

Los Alamos branch of the Magnet Lab Pulsed magnetic fields

Pulsed Field Facility

Magnet Lab Pulsed-Field facility: ~35 people 1/3 scientists, 1/3 engineers & technicians, 1/3 students & post-docs

Frustration and Functionality

Vivien Zapf Magnet Lab, Pulsed Field Facility Los Alamos National Lab

Static order near frustration: tends to complex spin textures

Noncolinear Non-coplanar Long-wavelength modulations Spirals Spatially segregated phases

Complex spin textures -> broken symmetries

1. Chirality. Couple to electron transport (Hall effects) e.g. Skyrmions or other spin textures with berry phases

CONDUCTORS, SEMICONDUCTORS

Multiferroics

D. Khomskii, Physics 2, 20 (2009)

Low power consumption Voltages instead of currents Record-sensitive magnetic sensors at low powers

Tunable filters, antennas, gyrators, etc.

Tunable microwave devices

Energy harvesting

Memory/smart devices

Electric manipulation of magnetic domain walls, topological objects, etc.

Electric fields break *mirror* symmetry (SIS) A unique polar axis

Is there **any** choice of origin for which x -> -x conserves symmetry?

No: breaks spatial inversion symmetry

Can I create a magnetic pattern that matches that of an electric field?

If so, I have a chance to create ferroelectricity

SIS = spatial inversion symmetry

Exercise:

NATIONAL

Perform mirror about x on this spiral

AB

"Spins are not arrows" Spin transforms as a rotation

·→

AGLAB

Frustrated spin systems :

Exercise (complete): Perform mirror inversion about x on this spiral

Cycloidal spiral

Breaks spatial inversion about x

In the attempt to regain my original pattern, I'm allowed to translate the spiral because an electric FIELD (as opposed to a dipole) conserves translational symmetry.

Some spirals that break mirror symmetry CAN BE SPONTANEOUSLY GENERATED BY FRUSTRATION

T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007)

Magnetoelectric materials with spirals

	Crystal structure		Magnetic wave	Proposed magnetic	T range	Maximum P
Compound	(at r.t. ^c)	Magnetic ion	vector	structure (Ref.)	(K)	(µC m ⁻²) (Ref.)
Cr ₂ BeO ₄	Orthorhombic (mmm)	Cr ³⁺	(0, 0, l)	Cycloidal (53)	≤28	~3 ^a (54)
		S = 3/2				
		L = 3				
ZnCr ₂ Se ₄	Cubic (m3m) Spinel	Cr^{3+}	(b, 0, 0)	Screw $(H = 0)$	≤20	— ^b (47)
		S = 3/2		Conical[I] (H > 0)		
		L = 3		(57)		
$RMnO_3 (R =$	Orthorhombic (mmm)	Mn ³⁺	(0, k, l)	Cycloidal (30, 35)	≤28	<~2000 (36, 41)
Tb, Dy, EuY,	Perovskite	S = 2	$k = 0.2 \sim 0.39$			
etc.)		L = 2				
Ni ₃ V ₂ O ₈	Orthorhombic (mmn)	Ni ²⁺	(k, 0, 0)	Cycloidal (58)	3.9 ~ 6.3	~100 (51)
		S = 1	$k \sim 0.28$			
		L = 3				
(Ba,Sr) ₂ Zn ₂	Rhombohedral (-3m)	Fe ³⁺	(0, 0, 3d)	Screw $(H = 0)$ fan	≤~r.t.	~150 ^b (60)
-Fe ₁₂ O ₂₂	Y-type hexaferrite	S = 5/2	$0 < d \leq 1/2$	(H > 0) (59)	possibly	
		L = 0				
CuFeO ₂	Rhombohedral (-3m)	Fe ³⁺	(b, b, 0)	Collinear $(H = 0)$	≤11	~300 ^b (62)
	Delafossite	S = 5/2	$b = 0.2 \sim 0.25$	Screw $(H > 0)$ (61)		
		L = 0				
CoCr ₂ O ₄	Cubic (m3m) Spinel	$Co^{2+} Cr^{3+}$	(b, b, 0)	Conical[II] (64)	≤26	~2 (63)
		S = 3/2 S = 3/2	<i>b</i> ~0.63			
		L = 3 L = 3				
MnWO ₄	Monoclinic (2/m)	Mn ²⁺	(-0.21, 1/2, 0.46)	Cycloidal (65)	$7 \sim 12.5$	~60 (66–68)
		S = 5/2				
		L = 0				

Table 1 List of magnetoelectrics related to spiral spin structure

NATIONAL

T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007)

GOAL: Couple magnetism to ferroelectricity

We can give magnetism a symmetry that matches an electric field

But to create ferroelectricity we need to add charges to the spins Spins <-> orbits <-> lattice.

Microscopic mechanisms

(usually both happen in a given material)

1. Magnetostriction [Always happens]. Let magnetic forces move charged ions around to create electric dipoles.

2. Polar bonds. Magnetic exchange bonds can have polar distribution of electron density.

Frustration required

Mirror symmetry is broken

Spins, charges separately

Reverse cause and effect.

1. Frustration creates a spiral

2. Bonds distort to match magnetic symmetry

(Electric polarization created as a byproduct.)

3. Generate a DM interaction Lowers magnetic energy

 $\mathbf{H} = \mathbf{D}_{\mathbf{z}} \circ (\mathbf{S}_{1} \times \mathbf{S}_{2})$

Breaks mirror symmetry -- but not along a unique axis

Unique polar axis selected by magnetic field

Example 2: Trimers.

L. N. Bulaevskii, C. D. Batista, M. V. Mostovoy, and D. I. Khomskii, PRB 78, 024402(2008).

A metal-organic material with Cr trimers

Electron spin resonance experiments

Multiferroicity in spin ice Ho₂Ti₂O₇: An investigation on single crystals

D. Liu,¹ L. Lin,¹ M. F. Liu,¹ Z. B. Yan,¹ S. Dong,² and J.-M. Liu^{1,3,a)}

¹Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

²Department of Physics, Southeast University, Nanjing 210008, China

³Institute for Advanced Materials, South China Normal University, Guangzhou 510006, China

Example 2: Linear exchange striction

 $Ni^{2+}S = 1$

Superexchange $H = J \vec{S}_1 \cdot \vec{S}_2$ AFM J $\Delta J \sim (\Delta d)^4$ to $(\Delta d)^{10}$ for small Δd Maybe be linear, or due to changing the angle.

If the spins are not satisfying J distort the lattice, make J smaller.

Or if the spins are satisfying J, distort the lattice to make J bigger.

Balance magnetic energy gain against at energy cost of lattice distortion

AGLAB

Frustrated spin systems :

FM J AFM J' **FM J FM J**

FM = ferromagnetic AFM = antiferromagnetic

Exercise:

Place the spins so as to satisfy the bonds Assume Ising spins.

The lattice comes to the rescue: Frustration-lifting distortion

(Similar to Spin Peierls)

$$H = JS_{1^{\circ}}S_{2}$$

Minimize energy of spins + lattice.

Disclaimer: Actual distortions 1 part in 10³-10⁴

NATIONAL

SLAB

Exercise: Does it break mirror symmetry? (apply mirror vertically)

- 1. Physically interchange the spins along x
- 2. Apply mirror inversion to the spins
- 3. You are allowed to vertically translate in an attempt to see if the inverted system match the original

Translational symmetry

NATIONAL

LAB

Try two different kinds of spins

Ca₃CoMnO₆

Elastic neutron diffraction @ 1.4 K

Y. Choi et al., PRL 100, 047601 (2008)

Ca₃CoMnO₆

Evolve, kill, and ultimately understand the magnetoelectric coupling

J. W. Kim et al, PRB 89, 060404 R (2014)

Y. Kamiya & C. D. Batista (Anisotropic next nearest neighbor interactions)

Ising spins have few options for satisfying competing interactions -> resort to long wavelengths

Pulsed-field measurements of the electric polarization

Selection of frustration-induced ferroelectrics at the NHMFL

CdV₂O₄

Ca₃Co₂O₆ and Ca₃CoMnO₆

Ca₃CoMnO₆

- Competing interactions are a source of low symmetry spin states
- Match the symmetry of an electric field
- Create multiferroic behavior

Multiferroics

D. Khomskii, Physics 2, 20 (2009)

Low power consumption Voltages instead of currents Record-sensitive magnetic sensors at low powers

Tunable filters, antennas, gyrators, etc.

Tunable microwave devices

Energy harvesting

Memory/smart devices

Electric manipulation of magnetic domain walls, topological objects, etc.

Caveat: frustration reduces ordering temperatures, so applications mostly focus on 'type 1' unfrustrated multiferroics. E.g. magnetism modifies a ferroelectricity that is already present. Or: heterostructures.

45 Tesla DC

45 Tesla Hybrid magnet (DC), Tallahassee

45 T coke can (SOUND OFF).fv

SLAB Record Pulsed Field (non-destructive)

NATIONAL

Limitation on high magnetic fields: Strength of materials

Released in 1 millisecond 10s of kAmps, 10s of kVolts

Force on a solenoid

Worlds' strongest steel

200T (microseconds): forget about saving the magnet Sample is unharmed (usually) Microsecond pulse

Before

300 T movie.mov

After

800 Tesla

800 Tesla: H_{c2} of YBCO

800T movie.mov

100 Tesla

The greater accomplishment: A 100 Tesla magnet that does *not* explode Maximize useful measurements Milliseconds

What can you measure in a few milliseconds?

Frustrated Ca₃CoMnO₆

Magnetization

10-100x less sensitive than in DC magnets

Sample Length (magnetostriction)

Comparable to DC measurements 1 part in 10^6 to 10^7 magnetostriction

Ferroelectricity

10-1,000x MORE sensitive than DC magnets

NATIONAL GLAB

Acknowledgements

TION

S. Chikara J. Singleton N. Harrison J. W. Kim

C. D. Batista

Shizeng Lin

Y. Kamiya

J. W. Kim

E. D. Mun

S.W. Cheong

Giawei Chern

