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Trial state optimization

It is important that we start the GFMC with good trial and guiding
states. In this section, we describe our method for optimizing these
functions.
In continuum systems, one usually assumes a functional form for
the trial and guiding functions and optimizes a function of the
energy to find the best variational parameters. On a lattice, there
are only a finite number of distances r or equivalently wave vectors
k in any given simulation, so we allow the functions in the trial
and guiding functions to have a parameter describing each distance
or wave vector not related by symmetry.
For the Jastrow pair factors, f(r) and g(r), we apply all rotational
and mirror symmetries. Translational symmetry is always assumed.
However, we insist only on the mirror symmetries about the axes
for the Fermion pairing field ak, so the function may be any linear
combination of an s and dx2−y2 pairing state. The mirror
symmetry excludes dxy symmetry.
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Trial state optimization (Continued)

For a 20× 20 lattice, we have 172 parameters for the trial state
and 192 parameters for the guiding function with the pairing term.
We tried optimizing several functions of the energy, but found
minimizing the variance of the local energy to be the most robust
[Umrigar et al., 1988]. We generate a set of configurations
{α1, α2, . . . , αm} distributed according to a weight wαi . The
configurations remain the same throughout the minimization
procedure. We minimize the function

σ2 =
∑m

i=1

[
HΨT

αi/Ψ
T
αi − E

]2 ∣∣ΨT
αi

∣∣2 /wαi∑m
i=1

∣∣ΨT
αi

∣∣2 /wαi , (1)

where E is a guess for the ground state energy that we determine
self consistently. We use the same function to optimize both our
trial and guiding functions.
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Trial state optimization (Continued)

With a finite random walk, the calculation of the energy in (1)
uses many more states than the calculation of the norm.
Occasionally, this created instabilities, which we cured by deriving
another way of calculating the norm using all the neighbors in the
random walk. We may write

〈Ψ|Ψ〉 =
∑
α

|Ψα|2 (2)

=
∑
α

|Ψα|2 (1−Aα) +Bα
∑

β∈{Hα}

|Ψβ|2
 (3)

where {Hα} is the set of all states neighboring |α〉 by application
of the Hamiltonian. We see (3) follows from (2) if we choose
Bα = C and Aα = CNα for some constant C, where Nα is the
number of neighbors of |α〉 where Ψ does not vanish. Since this
version of the norm is calculated from all the states entering the
energy, no factors in the numerator of (1) are absent from the
denominator.
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Trial state optimization (Continued)

We calculate the effective number of configurations contributing to
the normalization as

Neff =

(
m∑
i=1

∣∣ΨT
αi

∣∣2
wαi

)2/ m∑
i=1

∣∣ΨT
αi

∣∣4
w2
αi

. (4)

This quantity approaches n if all states contribute equally and
drops to 1 as one state begins to dominate [Alexander et al., 1992].
We adjust the length of our random walks so Neff is at least 10
times the number of parameters being optimized.
Close to phase separation, the standard Metropolis algorithm
develops a small acceptance ratio, and tends to stay in the same
configuration for many steps. In order to sample phase space
quickly, we choose our configurations using a transition probability
in which H is the off-diagonal part of the Hamiltonian, ensuring a
new configuration with each move. Thus the configurations are
distributed according to the weight wαi = zαi |ΨG

αi |
2.



Trial state optimization O(N) Calculation of superexchange Phase Separation Spin and Charge Structure Factors Phase Diagram of the t− J Model Comparison with other calculations Conclusions

1 Trial state optimization

2 O(N) Calculation of superexchange

3 Phase Separation

4 Spin and Charge Structure Factors

5 Phase Diagram of the t− J Model

6 Comparison with other calculations

7 Conclusions



Trial state optimization O(N) Calculation of superexchange Phase Separation Spin and Charge Structure Factors Phase Diagram of the t− J Model Comparison with other calculations Conclusions

O(N) Calculation of superexchange

In the GFMC projection, we need to calculate the local energy
Eαi =

∑
β〈Ψβ|H|Ψαi〉 for the guiding wave function, ΨG, at each

step of the random walk. Due to the simplicity of (??), the local
energy can be calculated efficiently in O(N) steps. Only the
amplitude of the trial state ΨT is needed at each step.
In section 4, we describe the procedure used to optimize the trial
function we use in the GFMC. The method is most efficient when
the local energy if the function can be calculated quickly. For a
determinantal function, the local kinetic energy takes O(N) per
particle, so it scales as O(N2) for the system. The superexchange
term in the t-J model,

∑
〈ij〉 S

+
i S
−
j , exchanges two particles,

changing both a row and a column of the determinant (??). In this
section, we show how the amplitude of swapping two particles may
be calculated in O(N) steps.



Trial state optimization O(N) Calculation of superexchange Phase Separation Spin and Charge Structure Factors Phase Diagram of the t− J Model Comparison with other calculations Conclusions

O(N) Calculation of superexchange (Continued)

Suppose we swap the m’th up electron with the n’th down
electron. We will modify both row m and column n in the
determinant. We write the new elements as Dmj → rj and
Din → ci. Naturally, rn = cm. One can show the ratio of the
determinant before and after the swap is

|D′|
|D|

=

(∑
i

riIim

)(∑
j

Injcj

)
+

Inmcm − Inm
∑
ij

riIijcj . (5)

Direct evaluation of the sum S =
∑

ij riIijcj takes O(N2) per pair
of neighboring particles. For this reason, many researchers evaluate
the superexchange term only every N Monte Carlo steps
[Gros, 1989].
Our trick is to evaluate S once when a pair of particles become
nearest neighbors, and then to update it in O(N) steps for any
move not disrupting the pair.
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O(N) Calculation of superexchange (Continued)

Suppose the l’th up electron moves (l 6= m), altering row l in the
determinant (??), so Dlj → sj . The inverse I is updated
according to (??) and cl → c′l takes a new value.
We can write the new sum S′ in terms of the old sum and extra
factors as

S′ =
∑
ij

riI
′
ijc
′
j

=
∑
ij

ri

(
Iij(1 +

1
γl
δlj)−

1
γl
Iil
∑
k

skIkj

)
c′j (6)

= S +
1
γl

(∑
i

riIil

)(
c′l −

∑
j

γjcj

)
where γj =

∑
k skIkj is used in the inverse update. This

calculation requires only O(N) steps, so the local superexchange
energy of the system may be evaluated in O(N2) time.
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Maxwell Construction

In the 1D tJ model phase separation has been determined using

Divergence of the density structure factor at long wavelengths.

Divergence of the compressibility as determined from the
second derivative of the energy with respect to electron or
hole density.

In the 1D model, phase separation occurs between two regions,

one with no electrons

and one containing some electrons and some holes.

For a finite system, electrons may tunnel through the vacuum,
lowering the ground state energy. For this reason, the inverse
compressibility actually passes through zero and becomes slightly
negative. This effect is a surface effect and vanishes in the limit of
infinite system size.
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Maxwell Construction(cont’d)

In the 2D t-J model, the Fermi surface can change
dramatically with electron density for a given system size.
These shell effects make accurate comparisons of energies
calculated with different numbers of electrons impossible.
Other studies used a vanishing inverse compressibility as the
criterion for the onset of phase separation
[Putikka et al., 1992b, Putikka et al., 1992a, Poilblanc, 1995,
Jarrell and Gubernatis, 1995]. The compressibility is not the
proper observable to find the phase-separation boundary in
the 2D t-J model, where the transition is first order.
The compressibility diverges in the phase separation region,
but it jumps at the boundary with the uniform phase.
This discontinuity is difficult to see due to the surface energy
of the two coexisting phases. In the region of phase
separation, the compressibility suffers strong finite-size effects
due to large surface energy of the two coexisting phases.

.
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Maxwell Construction (cont’d)

The ground-state energy per site
at J = 2.5t for 32 electrons. For
clarity, the energies are shifted by
a linear factor, −eHne. The
circles with error bars show the
energies calculated on lattices of
dimensions 6× 6, 7× 7, ...,
28× 28. Solid line: A sixth-order
polynomial fit to the data.

At any electron density in the range, nps < ne < 1, the system can
reduce its energy by separating into two regions with densities
nA = nps and nB = 1, resulting in an energy given by the dashed
line at the average density. Onset of phase separation occurs at
nps = 0.296± 0.004 while the inverse compressibility vanishes at
ncomp = 0.52± 0.10.
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Maxwell Construction (cont’d)

The ground state of the infinite system at ne > nps cannot be
a uniform phase, because the energy of the uniform phase,
e(ne), is higher than eps(ne) at the same density. The dashed
straight line, eps(ne), is the energy of a mixture of two
phases, one at electron density nA = 1 and the other at
electron density nB = nps. The infinite system phase
separates into these two regions. (Maxwell construction).

In order to be stable, the energy of the infinite system must
be concave everywhere. Given the solid line and the allowed
density range of the t-J model, the dashed line drawn in the
figure is the only line possible to make the energy of the
infinite system globally convex. This energy is given by the
solid line for ne < nps and the dashed line for ne > nps.
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Maxwell Construction (cont’d)

The ground state of the infinite system at ne > nps cannot be
a uniform phase, because the energy of the uniform phase,
e(ne), is higher than eps(ne) at the same density. The dashed
straight line, eps(ne), is the energy of a mixture of two
phases, one at electron density nA = 1 and the other at
electron density nB = nps. The infinite system phase
separates into these two regions. (Maxwell construction).

In order to be stable, the energy of the infinite system must
be concave everywhere. Given the solid line and the allowed
density range of the t-J model, the dashed line drawn in the
figure is the only line possible to make the energy of the
infinite system globally convex. This energy is given by the
solid line for ne < nps and the dashed line for ne > nps.
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Maxwell Construction (cont’d)

The ground state of the infinite system at ne > nps cannot be
a uniform phase, because the energy of the uniform phase,
e(ne), is higher than eps(ne) at the same density. The dashed
straight line, eps(ne), is the energy of a mixture of two
phases, one at electron density nA = 1 and the other at
electron density nB = nps. The infinite system phase
separates into these two regions. (Maxwell construction).

In order to be stable, the energy of the infinite system must
be concave everywhere. Given the solid line and the allowed
density range of the t-J model, the dashed line drawn in the
figure is the only line possible to make the energy of the
infinite system globally convex. This energy is given by the
solid line for ne < nps and the dashed line for ne > nps.
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Maxwell Construction (cont’d)

The density of one of the constituent phases, the Heisenberg
phase at ne = 1, lies at an extreme limit of the allowed
density range. It is not possible to add electrons to the
Heisenberg solid beyond ne = 1 so the dashed line is tangent
to the fitting curve at ne = nps and not at ne = 1. If the t-J
model did allow ne > 1, the intersection point of the solid and
dashed lines would be shifted to higher densities.
We never examined systems with densities ne & 0.94, so we
cannot exclude the re-entrance of a homogeneous phase in
this region. For such a phase to be stabilized, the solid curve
would have to drop back below the dashed line in this density
range. We never saw any indication of this possibility at any
J/t. If a re-entrant homogeneous phase did exist, the new
Maxwell line would lie slightly below the one drawn and would
be tangent to the solid curve at both intersections, but the
phase-separated region would persist at densities ne . 0.94.
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Maxwell Construction (cont’d)

The density of one of the constituent phases, the Heisenberg
phase at ne = 1, lies at an extreme limit of the allowed
density range. It is not possible to add electrons to the
Heisenberg solid beyond ne = 1 so the dashed line is tangent
to the fitting curve at ne = nps and not at ne = 1. If the t-J
model did allow ne > 1, the intersection point of the solid and
dashed lines would be shifted to higher densities.

We never examined systems with densities ne & 0.94, so we
cannot exclude the re-entrance of a homogeneous phase in
this region. For such a phase to be stabilized, the solid curve
would have to drop back below the dashed line in this density
range. We never saw any indication of this possibility at any
J/t. If a re-entrant homogeneous phase did exist, the new
Maxwell line would lie slightly below the one drawn and would
be tangent to the solid curve at both intersections, but the
phase-separated region would persist at densities ne . 0.94.
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Maxwell Construction (cont’d)

The density of one of the constituent phases, the Heisenberg
phase at ne = 1, lies at an extreme limit of the allowed
density range. It is not possible to add electrons to the
Heisenberg solid beyond ne = 1 so the dashed line is tangent
to the fitting curve at ne = nps and not at ne = 1. If the t-J
model did allow ne > 1, the intersection point of the solid and
dashed lines would be shifted to higher densities.
We never examined systems with densities ne & 0.94, so we
cannot exclude the re-entrance of a homogeneous phase in
this region. For such a phase to be stabilized, the solid curve
would have to drop back below the dashed line in this density
range. We never saw any indication of this possibility at any
J/t. If a re-entrant homogeneous phase did exist, the new
Maxwell line would lie slightly below the one drawn and would
be tangent to the solid curve at both intersections, but the
phase-separated region would persist at densities ne . 0.94.
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Approach

We use Maxwell construction to determine the phase
separation boundary.

We minimize the shell-effects when varying the
electron-density by keeping the number of electrons fixed at a
closed shell configuration and changing the size of the lattice.

We choose our number of electrons so that they always
correspond to closed shell configuration. This choice
eliminates possible degeneracies of states at the Fermi level.
Such degeneracies might favor flatness of the energy as a
function of density which might be mistaken for phase
separation.

An additional (technical reason) for wanting to keep closed
shell configurations is that on a finite lattice it leads to an
energy gap between the ground state and the first excited
state which helps our projection method to converge.
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Results at J = t

Size dependence of the critical value of electron density nps for
phase separation.

Bottom: Ne = 42 and
Ns = 49, 56, 64, 72, 81, 90.
Middle: Ne = 50 and
Ns = 56, 64, 72, 81, 90.
Top: Ne = 60 and Ns =
64, 72, 81, 90, 100, 110, 121.
Each curve has been
shifted by 0.025. −1.2
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t Ne=42
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The value of nps is determined by a cubic polynomial fit and using
the corresponding energy for the lattice full of electrons calculated
for the same number of electrons. This can be done using the
GFMC results for the undoped system and the extrapolation

E/N = e0 + λN−3/2 (7)

where N is the total number of electrons.
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Results at J = t (Cont’d)

Individually, each number of electrons is consistent with a solution
where a line beginning from the no-hole limit (ne = 1) and being
tangent on the polynomial (that fits the data points) near
ne = 0.745 Therefore we conclude that the finite-size effects are
small in our method of determining nps and the phase separation
density for J/t = 1 is nps = 0.745± 0.015.
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Results at J = t (Cont’d)

Using the energy per hole. Shell effects

The energy per hole at J = t for
Ne = 42 (open diamonds)
Ne = 50 (solid squares) and
Ne = 60 (solid circles). The
minimum is at about the same
value as that determined by the
tangent construction.
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Notice, however, this method of using all the size lattices together
suffers from shell effects which have a non-monotonic effect with
size. That is why it is essential to compare systems with the same
number of electrons. The shell effects are systematic errors that
affect the other calculations which have been recently appeared in
the literature which we discuss in this paper.
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Results in the J < t Region

The ground-state energy per site at J = 0.5t
Top: Ne = 32 and
Ns = 36, 49, 56, 64, 72, 81, 90
Second: Ne = 42 and
Ns = 49, 56, 64, 72, 81, 90
Third: Ne = 50 and
Ns = 56, 64, 72, 81, 90
Bottom: Ne = 60 and Ns =
49, 56, 64, 72, 81, 90, 100, 110
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Individually, each number of electrons is consistent with a value of
nps near ne = 0.84. Clearly the 42 electron data doesn’t prove
that there is a clear tangent at this value of ne, but the data is
consistent with this value. Therefore we conclude that the
finite-size effects are small in our method of determining nps and
the phase separation density for J/t = 0.5 is nps = 0.843± 0.015.
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Results in the J < t Region

Demonstration of the significance of shell effects
The energy per site at
J = 0.5t for an 8× 8 lattice
for 32, 42, 50 and 60
electrons. To demonstrate the
role of shell effects, here we
keep the lattice size fixed and
we vary ne. Notice that
even-though these data also
give the same phase
separation density within error
bars as that determined by
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our method described before, the shell effects are large. Such
deviations from a smooth curve could lead us to drawing the
wrong conclusions about phase separation boundaries.
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Results in the J < t Region

Energy per hole. The energy per
hole at J = 0.5t for 32, 42, 50
and 60 electrons.
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The curve attains a minimum at approximately the same value as
that determined by the tangent construction at the cubic
polynomial fit of the energy per size for a given number of
electrons. Notice, again, the shell effects.
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Results near JBc

Using GFMC Boninsegni and Manousakis
[Boninsegni and Manousakis, 1993](BM) studied the motion of
one and two holes using transient estimate.

They found that two holes form a d-wave bound state.

They found a critical value JBc ' 0.27t of J/t below which
there is no two-hole d-wave bound state. This value of JBc
was determined by calculating the binding energy for two
holes on lattices up to 8× 8. BM noticed that because the
bound state wave function decays exponentially with distance
the finite size effects were rather small.

They pursued a finite-size analysis from which they
determined JBc .

Thus, we choose the J/t = 0.3 to examine the question of phase
separation believing that this value is very close to the critical
value JBc .
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Results near JBc

Phase separation for J/t = 0.3
The ground-state energy per site
at J = 0.3t for 50, 52 and 60
electrons and lattices of sizes
Ns = 56, 64, 72, 81, 90,
Ns = 56, 64, 72, 81, 90 and
Ns = 64, 72, 81, 90 respectively.
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Notice that the values of Jc/t determined from the these sets of
data are very close. We obtain: ne = 0.877± 0.010.
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Results near JBc

Energy per hole
The energy per hole at J = 0.3t
for 50, 52 and 60 electrons.
There is a minimum at
nps = 0.12 which agrees very
well with the value obtained from
the tangent construction.
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The single-hole energy can be estimated by fitting the calculated
values for that as a function of J/t to a form E = E0 + aJ2/3.
The two-hole binding energy for J/t = 0.3 can be estimated using
the formula which were used by Boninsegni and Manousakis to
obtain the critical value of JBc . Thus, we can obtain a value for the
energy per hole, assuming that holes are bound in pairs and they
form a dilute gas of hole-pairs. This value of this energy is higher
than the value of the energy per hole at the minimum of our curve.
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Results below JBc
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The ground-state energy per site at J = 0.2t for 50 and 60
electrons and lattices with sizes Ns = 56, 64, 72, 81, 90 and
Ns = 64, 72, 81, 90 respectively. Notice again that the values of
Jc/t determined from the two sets of data are very close, we find:
nps = 0.909± 0.008.
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Results below JBc

The energy per hole at J = 0.2t
for 50 and 60 electrons. The
single-hole energy as obtained
from Boninsegni and Manousakis
[Boninsegni and Manousakis, 1992,
Boninsegni and Manousakis, 1993]
is also plotted for 8× 8 and
10× 10 size lattices.
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Below JBc where there is no two-hole d-wave bound state, if there
is no phase separation the minimum energy per hole should be the
single-hole energy at zero hole density. At J/t = 0.2 the single-hole
energy was also calculated by Boninsegni and Manousakis for an
8× 8 and 10× 10 size lattices. This value of the energy is shown
and it is clearly higher than the minimum of the energy per hole
curve which occurs at approximately hole density of x = 0.09.
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Spin and Charge Structure Factors
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Figure: Our calculated spin-structure factor as a function of ~k is
compared with that obtained with the Gutzwiller wavefunction (solid
line).
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Figure: Our calculated density-structure factor as a function of ~k is
compared with that obtained with the Gutzwiller wavefunction (solid
line).
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Phase Diagram of the t− J Model

The energy per hole at the
density where the phase
separation minimum occurs as a
function of J/t (solid line). This
is compared to the energy per
hole obtained from the single
hole calculation of Boninsegni
and Manousakis (’92) (dashed
line) and to the energy per hole
obtained from the 2 hole
calculation of Boninsegni and
Manousakis (’93).
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Notice that while the dashed line and the dotted line meet at
J/t ∼ 0.3, the minimum at the phase separation density and the
dotted line do not meet. Notice that the additional energy gained
to to phase separation decreases with decreasing J/t as expected.
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Phase Diagram of the t− J Model

The phase separation boundary.
The phase diagram as calculated
using the present method and the
Maxwell construction. A more
complete phase diagram for the
2D t− J model as a function of
J/t and doping was given in Fig.
3 of Ref.
[Hellberg and Manousakis, 1997].
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That phase diagram is also accurate in the low density region
where exact (in the zero density limit) or controlable calculations
can be done.
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Comparison with other calculations

Comparison of our results with
those obtained by Putikka et al.
[Putikka et al., 1992b] (High
Temperature Series expansion)
and by Callandra Becca and
Sorella (CBS)
[Calandra M. and Sorella, 1998]
(circles).
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Notice that our phase diagram and that of CBS are very close
except in the delicate physical region of small J/t.
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Comparison with other calculations (Cont’d)

Therefore, we can draw a relatively strong conclusion from this
comparison:

Main conclusion

The conclusion drawn from the early studies of the t− J
model[Putikka et al., 1992b, Dagotto, 1994] that the physical
region of the model is safely away from the phase separation
boundary is not correct.

What our work and the work of CBS find is that the interesting
region of J/t is either next to the phase separation boundary or
inside the phase separated region. In both cases phase separation
fluctuations could play an important role in the mechanism for
superconductivity in the copper oxides.



Trial state optimization O(N) Calculation of superexchange Phase Separation Spin and Charge Structure Factors Phase Diagram of the t− J Model Comparison with other calculations Conclusions

Comparison with other calculations

There is also an important difference between our results and those
of CBS.

Main Difference

Our results indicate that phase separation in the t− J model is
present for all J/t, while the conclusion of CBS is that there is a
finite value of J/t ' 0.4 below which there is no phase separation.
The reason for this disagreement is that this region requires a very
high degree of accuracy in the numerical results.

We would like to discuss the results of CBS where they find that at
J/t = 0.4 there is no phase separation for lattices of size Ns = 98.
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Fits of the results obtained by
CBS for 50 sites (solid circles)
and 98 (open squares) to a
quadratic polynomial. The result
for the lowest value of x for the
98 site system was not included
in the original 98 publication by
CBS, it was calculated by CBS
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Without using the point which corresponds to the lowest value of
x, CBS concluded that the fact that we found PS at J/t = 0.4 was
a finite-size effect. Notice that after the inclusion of the most
recently calculated point for the 98-site system there is still a
minimum at somewhat lower value of xc = 0.072. This value of xc
is close to our value for phase separation which is about 0.1 for
J/t = 0.4.
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Comparison with other calculations

Let us now examine more specifically the results in the previous
Figure. We have labeled by 2,4,6 the points which correspond to
2,4,6 holes in the 50 and 98 site lattices. Notice that the energy of
4 holes is the same within error bars in both lattices. The same is
true for the 6 hole case. Thus, the energy for 2,4 and 6 holes
seems to be independent of the size of the lattice within error bars.
This can be a either a) a genuine characteristic of presence of
phase separation where the two, four and six-hole bubbles in a
much larger system do not feel the size effects because they are
self bound at a characteristic size much smaller than the total
system or b) a result of shell-effects which we have discussed and
are minimized in our calculation or c) the calculation of CBS has
larger systematic or statistical errors than those reflected by their
error bars.
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Conclusions

We have developed an efficient Quantum Monte Carlo
method which resembles the GFMC method where without
eliminating the minus-sign the fluctuations are controlled with
the aid of appropriately constructed guiding functions up to a
certain high power of the Green’s function.
Starting from a good initial state allows us to achieve
convergence before the statistical errors become too large.
We developed a powerful technique which uses all the
calculated powers of the Hamiltonian to extrapolate to infinite
power.
This technique comes also with solutions to a number of other
technical problems such as:
a) enabling the guided random walk to walk through the
nodes with an O(N2) algorithm using the idea of “detour
walk”. This does not restrict our calculation within the fixed
node approximation.
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Conclusions (Cont’d)

b) instead of using multiple walkers the introduction of a
single walker whose walk is very long allows us to compute all
the desired powers of Hm m = 0, 1, ..., pmax in parallel by
looking back in the past pmax steps of the walk.

This technique was applied to the two-dimensional t− J
model to investigate its phase diagram. It is found, contrary
to most previous studies except the original work of Emery
Kivelson and Lin, that there is phase separation (PS) at all
interaction strengths of the t− J model. The signal for phase
separation is clear when one takes care of the following
additional difficulties:

First, Maxwell construction is the cleanest and strongest signal
for PS because it suffers the least from finite-size effects.
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Second the shell-effects can musk the signal because the
energy as a function of density when one keeps the size of the
lattice constant and varies the density by varying the electron
number is not a smooth curve. The reason for that is that the
kinetic energy of the electrons changes by a finite amount
when adding an electron to a new shell.

We have chosen to keep the electron number fixed at a closed
shell configuration and change the size of the lattice. The
number of electrons which form closed shell configurations
depends on the boundary conditions.

To generate as many as possible “magic numbers” of closed
shell configurations we have used four types of boundary
conditions. Periodic with 0 or π phase shifts at the boundary
in x or y direction.
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