

Transport Experiments on 3D Topological insulators Part I

N. P. Ong, Princeton Univ.

- 1. Transport in non-metallic Bi₂Se₃ and Bi₂Te₃
- 2. A TI with very large bulk $\rho\,$ Bi_2Te_2Se
- SdH oscillations to 45 Tesla Evidence for ½ shift from Dirac Spectrum
- 4. Tuning SdH oscillations by liquid gating
- 5. The Quantized Anomalous Hall Effect (Tsinghua, IOP)

Support from NSF DMR 0819860 DARPA ARO, MURI

- Surface electron feels surface E-field. In its rest, sees field B = v × E
- Large B (enhanced by SOI) locks spin s ⊥ v
- Rashba-like Hamiltonian

$$H = v_F \,\mathbf{\hat{n}} \times \mathbf{k} \cdot \mathbf{s}$$

Helical, massless Dirac states with opposite chirality on opp. surfaces of crystal

Suppression of 2k_F scattering

spin aligned with **B** in rest frame of moving electron

Surface conductance

 $G_{\rm s}$ = (e²/h) $k_{\rm F}$ /

 $R_{\rm s} \simeq 400 \, \rm Ohms$

if $k_{\rm F} l = 100$

1. Mass twist \rightarrow helical state at zero mass

$$H = \begin{bmatrix} m(\mathbf{x}) & \mathbf{v}_F(k_x - ik_y) \\ \mathbf{v}_F(k_x + ik_y) & -m(\mathbf{x}) \end{bmatrix}$$

Twist is topologically stable

2. Strong spin-orbit int. → giant Rashba term and spin-locking with opposite helicities

$$H_R = \mathbf{v}_F \, \mathbf{\hat{n}} \cdot \mathbf{\vec{\sigma}} \times \mathbf{k}$$

Xia, Hasan et al. Nature Phys '09

Chen, Shen et al. Science 2009

In Bi₂Se₃ and Bi₂Te₃

- Only 1 surface state present
- Massless Dirac spectrum
- Large gaps -- 300 and 200 meV

Detection of Dirac Surface States by transport

Shubnikov de Haas oscillations

Material	R _{obs} (Ω)	ρ _b (mΩcm)	μ _s (cm²/Vs)	k _F I	$G_{\rm s}/G_{\rm bulk}$ $\mu_{\rm s}/\mu_{\rm b}$
Bi ₂ Se ₃ (Ca)	0.01 30-80	< 200 ?	?	?	
Bi ₂ Te ₃	0.005	4-12	10,000100	0.03	12
Bi₂Te₂Se	300-400	6,000	2,800 40	~1	60

Shubnikov de Haas Oscill. in non-metallic Bi₂Te₃

Qu, NPO et al. Science, 2010

2D vs 3D Shubnikov de Haas period in bulk Bi₂Te₃

Qu, NPO et al. Science 2010

Seeing surface conduction directly in Hall channel

- 1. (Panel A) Hall conductivity σ_{xy} shows a "resonance" anomaly in weak H
- 2. (Panel B) After subtracting bulk contribution, the resonance is the isolated surface Hall conductivity G_{xy} . Peak position yield mobility μ (~9,000 cm²/Vs) and peak height yields metallicity $k_F \ell = 80$.

Panel B is a "snap shot" that gives mobility and $k_{\rm F}\ell$ by inspection.

Fit (semiclassical)

$$\sigma_{xy} = \sigma_{xy}^{b} + G_{xy} / t$$

$$\sigma_{xy}^{b} = n_{b}e\mu_{b} \frac{\mu_{b}H}{[1 + (\mu_{b}H)^{2}]}$$

$$G_{xy} = \frac{e^{2}}{h}k_{F}\ell \frac{\mu_{s}H}{[1 + (\mu_{s}H)^{2}]}$$

$$\mu_{s} = \frac{e}{\hbar}\frac{\ell}{k_{F}}$$

 $\ell = 240 \text{ nm}$ $\mu_s = 8,000 \text{ cm}^2/\text{Vs}$

Good agreemt w Dingle analysis
& 2D massless Dirac state.

• Numbers rule out G_{xy} as 3D bulk term.

Topological Insulator with sharply reduced bulk cond. --- Bi₂Te₂Se

Band Structure of Bi₂Te₂Se

S.-Y. Xu, M.Z. Hasan et al., arXiv:1007.5111

Approaching the N = 0 Landau Level

Shubnikov de Haas oscillations in 45 T field

 π phase shift from Berry term

Resistivity max or min?

Is there a g-factor shift?

Applied magnetic field B quantizes density of states (DOS) into Landau Levels

Dirac Landau Levels (LLs) spread out as B increases

Chemical potential μ approaches n = 0 level (Dirac Point)

 μ falls between LLs when ρ_{xx} is a local maximum (at B_n)

Landau Level Index *n* determined by plotting *n* vs. $1/B_n$

In index plot, must align n with maxima in Rxx (n counts number of filled LLs)

Schrödinger vs Dirac spectrum

Check intercept of index plot in quantum limit $1/B \rightarrow 0$

$$\frac{1}{B_n} = \left(n + 1/2\right) \frac{e}{hn_s} \quad \text{or} \quad \frac{1}{B_n} = \frac{e}{hn_s} n \quad ?$$

Dirac states have intercept at n = -1/2 because states at n = 0 LL come from both conduction and valence bands.

Equivalently, effect of Berry phase π -shift

Quantum Oscillations in Bi₂Te₂Se in high B

Xiong et al. PRB 2012

Amplitude of SdH oscillations is 17% of total conductance

Derivatives not needed to resolve SdH oscillations

Bulk resistivity ρ_{b} = 4 - 8 Ω cm (~4 K)

Oscillations seen in both G_{xx} and G_{xy}

High-field Quantum Oscillations in Bi₂Te₂Se

 $1/B(T^{-1})$

Index Plot in $Bi_2Te_2Se \rightarrow The Quantum Limit$

PUBLISHED ONLINE: 19 FEBRUARY 2012 | DOI: 10.1038/NMAT3255

Oops

Josephson supercurrent through a topological insulator surface state

M. Veldhorst¹, M. Snelder¹, M. Hoek¹, T. Gang¹, V. K. Guduru², X. L. Wang³, U. Zeitler², W. G. van der Wiel¹, A. A. Golubov¹, H. Hilgenkamp^{1,4} and A. Brinkman^{1*}

nature

materials

2-probe resistance of exfoliated Bi₂Te₃

Incorrect identification of index field B_n Oscillations are actually from bulk carriers Tuning Shubnikov de Haas oscillations by

Ionic Liquid Gating

Ionic Liquid Gating

Intense E field applied to sample by ions

Liquid Gating Effect on Resistivity and Hall Coefficient

Xiong et al. PRB 2013

As $V_{\rm G}$ increases to more negative values, resistivity increases.

Hall density decreases. Implies surface density decreases

Liquid Gating Effect on Surface Quantum Oscillations

Xiong et al. PRB 2013

As $|V_G|$ increases, period of oscillations increases (Fermi Surface cross section decreases).

Also, amplitude of oscillations *increases* (more uniform density?)

Period increases 7-fold

Energy decreases by 2.6

Sample 2

Xiong et al. PRB 2013

Sample 2

Tuning $V_{\rm G}$ from 0 \rightarrow -3 V decreases FS area and $n_{\rm s}$ by ~7

SdH amplitude increases

At 14 Tesla, Lowest Landau Level accessed is *n* = 1!

Intercept in quantum limit $1/B_n \rightarrow 0$ gives n = -1/2, with much higher resolution.

Strong evidence for Dirac spectrum

Additivity of surface and bulk Hall conductivities

$$\sigma_{xy} = \sigma^b_{xy} + G^s_{xy} / t$$

The bulk term

$$\sigma^{b}_{xy} = n_b e \mu_b^2 H$$

surface term

term
$$G_{xy}^{s} / t = N_{s} e \mu \frac{\mu H}{[1 + (\mu H)^{2}]}$$

High-mobility surface electrons

 $n_{\rm b} >> N_{\rm s}/t$, but the mobility ratio $\mu/\mu_{\rm b} >> 1$.

Since Hall currents ~ (mobility)², could the surface Hall current G^{s}_{xy} become dominant in low magnetic fields?

Separating surface and bulk Hall currents

The Quantum Anomalous Hall Effect

Quantized Anomalous Hall Effect in Magnetic Topological Insulators

Science 2010

Rui Yu,¹ Wei Zhang,¹ Hai-Jun Zhang,^{1,2} Shou-Cheng Zhang,^{2,3} Xi Dai,¹* Zhong Fang¹*

Science 2013

Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

Cui-Zu Chang,^{1,2}* Jinsong Zhang,¹* Xiao Feng,^{1,2}* Jie Shen,²* Zuocheng Zhang,¹ Minghua Guo,¹ Kang Li,² Yunbo Ou,² Pang Wei,² Li-Li Wang,² Zhong-Qing Ji,² Yang Feng,¹ Shuaihua Ji,¹ Xi Chen,¹ Jinfeng Jia,¹ Xi Dai,² Zhong Fang,² Shou-Cheng Zhang,³ Ke He,²† Yayu Wang,¹† Li Lu,² Xu-Cun Ma,² Qi-Kun Xue¹†

A twist of the gap leads to topological surface states

Gap (mass) twist

