filled with magnetic
dipoles, are more promising. However, even here a dipole string is
not always a natural excitation, and when it is—for example, in an
ordered ferromagnet – a string of inverted dipoles is accompanied
by costly domain walls along its length (except, as usual, for one-
dimensional systems18), causing the incipient monopoles to remain
confined.

The unusual properties of spin ice arise from its exotic ground
states. The ice rule can be viewed as requiring that two dipole strings
enter and exit each site of the diamond lattice. In a typical spin-ice
ground state, there is a ‘soup’ of such strings: many dipole strings
of arbitrary size and shape can be identified that connect a given pair
of sites. Inverting the dipoles along any one such string creates a
monopole–antimonopole pair on the sites at its ends. The associated
energy cost does not diverge with the length of the string, unlike in
the case of an ordered ferromagnet, because no domain walls are
created along the string, and the monopoles are thus deconfined.

We did not make reference to the Dirac condition19 that the fun-
damental electric charge e and any magnetic charge q must exhibit the
relationship eq 5 nh/m0 whence any monopoles in our universe must
be quantized in units of qD 5 h/m0e. This follows from the monopole
being attached to a Dirac string, which has to be unobservable17. By
contrast, the string soup characteristic of spin ice at low temperature
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Figure 2 | Mapping from dipoles to dumbbells. The dumbbell picture
(c, d) is obtained by replacing each spin in a and b by a pair of opposite
magnetic charges placed on the adjacent sites of the diamond lattice. In the
left panels (a, c), two neighbouring tetrahedra obey the ice rule, with two
spins pointing in and two out, giving zero net charge on each site. In the right
panels (b, d), inverting the shared spin generates a pair of magnetic
monopoles (diamond sites with net magnetic charge). This configuration
has a higher net magnetic moment and it is favoured by an applied magnetic
field oriented upward (corresponding to a [111] direction). e, A pair of
separated monopoles (large red and blue spheres). A chain of inverted
dipoles (‘Dirac string’) between them is highlighted in white, and the
magnetic field lines are sketched.
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Figure 3 | Monopole interaction. Comparison of the magnetic Coulomb
energy {m0q2

m

!
4prð Þ (equation (2); solid line) with a direct numerical

evaluation of the monopole interaction energy in dipolar spin ice (equation
(1); open circles), for a given spin-ice configuration (Fig. 2e), as a function of
monopole separation.
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M. Hermele’s talk tomorrow.

U(1) gauge theory of quantum spin ice



Z2 lattice gauge theory

The simplest gauge theory ever: uses binary arithmetics! 

Relevant to some quantum spin models: Heisenberg model 
on the square and kagome lattices. 

G. Misguich, D. Serban, and V. Pasquier, Phys. Rev. Lett. 89, 137202 (2002). 
H.C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424 (2012). 
Y. Wan and O. Tchernyshyov, Phys. Rev. B 87, 104408 (2013). 
H.J. Ju and L. Balents, Phys. Rev. B 87, 195109 (2013).



A Z2 gauge theory can be defined on any lattice, in any 
number of dimensions. We will specialize to d=2 here. 

We will jump directly to the quantized version of the theory. 

The main idea is to switch from integer arithmetics (ℤ) to 
binary one (ℤ2) for the electric flux through lattice links.

m n

pq



� =
X

plaquette

A

Compact U(1) gauge theory Z2 gauge theory

E = 0,±1,±2, . . .

0  A  2⇡

⇠=Here     means “corresponds to.”

e±iAEe⌥iA = E ± 1 �z�x�z = ��x

e±iA ⇠= �z = ±1

(�1)E ⇠= �x = ±1

Addition Multiplication

ei� ⇠= � =
Y

plaquette

�z = ±1

(�1)Q ⇠= ⇢ =
Y

star

�x = ±1Q =
X

star

E

� are Pauli operators.



Quantum Hamiltonian
Compact U(1) gauge theory:
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Z2 electric charges ρ are constants of motion.  
States again separate into different charge sectors.
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Electric term dominates: Γ ≫ λ
H = H0 +H1, H0 = ��
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Neglect the weak magnetic term. 

No-charge sector: σx = +1 everywhere. 

Sector with two probe charges ρ = –1: 
ground state with an electric flux line  
σx = –1 connecting the charges. 

Energy grows linearly with the distance.  
Electric charges are confined.
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String tension in d=2
�

0
confinement free charges

Two distinct phases of matter: confined and deconfined. 
String tension can be used as an order parameter whose 
presence or absence determines which phase we are in.
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Topological degeneracy

The confined phase of a lattice gauge 
theory, where electric field dominates, has 
a simple ground state that is a direct 
product of individual link states:

| i =
Y

links

|E = 0i

The state is explicitly specified and is 
unique, not degenerate.



Topological degeneracy
In the deconfined phase, the ground state 
is described in terms of fluxes through 
plaquettes of the lattice:

This is an implicit description: we do not 
know the states of individual links. 

We shall see that all states of the system 
are degenerate in this phase and that the 
degeneracy depends on the topology of 
the sample.

� = 0 on every plaquette



Topological degeneracy

In the deconfined phase of the Z2 gauge theory, all 
states have the degeneracy    , where g is the genus of 
the two-dimensional surface (the number of handles).

4g

g = 1
g = 2



The genus of a surface is related to its Euler characteristic, 
which can be calculated for a discrete (lattice) surface:

2� 2g = � ⌘ V � E + F

A Z2 gauge theory has E qubits (one per edge).  

A charge sector is specified by V –1  independent charges 
(one per vertex minus the condition of net neutrality). 

A flux state is specified by F – 1 independent fluxes (one 
per face minus the condition of net zero flux). 

The number of qubits remaining is
E � (V � 1)� (F � 1) = 2� � = 2g

Hence the degeneracy      .22g
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Each elementary plaquette has zero flux. What is the  
flux through the big loop? 

� = 0 if the loop is contractible to a point.



Topological degeneracy

g = 1

2g is the number of topologically distinct non-contractible 
loops of a surface. Their flux is not specified when we set 
the fluxes of contractible loops to zero. 

Thus there remain 2g degrees of freedom, global fluxes. 

g = 2
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Periodic boundary conditions = torus (genus 1)
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Global qubits

X1

Z1

Z2

X2

�(�/�)L = �e�L/⇠, 1/⇠ = ln (�/�)

X creates a pair of vortices, moves one of them around 
the system and annihilates them, returning the system 
to a ground state. This process occurs spontaneously 
with an amplitude of the order of

Degeneracy is observed only in large systems, L � ⇠.



Dual variables

Original Pauli operators: 
σx = ±1 measures the Z2 electric field on a link. 
σz alters the value of the electric field. 
Labeled by link (mn). 

Dual Pauli operators: 
τx = ±1 measures the Z2 magnetic flux on a plaquette. 
τz alters the value of the magnetic flux. 
Labeled by plaquette (dual site β).
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Dual Hamiltonian
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An electric string in the original theory
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An electric string in the original theory

A domain wall in the dual theory



Heisenberg model: 
square lattice 2
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FIG. 1: (Color online) The ground state phase diagram for the spin-
1
2 AFM Heisenberg J1-J2 model on the square lattice, as deter-
mined by accurate DMRG calculations on long cylinders with Ly

up to 14. Changing the coupling parameter J2/J1, three different
phases are found: Néel antiferromagnet (AFM), topological quan-
tum spin liquid (QSL), and stripe AFM phase. ms(k0 = (�,�))
[ms(kx = (�, 0))] denotes the staggered magnetization in the Néel
AFM phase [stripe AFM phase], whose saturation value is 1/2. �S

and �T denote the spin singlet gap and spin triplet gap, respectively.

convincing demonstration of vanishing VBS order does, indi-
rectly, imply interesting QSL physics. It is, however, less im-
portant to characterizing and proving the existence of a QSL
than positive, direct evidence of long-range entanglement.

Most of the literature on the intermediate phase of the J1-
J2 model has focused on the possibility of symmetry breaking
VBS order. Many of these prior studied have suggested that
the intermediate state has VBS order. We note, however, that
all numerical results for the J1-J2 model are based either on
biased techniques (such as series expansion or coupled clus-
ter methods, or fixed node or related versions of Monte Carlo
adapted to avoid the sign problem which is present for unbi-
ased Monte Carlo in this system), or on exact diagonalization
of very small systems. Some theoretical motivation for the
possibility of VBS order comes from the theory of deconfined
quantum criticality28, which predicts that a continuous quan-
tum phase transition – a deconfined quantum critical point
(DQCP) – should occur between an ordered Neél state and
a plaquette or columnar VBS state, in some models. How-
ever, the existence of such a transition does not in any way
imply that it occurs for the J1-J2 model in question, or that
this particular model even harbors a VBS phase. Other theo-
retical motiviation for VBS order comes from its presence in
some large-N generalizations of the nearest-neighbor Heisen-
berg antiferromagnet. However, these large N studies are not
controllably close to the SU(2) case and moreover do not con-
sider second neighbor interactions. In short, we believe there
is very little compelling evidence for the existence of VBS
order in the isotropic S = 1/2 J1-J2 model to be found in
the prior literature. We will return to discuss VBS states in
Sec. VI A.

The only unbiased technique capable of treating generic
frustrated two dimensional spin systems of moderately large
size is the Density Matrix Renormalization Group (DMRG)

method.7,29–31 While the sizes that can be studied using the
DMRG are not as large as those accessibly by quantum Monte
Carlo (QMC) for unfrustrated models, they are still very large
and they are not limited by the sign problem, which prevents
application of QMC to most realistic physical models. More-
over, the DMRG has some advantages over QMC: it is intrin-
sically a zero temperature technique, and obtains a convenient
representation of the ground state wavefunction. Most impor-
tantly for our purposes, the DMRG is very efficient and conve-
nient for calculating the entanglement entropy, which we re-
turn to in some detail below. In this paper, we report the results
of extensive simulations (with truncation error ⌅ 10�7) on nu-
merous cylinders of circumference Ly = 3� 14, and lengths
Lx ⇤ 2Ly . In our simulations, we measure spin-spin corre-
lation functions, correlation functions and expectation values
of VBS order parameters, bulk singlet and triplet energy gaps,
and entanglement entropy. All results confirm the existence
of magnetic order for small and large J2, and that (see Fig. 1)
the ground state for 0.41 ⇥ J2/J1 ⇥ 0.62 is non-magnetic, in
very good agreement with the most accurate prior results from
series expansion and coupled cluster24 methods. Furthermore,
we find that the intermediate phase has a gap to both singlet
and triplet excitations and, within our uncertainty, no VBS or-
der in the 2D limit as extrapolated from the VBS correlation
functions. We carry out further checks for possible finite-size
effects due to the boundaries, to see if this might artificially
suppress VBS order, and see no indication that this is the case.

The latter results suggests a QSL state, based on negative
evidence: the apparent absence of VBS order. We find two
positive evidences that this suggestion is correct, and that the
state is a Z2 QSL. First, we find a non-zero TEE, �, which
is a constant and universal reduction of the von Neumann en-
tanglement entropy, known to vanish in any gapped state with
short-range entanglement. Notably, we point out in Sec. IV
that discrete spontaneous symmetry breaking phases such as
valence bond solids have absolute ground states which are
Schrödinger cat states with a constant enhancement of the en-
tanglement entropy – i.e. an effect of opposite sign to the
TEE. Phases with non-zero � and a gap to all excitations are
topological phases. Like conformal field theories in two di-
mensions, only discrete types of topological phases exist, with
discrete allowed values of � (which plays a role somewhat
similar to the central charge in a conformal field theory). For
all points we have studied within the non-magnetic phase, the
value of � is equal, within numerical uncertainty of 2%, to
ln(2), which is the minimal value possible for � in a topolog-
ical phase with time-reversal symmetry. A topological entan-
glement entropy of � = ln(2) implies either a Z2 QSL or a
“doubled semion” phase37. As there is, to our knowledge, no
theory suggesting the appearance of the semion phase in an
SU(2) invariant spin-1/2 model, we take this as strong evi-
dence for a Z2 QSL state. The second positive evidence for a
Z2 QSL is a remarkable odd/even effect, in which static VBS
order is entirely absent for even Ly but is observed directly in
the VBS expectation values for odd Ly . This is expected on
general theoretical grounds for a Z2 QSL, as we show in Ap-
pendix A 1. We compare the behavior of the numerically ob-
served static VBS order for odd circumference cylinders with
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FIG. 6: (color online) Even-odd effect. (a) Expectation value of
horizontal bond operator, ⇥Bx

i ⇤, for Ly = 5, Lx = 32. (b) The
same expectation value for Ly = 6, Lx = 32. (c) Dimer order
parameter Dd,x̂ for odd Ly at Lx = �. The red line denotes the
exponential-decaying fitting function with the form in Eq.(4). (d)
Modified boundary induced dimer order parameter for Ly = 6, 8,
with d the distance from the boundary. Here the dimer order param-
eter is defined as the dimer density difference between two nearest
neighbor vertical dimer bonds. Inset shows the correlation length �
along the cylinder as a function of Ly .

increases, i.e.

Dx|2d dimer state ⇥ D⇥ +Ae�Ly/�̃, (4)

where A and ⇥̃ are constants, and D⇥ is the value of the dimer
order parameter in the thermodynamic limit.

As shown in Fig.6(c), the numerical fitting to this form
gives D⇥ = 0 within numerical accuracy. This is en-
tirely consistent with vanishing VBS order and a Z2 QSL in
the thermodynamic limit, but of course cannot exclude some
weak dimerization smaller than our numerical uncertainties.
It seems to us natural to take the former interpretation, since it
is simpler. According to the theory for the Z2 QSL discussed
in Appendix A 1 and quantum dimer model results38, an expo-
nential decay for the staggered dimerization is expected with
“doubled” correlation length ⇥̃ = 2⇥, where ⇥ is the true VBS
correlation length. We find ⇥̃ ⇤ 10 lattice spacings, which is
equivalent via Eq. (A28) to ⇥ ⇤ 5.

For the even circumference cylinders, the vertical dimer or-
der is unfrustrated, and it is an energetic question, which likely
depends upon the details of the model, whether the vertical or
horizontal dimer order would be favored in this case. If the
horizontal dimer state is favored, then we again expect be-
havior like Eq. (4), which is manifestly inconsistent with our
numerics, and markedly different from the Z2 QSL. However,
it is perfectly conceivable that the vertical dimer pattern is fa-
vored instead. If so, the periodic boundary conditions do not
break the symmetry between the two vertical dimer states, and
so we expect the DMRG to converge to the symmetric linear
combination of the two dimer states, which lacks any sponta-
neous dimer pattern. So at least the presence of an even-odd

effect in the static dimerization is consistent with a VBS state,
if the cylindrical geometry favors the two VBS states with hor-
izontal rows of vertical dimers. On the face of it, this appears
consistent with our numerical results for the staggered dimer-
ization, if one assumes that the value of the dimerization itself
(extrapolated from odd circumference cylinders) is smaller
than our numerical uncertainty. But it is worth pointing out
that for this scenario to hold, the even circumference system
must be in a Schrödinger cat state, and should exhibit a posi-
tive ln(2) enhancement of the entanglement entropy (negative
TEE) as a consequence, and moreover convergence to such
a state should be progressively more difficult with increasing
Lx. This is not at all what we see.

5. End effects

In Ref. 32, strong boundary effects are observed on the
dimerization in the J-Q models. Indeed, on symmetry
grounds, an open end breaks translation and reflection sym-
metries in the x direction, and as such should act as a “bound-
ary field” on the staggered dimer order Dx, i.e. it induces a
term ��Dx(x = 0) in a Landau theory of this order. On these
grounds, we always expect some staggered dimer order near
the boundary. If it is energetically disfavored in the bulk, this
will decay rapidly. Otherwise, it will penetrate deep into the
bulk. In the J-Q models, it was found that the boundaries in-
duce a quite strong dimerization, so that for even Ly the bond
expectation values ⇧Bx

i ⌃ oscillate visibly (c.f. in the inset of
Fig. 6, and in Fig. 15a of Ref.32, the bond expectation value
shows oscillations with large amplitude in the J-Q3 and J-Q2

models, respectively). By contrast, in the J1-J2 model, we
see in Fig. 6(b) that there are no visible oscillations in the
same quantity when Ly is even. This qualitative difference
tells us that Dx order is clearly much less favorable in the J1-
J2 model.

We next try to address the possibility, raised above, that the
cylindrical geometry when Ly is even favors Dy order, i.e.
horizontal rows of vertical dimers. This is at odds with our
measurements of the dimer correlations and the entanglement
entropy. Still, it is more compelling to explicitly test to rule
out the possibility directly. To do so, we have studied sev-
eral modified cylinders with even circumference, in which the
ends of the cylinder have been altered, breaking translational
symmetry along y in order to break the degeneracy and fa-
vor one of the two vertical dimer states. What we observe is
that in all cases, as shown in Fig.6(d), although dimer order
is induced by this symmetry breaking in the vicinity of the
boundary, it decays exponentially into the bulk of the cylin-
der. The correlation length ⇥v for this vertical dimer order still
depends on circumference for the system sizes in our study, so
we plot it versus Ly to see if it is limited by the system size (it
does not appear to be), and to extrapolate from this its value
in the thermodynamic limit. We observe that this correlation
length grows sub-linearly in Ly , and extrapolates to ⇥v ⇥ 4
in the 2D limit (i.e., Ly = ⌅). This is very different from
what would be expected for a 2d state with long-range dimer
order, in which the non-zero stiffness (surface tension) of the

Odd circumference
B(x) = hS(x, y) · S(x+ a, y)i



Even circumference
B(x) = hS(x, y) · S(x+ a, y)i
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increases, i.e.

Dx|2d dimer state ⇥ D⇥ +Ae�Ly/�̃, (4)

where A and ⇥̃ are constants, and D⇥ is the value of the dimer
order parameter in the thermodynamic limit.

As shown in Fig.6(c), the numerical fitting to this form
gives D⇥ = 0 within numerical accuracy. This is en-
tirely consistent with vanishing VBS order and a Z2 QSL in
the thermodynamic limit, but of course cannot exclude some
weak dimerization smaller than our numerical uncertainties.
It seems to us natural to take the former interpretation, since it
is simpler. According to the theory for the Z2 QSL discussed
in Appendix A 1 and quantum dimer model results38, an expo-
nential decay for the staggered dimerization is expected with
“doubled” correlation length ⇥̃ = 2⇥, where ⇥ is the true VBS
correlation length. We find ⇥̃ ⇤ 10 lattice spacings, which is
equivalent via Eq. (A28) to ⇥ ⇤ 5.

For the even circumference cylinders, the vertical dimer or-
der is unfrustrated, and it is an energetic question, which likely
depends upon the details of the model, whether the vertical or
horizontal dimer order would be favored in this case. If the
horizontal dimer state is favored, then we again expect be-
havior like Eq. (4), which is manifestly inconsistent with our
numerics, and markedly different from the Z2 QSL. However,
it is perfectly conceivable that the vertical dimer pattern is fa-
vored instead. If so, the periodic boundary conditions do not
break the symmetry between the two vertical dimer states, and
so we expect the DMRG to converge to the symmetric linear
combination of the two dimer states, which lacks any sponta-
neous dimer pattern. So at least the presence of an even-odd

effect in the static dimerization is consistent with a VBS state,
if the cylindrical geometry favors the two VBS states with hor-
izontal rows of vertical dimers. On the face of it, this appears
consistent with our numerical results for the staggered dimer-
ization, if one assumes that the value of the dimerization itself
(extrapolated from odd circumference cylinders) is smaller
than our numerical uncertainty. But it is worth pointing out
that for this scenario to hold, the even circumference system
must be in a Schrödinger cat state, and should exhibit a posi-
tive ln(2) enhancement of the entanglement entropy (negative
TEE) as a consequence, and moreover convergence to such
a state should be progressively more difficult with increasing
Lx. This is not at all what we see.

5. End effects

In Ref. 32, strong boundary effects are observed on the
dimerization in the J-Q models. Indeed, on symmetry
grounds, an open end breaks translation and reflection sym-
metries in the x direction, and as such should act as a “bound-
ary field” on the staggered dimer order Dx, i.e. it induces a
term ��Dx(x = 0) in a Landau theory of this order. On these
grounds, we always expect some staggered dimer order near
the boundary. If it is energetically disfavored in the bulk, this
will decay rapidly. Otherwise, it will penetrate deep into the
bulk. In the J-Q models, it was found that the boundaries in-
duce a quite strong dimerization, so that for even Ly the bond
expectation values ⇧Bx

i ⌃ oscillate visibly (c.f. in the inset of
Fig. 6, and in Fig. 15a of Ref.32, the bond expectation value
shows oscillations with large amplitude in the J-Q3 and J-Q2

models, respectively). By contrast, in the J1-J2 model, we
see in Fig. 6(b) that there are no visible oscillations in the
same quantity when Ly is even. This qualitative difference
tells us that Dx order is clearly much less favorable in the J1-
J2 model.

We next try to address the possibility, raised above, that the
cylindrical geometry when Ly is even favors Dy order, i.e.
horizontal rows of vertical dimers. This is at odds with our
measurements of the dimer correlations and the entanglement
entropy. Still, it is more compelling to explicitly test to rule
out the possibility directly. To do so, we have studied sev-
eral modified cylinders with even circumference, in which the
ends of the cylinder have been altered, breaking translational
symmetry along y in order to break the degeneracy and fa-
vor one of the two vertical dimer states. What we observe is
that in all cases, as shown in Fig.6(d), although dimer order
is induced by this symmetry breaking in the vicinity of the
boundary, it decays exponentially into the bulk of the cylin-
der. The correlation length ⇥v for this vertical dimer order still
depends on circumference for the system sizes in our study, so
we plot it versus Ly to see if it is limited by the system size (it
does not appear to be), and to extrapolate from this its value
in the thermodynamic limit. We observe that this correlation
length grows sub-linearly in Ly , and extrapolates to ⇥v ⇥ 4
in the 2D limit (i.e., Ly = ⌅). This is very different from
what would be expected for a 2d state with long-range dimer
order, in which the non-zero stiffness (surface tension) of the
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FIG. 7: Ground state energy per site � of YC4m cylinder in
even X = 1 (blue crosses) and odd X = �1 sectors (red open
circles). The solid and dashed lines correspond toK/� = 0.12
and K/� = 0.15, respectively.

Fig.7 shows the ground state energy per dual site as
a function of cylinder circumference for generic values of
� and K, based on numerical evaluation of Eq. 25 and
Eq. 27. We find that the ground state energy in the two
sectors becomes degenerate in the limit of infinite circum-
ference as expected for a gapped Z2 spin liquid. When
the circumference is finite, the energy splitting shows an
alternating pattern: the even ground state has lower en-
ergy when m is even, and the odd ground state has lower
energy otherwise. Such a pattern plays an important role
in our discussion on edge spinons in Section IVE.

To summarize, we have found that the ground state of
the YC4m cylinder is the uniform Z2 spin liquid. The
ground state is in the even sector X = 1 for even m, and
the odd sector X = �1 for odd m.

B. Ground state of YC4m+ 2 kagome cylinders

In this section, we discuss another family of kagome
cylinders known as YC4m+ 2, m ⇥ Z.10 The number of
spins per unit cell is 6m+ 3, which is odd. Based on the
Lieb-Schultz-Mattis theorem, we expect that the ground
state is either gapless or symmetry-breaking.27 Indeed,
DMRG has identified a symmetry-breaking valence-bond
density wave pattern. We will show that our model re-
produces the same pattern in the ground state.

As a concrete example, we consider the YC6 cylin-
der, a member of the YC4m+ 2 family, in the following
discussion. The analysis is carried on in parallel with
Section IVA. Fig. 8a shows the YC6 kagome cylinder,
and Fig. 8b shows its corresponding honeycomb cylinder
on which the Z2 gauge theory is defined. The total Z2

electric flux in the Z2 gauge theory model is defined as

X =
�

v

�x
1,v,a, (28)

corresponding to the contour highlighted as the thick red

FIG. 8: (a) A YC6 cylinder and the predicted valence-bond
density modulation pattern. Lattice sites with the same nu-
meral label are identical. (b) The corresponding Z2 gauge
theory. (c) The dual Ising model. A and B are sublattice
labels. ⇥ = 1(�1) on black solid (red dashed) links. (d) The
interaction between A dual spins. The interaction is K(�K)
on black solid (red dashed) links.

bonds in Fig. 8a. [X,H] = 0, and the Hilbert space falls
into two topological sectors, X = 1 (even) and X = �1
(odd).
The two topological sectors are related by translational

operation. To see this, we consider another contour
shown as the thick green bonds in Fig. 8b. The asso-
ciated total electric flux operator is defined as:

X � =
�

v

�x
2,v,a. (29)

On the one hand, it can be seen that X � = �X on ac-
count of Gauss’s law (2). On the other hand, the new
contour is related to the old one by a eu shift, and we
have T (eu)XT (eu)† = X �. Here T (eu) denotes the asso-
ciated shift operator. Therefore,

T (eu)X = �XT (eu). (30)

Eq. 30 implies that the two topological sectors are de-
generate in energy in the YC6 cylinder. Note T (eu) is a
symmetry,

[T (eu), H] = 0. (31)
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