Effects of disorder and charge doping in quantum and molecular magnets

Tyrel M. McQueen Department of Chemistry Department of Physics and Astronomy Department of Materials Science and Engineering Institute for Quantum Matter The Johns Hopkins University http://occamy.chemistry.jhu.edu

"Optimism Does Not Change the Laws of Physics [or Chemistry]" - Science Officer T'Pol, Starship Enterprise

Outline

- The experimental history of layered frustrated magnets
- Three complementary examples:
 - NaVO₂ (Orbital ordering relieves frustration)
 - $Zn_{1-\delta}Cu_{3+\delta}(OH)_6Cl_2$ (Magnetic disorder between layers)
 - LiZn₂Mo₃O₈ (Non-magnetic disorder between layers)
- Effect of electron count on the properties: is there superconductivity?
- Last remarks

Acknowledgements

Magnets and Molecules go way back

Lodestone (circa 600 BC)

- 600 BC recorded that iron attracts lodestone: Aristotle. De Anima (On the Soul). Book I, part 2
- Modern view started: 1819, Oersted's experiment

OHNS HOPKINS

- 450 BC Empedocles imagined fundamental elements (fire, earth, air, water)
- Modern view started: 1661, Robert Boyle's The Sceptical Chymist

http://www.magnet.fsu.edu/education/tutorials/museum/lodestone.html http://www-pdg.lbl.gov/cpep/four_elem_ans.html

Resonating Valence Bonds and Spin Liquids

P.W. Anderson, "Resonating Valence Bonds: A New Kind of Insulator?", Mat. Res. Bull. 8, 153-160 (1973)R. Moessner and S.L. Sondhi, "Resonating Valence Bond Liquid Physics on the Triangular Lattice,", Prog. Theor. Phys. (2002)

A.P. Ramirez, "Strongly Geometrically Frustrated Magnets," Annu. Rev. Mater. Sci. 24, 453-80 (1994). OHNS HOPKINS

DISORDER

The Experimentalist's Building Blocks

Printed in Canad

Bibliotheque Nationale du Quebec, Bibliotheque National du Canada (1992) A.P. Ramirez, "Strongly Geometrically Frustrated Magnets," Annu. Rev. Mater. Sci. 24, 453-80 (1994).

The Experimentalist's Building Blocks

Per	nodia Te) 7 7 7 7 7		emer		VIII 18
				UC LUC 1	IA IVA 3 14	VA VIA VIIA 15 16 17	4.0 2 H
Compound	Magnetic lattice	$-\theta_{cw}$ (K)	T _c (K)	ſ	Ordered state	Electronic configuration	20.2 10 N
wo-dimensiona	al magnets						n
VCl ₂	triangular	437	36	12	AF	3d ³	^{39,9} Δ
NaTiO ₂	triangular	1000	< 2	> 500	—	3d1	187
LiCrO ₂	triangular	490	15	33	AF	3d ³	-
Gd _{0.8} La _{0.2} Cu	O ₂ triangular	12.5	0.7	16	SG	4f ⁷	^{83,8} K
SrCr ₈ Ga ₄ O ₁₉	kagome	515	3.5	150	SG	3d ³	1
KCr ₃ (OH) ₆ (SC	$(A_4)_2$ kagome	70	1.8	39	AF	3d ³	21.2
'hree-dimension	nal magnets						54 X
$ZnCr_2O_4$	B -spinel	390	16	24	AF	3d ³	3,8
s K ₂ IrCl ₆	FCC	321	3.1	10	AF	5d⁵	222 86 P
FeF ₃	B -spinel	240	15	16	AF	3d ⁵	
CsNiFeF ₅	B -spinel	210	4.4	48	SG	3d ⁸ , 3d ⁵	
$MnIn_2Te_4$	zinc blende	100	4	25	SG	3d 5	
$Gd_3Ga_5O_{12}$	garnet	2.3	< 0.03	>100		4f ⁷	
Sr ₂ NbFeO ₆	perovskite	840	28	30	SG	3d⁴	
Ba ₂ NbVO ₆	perovskite	450	15	30	SG	3d ³	
	Image: Weight of the state of the	21 00 a 20 00	a 1607a 1400a mi 36 Cm 37 Bk	Image: Second system Image: Se	58 Min 101 Md 102 No 103		

Dépôt légal 3ª trimestre 1992, Bibliothèque Nationale du Québec, Bibliothèque Nationale du Canad

Printed in Canada

Bibliotheque Nationale du Quebec, Bibliotheque National du Canada (1992)

A.P. Ramirez, "Strongly Geometrically Frustrated Magnets," Annu. Rev. Mater. Sci. 24, 453-80 (1994).

Zoo of Triangle-Based Magnets

Table I. Planar lattices based on Edge-sharing Equilateral triangles

Compound	Structure type	Stacking Type	M-M in-plane	M-M next plane
VCl ₂	CdI_2	Eclipsed	3.60	5.84
CuCoO ₂	Delafossite 3-layer	Staggered	2.85	5.95
CuFeO ₂	Delafossite 2-layer	Eclipsed	3.04	5.73
NaCrO ₂	α -NaFeO ₂	Staggered	2.98	5.59
$Fe_{1/3}NbS_2 \\$	intercalated dichalcogenide	Staggered	5.76	6.95
$Cr_{1/4}NbS_2 \\$	intercalated dichalcogenide	Eclipsed	6.63	5.99
CsNiCl ₃	BaNiO ₃	Eclipsed	7.17	2.97
RbFe(SO ₄) ₂	anhydrous Alum	Eclipsed	4.82	8.22
NiGa ₂ S ₄	NiGa ₂ S ₄	Eclipsed	3.63	12.00

Table II. Planar lattices based on Edge-sharing of non-equilateral triangles

Compound	Structure Type	Triangle Type	Stacking Type	M-M in-plane	M-M next plane
Cs ₂ CuCl ₄ Cu ₂ (OH) ₃ Cl KFe(SO ₄) ₂	Cs ₂ MCl ₄ Botallackite anhydrous Alum	isosceles scalene isosceles	Staggered Eclipsed Eclipsed	7.60, 7.26 3.06, 3.18, 3.23 4.79, 5.14	6.81 5.72 7.88
NaNiO ₂	distorted α-NaFeO ₂	isosceles	Staggered	2.84, 3.02	5.47, 5.58

Table III. Planar lattices based on corner-sharing triangles

Compound	Structure	Layer	Stacking	M-M	M-M
	Type	Type	Type	in plane	next plane
$\begin{array}{l} NH_4Fe_3(SO_4)_2(OH)_6\\ ZnCu_3(OH)_6Cl_2\\ Cu_3V_2O_7(OH)_2.2H_2O\\ Ni_3V_2O_8 \end{array}$	Jarosite	Kagomé	Eclipsed	3.65	6.13
	Paratacamite	Kagomé	Staggered	3.39, 3.43	5.05, 5.15
	Volborthite	Kagomé	Eclipsed	2.93, 3.03	7.21
	Co ₃ V ₂ O ₈	Kagomé	Staggered	2.94, 2.96	5.71
Mn_2SiO_4 $ZnTm_2S_4$	Olivine Olivine	Staircase isosceles sawtooth isosecles sawtooth	Staggered Staggered	3.12, 3.35 3.89, 4.04	3.69, 3.76, 4.02 4.81 4.85, 5.02

Table IV. Planar Lattices based on Honeycombs

Compound	Layer	Stacking	MM	M-M
	Type	Type	in-plane	next-plane
BaNi ₂ V ₂ O ₈ Na ₃ Co ₂ SbO ₆ Na ₂ Cu ₂ TeO ₆	regular regular triangular lattice of dimers	Staggered Eclipsed Staggered	2.91 3.10 2.86, 3.21	7.99, 7.87 5.65 5.65

Table V. Three-dimensional Materials with triangle-based lattices

Compound	Structure	Lattice	M-M	M-M
	Туре	Туре	in-triangle	next nearest
Ba_2HoSbO_6	Double	edge-sharing	5.93	
	Perovskite	tetrahedra (FCC)		
Sr ₂ MgIrO ₆	Double	edge-sharing	5.58	
	Perovskite	tetrahedra (FCC)		
$Dy_2Ti_2O_7$	Pyrochlore	corner-sharing	3.58	
	A site	tetrahedra		
$Y_2Mo_2O_7$	Pyrochlore	corner-sharing	3.62	
	B site	tetrahedra		
Dy2+xTi2-xO7-x/2	Stuffed	corner to edge-	3.58-3.66	
	Pyrochlore	sharing tetrahedra		
ZnCr ₂ O ₄	Spinel	corner-sharing	2.86	
	(B site)	tetrahedra		
CdDy ₂ S ₄	Spinel	corner-sharing	3.98	
	(B site)	tetrahedra		
$MnSc_2S_4$	Spinel	Diamond	4.59	7.50 (2nd neighbor)
	(A site)			
SrGa ₄ Cr ₈ O ₁₉	M-type	Kagomé	2.86	
	Ferrite	+ tetrahdera		2.99 (cap of tetrahedron)
		+pyramid connectors		3.44, 2.68 (to connectors)
Ba2Sn2Ga3ZnC	r_7O_{22}	1.		
	QS ferrite	Kagomé	2.87, 2.98	9.49, 9.86 (interlayer)
		+tetrahedra		3.05 (cap of tetrahedron)
SrCo ₆ O ₁₁	R-type	Kagomé	2.81	6.29 (interlayer)
* **	Ferrite	+connector		
YBaCo ₄ O ₇	spinel-like	Kagomé	3.03, 3.25	3.05 (cap of tetrahedron)
• /	1	+ tetrahedra	,	
Tb ₃ Ga ₅ O ₁₂	Garnet	interpenetrating	3.78	5.78 (interlattice)
5 5 12		lattices of		
		corner-sharing triangl	es	
		00-		

S Cava, R.J., K.L. Holman, T.M. McQueen, E.J. Welch, D.V. West, and A.J. Williams, "The Geometries of Triangular Magnetic Lattices," in Introduction to Frustrated Magnetism, Springer: 2011. ISBN: 978-3-642-10588-3.

AMO_2 (A = Li,Na,..., M = Ti³⁺, V³⁺,...)

Compound	Magnetic Ordering	Obs. Mag. Moment	Expected Mag. Moment (spin-only)
NaScO ₂	boring non-magnet	-	-
NaTiO ₂	no long range order	-	1 μ _B /Ti ³⁺
$NaVO_2$	3D order	1.0 μ _β /V ³⁺	$2 \mu_B / V^{3+}$
NaCrO ₂	short range order	_1	3 μ _B /Cr ³⁺
NaMnO ₂	3D order	3.0 μ _B /Mn ³⁺	4 μ _B /Mn ³⁺ (HS)
NaFeO ₂	3D order	4.3 μ _Β /Fe ³⁺	5 μ _B /Fe ³⁺ (HS)
NaNiO ₂	3D order	1 μ _Β /Ni ³⁺	1 μ _B /Ni ³⁺ (LS)

Smaller than Expected Moment, Rich Phases

JOHNS HOPKINS T.M. McQueen, et al. Phys. Rev. Lett. 101, 166402 (2008)

NaVO₂: Two Phase Transitions, Magnetic Order

JOHNS HOPKINS T.M. McQueen, et al. *Phys. Rev. Lett.* 101, 166402 (2008)

From Minerals to Kagomé Magnets

Mineralogical Magazine, June 2004, Vol. 68(3), pp. 527–539

Herbertsmithite, $Cu_3Zn(OH)_6Cl_2$, a new species,

and the definition of paratacamite

R. S. W. Braithwaite¹, K. Mereiter², W. H. Paar^{3,*} and A. M. Clark⁴

FIG. 1. Herbertsmithite, dark green crystals on pale buff matrix. From RSWB 84-27, Mina Los Tres Presidentes, Sierra Gorda, Chile.

Mg, Ni, Co in place of Zn also known minerals

Synthetic $Zn_{1-\delta} Cu_{3+\delta} (OH)_6 Cl_2$

Published on Web 09/09/2005

A Structurally Perfect $S = \frac{1}{2}$ Kagomé Antiferromagnet

Matthew P. Shores, Emily A. Nytko, Bart M. Bartlett, and Daniel G. Nocera*

Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307

Candidate Spin Liquid

- |θ| ~ -300 K, indicative
 of strong AFM
- But, no magnetic order to 50 mK
- No sharp magnetic
 Bragg peaks and
 dispersionless magnetic
 excitations in neutron
 diffraction

Disordered Mess?

- Is "ZnCu₃(OH)₆Cl₂" really a 'perfect' kagomé antiferromagnet? Or are these unique properties the result of chemical disorder?
- Zn²⁺ and Cu²⁺ have the same charge and similar ionic radii (0.75 vs. 0.73 Å)
- Zn^{2+} is known to go in O₄Cl₂ coordination, and Cu²⁺ is known to go into O₆ coordination

- Consequently, Zn-Cu mixing is chemically plausible
- But quantifying this is non-trivial

Second Planes Low Defect Density, But...

D.E. Freedman, et al. J. Am. Chem. Soc. 132, 16185-90 (2010)

OHNS HOPKINS

Interlayer Defects Modulate Low-T Physics

Pictorial Explanation

Spins are not meant to indicate actual magnetic structure

- Coupling within a layer strongly AFM
- Coupling between
 kagomé and interlayer
 sites makes domains
- Low x: Static magnetic domains
- High x: Domains get too small to freeze out
- Explains all the data
- Implies native state of 2D layers not just magnetic ordering...

Fractionalized Excitations

T.-H. Han, et al. Nature 492, 406 (2012)

Z. Hao and O. Tchernyshyov, *Phys. Rev. B* 81, 214445 (2010)

JOHNS HOPKINS

Classes of Two Dimensional S=1/2 Magnets

Single Ions

Cu²⁺ (d⁹) Minerals

 V^{4+} (d¹) Compounds

Organic Molecules

BEDT-TTF Dimers

Inorganic "Molecules"

Mo₃O₁₃ Cluster

Structure of LiZn₂Mo₃O₈ 2.01 Å 📍 2.14 Å =Mo =0 =Li/Zn/vac. Mo₃O₈ 2.06 Å $LiZn_2$ 2.08 Å Mo₃O₈ 2.6 Energy (eV) -5 -5 -5 U -5 -6

OHNS HOPKINSJ.P. Sheckelton, et al., Nature Materials 11, 493-6 (2012)

<u>OHNS HOPKINS</u>

Likely Mott Insulator

J.P. Sheckelton, et al., Nature Materials 11, 493-6 (2012) J.P. Sheckelton, et al., Materials Horizons 2, 76-80 (2015)

ESR Shows S=1/2

OHNS HOPKINS J.P. Sheckelton, et al., *Phys. Rev.* B 89, 064407 (2014)

Valence Bonds?

JOHNS HOPKINS

J.P. Sheckelton, et al., *Nature Materials* **11**, 493-6 (2012) Model courtesy Oleg Tchernyshyov (unpublished)

Molecules, but where is the Magnetism?

HOPKINS

M. Mourigal, T.M. McQueen, C.L. Broholm, et al., Phys. Rev. Lett. 112, 027202 (2014)

OPKINS

Valence Bonds!

M. Mourigal, T.M. McQueen, C.L. Broholm, et al., Phys. Rev. Lett. 112, 027202 (2014)

Valence Bonds!

No Magnetic Order to T = 0.07 K

- Where are the other "2/3"^{rds} of the spins?
- Why is it not a 120° ground state?

J.P. Sheckelton, et al., *Phys. Rev. B* **89**, 064407 (2014)

Possibilities

Emergent honeycomb lattice in $LiZn_2Mo_3O_8$

Rebecca Flint and Patrick A. Lee

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

We introduce the idea of *emergent lattices*, where a simple lattice decouples into two weaklycoupled lattices as a way to stabilize spin liquids. In LiZn₂Mo₃O₈, the disappearance of 2/3rds of the spins at low temperatures suggests that its triangular lattice decouples into an emergent honeycomb lattice weakly coupled to the remaining spins, and we suggest several ways to test this proposal. We show that these orphan spins act to stabilize the spin-liquid in the $J_1 - J_2$ honeycomb model and also discuss a possible 3D analogue, Ba₂MoYO₆ that may form a "depleted fcc lattice."

Flint and Lee, Phys. Rev. Lett. 111, 217201 (2013)

JOHNS HOPKINS

R. Moessner and S.L. Sondhi, "Resonating Valence Bond Liquid Physics on the Triangular Lattice,", Prog. Theor. Phys. (2002) J.P. Sheckelton, et al. *Phys. Rev. B* **89**, 064407 (2014)

Gang Chen

Possibilities

honeycomb lattice weakly coupled to the remaining spins, and we suggest several ways to test this proposal. We show that these orphan spins act to stabilize the spin-liquid in the $J_1 - J_2$ honeycomb model and also discuss a possible 3D analogue, Ba₂MoYO₆ that may form a "depleted fcc lattice."

Flint and Lee, Phys. Rev. Lett. 111, 217201 (2013)

R. Moessner and S.L. Sondhi, "Resonating Valence Bond Liquid Physics on the Triangular Lattice,", Prog. Theor. Phys. (2002) J.P. Sheckelton, et al. Phys. Rev. B 89, 064407 (2014)

Gang Chen

A breather...

- LiZn₂Mo₃O₈ is one of a handful of materials known to have a valence bond structure, and the gapless nature means it is a candidate spin liquid
- Strong interactions between isolated spins on magnetic clusters possible
- Avoid 1st order Jahn-Teller Effects
- Limit number of defects

A Five Step Plan

Synthesize a resonating valence bond or spin liquid material

Prove that oxidation or reduction is possible

Dope spin liquid with holes (preferred) or electrons

Step 1

OHNS HOPKI

Step 2

Step 3

Demonstrate superconductivity

4

Step 5

Charge Doping LiZn₂Mo₃O₈

Lets skip the messy chemistry, and just say LiZn_{2-x}Mo₃O₈ works

Magnetic Trends...

Band gap increases on doping...

Maybe Anderson Localization Wins?

J.P. Sheckelton, et al., Materials Horizons 2, 76-80 (2015)

No (Static) Local Structural Distortions

OHNS HOPKI

J.P. Sheckelton, et al., Materials Horizons 2

Role of Molecular Vibrations?

OHNS HOPKINS

Insight from (simplistic) DFT+U

J.P. Sheckelton, et al., Materials Horizons 2, 76-80 (2015)

Critical Scaling?

Conclusions

- LiZn₂Mo₃O₈ is one of a handful of materials known to have a valence bond structure, and the gapless nature means it is a candidate spin liquid
- Strong interactions between isolated spins on magnetic clusters possible
- Charge doping never induces metallicity, let alone superconductivity
 - Anderson localization too strong?
 - Charge gap too big? (unlikely...)
- Dynamic local structure measurements constrain role of the lattice
- Stay tuned... this cluster approach is not a one-time affair!

"Defects Rule, Physics Drools" (and Entropy Always Wins)

And now my challenge to you: we now have a variety of strong candidates for magnets with non-trivial magnetic ground states. What experimentally achievable devices, etc. should we build with these (e.g. how do I make a qubit?)

IQM Crystal Growth Successes

Not an exhaustive list!

We are actively seeking external funding to turn this into an external user facility

Only One Example of What We Do!

 Tl_5Te_3

