Quantum Monte Carlo tutorial

Lucas K. Wagner Dept. of Physics; University of Illinois at Urbana-Champaign

QMC: what is it good for?

Gaps

Wagner, Ceperley Rep. Prog. Phys. **79** 094501 (2016)

Correlation functions Zheng, Gan, Abbamonte, Wagner

Magneto-phonon coupling

Wagner, Abbamonte PRB **90** 125129 (2014)

Ground states of magnetic systems Narayan, Busemeyer, Wagner (in preparation)

Pressure dependence of magnetic energies in FeSe

Busemeyer, Dagrada, Sorella, Casula, Wagner Phys. Rev. B **94** 035108 (2016)

Water on boron nitride

Wu, Aluru, Wagner J. Chem. Phys. **142**, 234702 (2015), **144** 164118 (2016) Al-Hamdani, Ma, Alfè, Lilienfeld & Michaelides J. Chem. Phys. **142**, 181101 (2015).

Changlani, Zheng, Wagner. J. Chem. Phys. **143**, 102814 (2015)

Telluride School on Stochastic Approaches to Electronic Structure Calculations

Hands on every day

Time for walks (quantum and classical)

Code QMC algorithms:

Variational Diffusion Path integral Auxiliary field Full Configuration interaction

telluridescience.org

Starting up

Find 2-3 friends. You are now a group

git clone https://github.com/lkwagner/MagLabWinterSchool2017.git qmc_tutorial modify runqmc.py to point to your QWalk installation.

if you want to run natively on Linux or Mac:

git clone https://github.com/QWalk/mainline qwalk cd qwalk/src make install

sudo pip3 install seaborn matplotlib numpy pandas

Approximate wave functions

For an up and down electron:

 $a(\chi_1(r_1)\chi_2(r_2) + \chi_2(r_1)\chi_1(r_2))$ $+ b(\chi_1(r_1)\chi_1(r_2) + \chi_2(r_1)\chi_2(r_2))$

> Limits: a=b: non-interacting b=0: no double occupancy

Non-interacting case

 $a(\chi_1(r_1)\chi_2(r_2) + \chi_2(r_1)\chi_1(r_2))$ $+b(\chi_1(r_1)\chi_1(r_2)+\chi_2(r_1)\chi_2(r_2))$

a=b.

This is the Hartree-Fock (RHF) result. The probability of finding two electrons on a given site is exactly 0.25

Why Jastrow?

When the densities overlap a lot, then the electrons avoid each other on a much smaller scale.

The Jastrow factor includes that kind of correlation.

Measurements

Total energy (Hartrees: ~27 eV)

Double occupancy of atomic orbitals (2-RDM)

Electron-electron radial distribution function

Wave function ansatz	Comment
Restricted Hartree-Fock	No electron correlation at all
Multiple Slater determinants	Reduces double occupancies of orbitals
Multiple Slater-Jastrow	Electrons also avoid one another at small distances
diffusion Monte Carlo	Exact or nearly exact in this situation (everything else!)

File	Purpose
runqmc.py	Interface to QWalk
scan.py	Run an ensemble of jobs - > .pickles
plot.py, plot_gr.py, plot_double.py	Plot scripts
hubbard.py	Find best Hubbard model

Define the Hamiltonian

Define the Hamiltonian (qwsinglet1.0.hf)

Multiple slater determinant

Procedure: evaluate wave function

```
method { vmc nstep 1000
  average { gr }
  average { tbdm_basis
    npoints 1
    ORBITALS { CUTOFF_MO MAGNIFY 1 NMO 2
        ORBFILE qwsinglet1.44.orb INCLUDE qwsinglet1.44.basis
        CENTERS { USEATOMS }
    }
}
```

Evaluate the wave function and average the radial distribution function and two body density matrix on the atomic basis.

```
TRIALFUNC { slater-jastrow
                        Define Jastrow factor
wf1 {
  SLATER
  ORBITALS {
  CUTOFF MO
    MAGNIFY 1
    NMO 2
    ORBFILE qwsinglet1.44.orb
    INCLUDE qwsinglet1.44.basis
    CENTERS { USEATOMS }
  }
                         11 22 }
  STATES { 1 2 2 1
  CSF { 1.0 1.0 1.0 }
  CSF{ 1.0 1.0 1.0 }
  OPTIMIZE_DET
                                           \exp\left[\sum_{i,\alpha} \sum_{k}^{\text{(onebody)}} c_k a_k(r_{i\alpha}) + \sum_{i,j} \sum_{k}^{\text{(twobody)}} c_k b_k(r_{ij})\right]
}
wf2 {
  JASTROW2
  GROUP {
    TWOBODY_SPIN {
                                                                    Define a's and b's
      FREEZE
      LIKE COEFFICIENTS { 0.25 0 }
      UNLIKE_COEFFICIENTS { 0 0.5 }
    }
    EEBASIS { EE CUTOFF_CUSP GAMMA 24 CUSP 1 CUTOFF 7.5 }
    EEBASIS { EE CUTOFF_CUSP GAMMA 24 CUSP 1 CUTOFF 7.5 }
  }
  GROUP {
    ONEBODY { COEFFICIENTS { H 0. 0. 0. } }
    TWOBODY { COEFFICIENTS { 0. 0. } }
    EIBASIS { H POLYPADE RCUT 7.5 BETA0 -0.4 NFUNC 3 }
    EEBASIS { EE POLYPADE RCUT 7.5 BETA0 -0.02 NFUNC 3 }
 }
}
```

}

Optimize:

Optimize and then

method { LINEAR total_nstep 250 }

```
method { vmc nstep 1000
  average { gr }
  average { tbdm_basis
    npoints 1
    ORBITALS { CUTOFF_MO MAGNIFY 1 NMO 2
        ORBFILE qwsinglet1.44.orb INCLUDE qwsinglet1.44.basis
        CENTERS { USEATOMS }
    }
}
```


Discussion questions

- Where do the singlet and triplet state become degenerate for the different wave function ansatz? Why the differences?
- Where is the multiple slater without Jastrow good, and where is it poor?
- Why does DMC have the highest double occupancy in the singlet state around r=3 Bohr?

Why does RHF always result in zero effective U?

Why does multiple Slater result in larger U values than when short-range correlation is included?