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Source	code	(Python	and	C++)	

h3p://www.github.com/afeiguin/	
h3p://www.github.com/afeiguin/comp-phys	

	
ALPS	libraries	and	code:	
h3p://alps.comp-phys.org	

	

These	lectures:	
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Brief	history	and	milestones	
•  (1992)	Steve	White	introduces	the	DMRG.	
•  (1995-…)	Dynamical	DMRG.	(Hallberg,	Ramasesha	et	al,	Kuhner	and	White,	

Jeckelmann)	
•  (1995)	Nishino	introduces	the	transfer-matrix	DMRG	(TMRG)	for	classical	systems.		
•  (1996-97)	Bursill,	Wang	and	Xiang,	Shibata,	generalize	the	TMRG	to	quantum	

problems.	
•  (1996)	Xiang	adapts	DMRG	to	momentum	space.	
•  (2001)	Shibata	and	Yoshioka	study	FQH	systems.	
•  (2004)	Vidal	introduces	the	TEBD.	(Yme-evolving	block	decimaYon)	
•  (2005)	Verstraete	and	Cirac	introduce	an	alternaYve	algorithm	for	MPS’s	and	

explain	problem	with	DMRG	and	PBC.	
•  (2006)	White	and	AEF,	and	Daley,	Kollath,	Schollwoeck,	Vidal	generalize	the	ideas	

within	a	DMRG	framework:	adapYve	tDMRG.	

…	the	DMRG	has	been	used	in	a	variety	of	fields	and	contexts,	from	classical	systems	to	
quantum	chemistry,	to	nuclear	physics…		



Single	par2cle	vs.	many	body	picture	

4 configurations 
4x4 matrix 

EF	

The state of the system is a “product state” of single 
particle states. We only need to solve the one-particle 

problem.Think “Hydrogen atom”.  

And similarly for the “down” electrons 



Single	par2cle	vs.	many	body	picture	

16 configurations 
16x16 matrix 

The state of the system is “highly entangled”. It cannot be written as 
a “product state”, and the behavior of each electron is dictated by the 
behavior of the rest.(Notice that in some case Bethe Ansatz tells us 
that some many-body states can still be reduced to product states)  



Exact diagonalization 
“brute force” diagonalization of the Hamiltonian matrix. 

 

…	anything	you	want	to	know…	but…	only	small	systems	

H |x〉 = E |x〉 
H : Hamiltonian operator 
|x〉 : eigenstate 
E : eigenvalue (ENERGY) 

Schrödinger's Equation: 

All	we	need	to	do	is	to	pick	a	basis	and	write	the	Hamiltonian	matrix	in	that	
basis	



Symmetries SH=HS 

Reflections 

Translations 

D' = D / N 

D' = D / 2 

Particle number conservation => Ntotal 
Spin conservations => Sz

total 

Spin reversal => |↑↓〉 ± |↓↑〉 

|ψk〉 = (1/M) ∑iaki Ti |φ〉; aki =exp(ikxi) 



Block diagonalization 

0 

0 0 

0 



ED	Example:	Heisenberg	chain	

Geometry:	
1D chain 

Basis:	

HHeis = J ∑<i,j> Si
zSj

z+ 1/2 (Si
-Sj

++Si
+Sj

-) 

Model	Hamiltonian:	

|↑↓↑↓〉; |↓↑↓↑〉; 
|↑↑↓↓〉; |↓↑↑↓〉; |↓↓↑↑〉; |↑↓↓↑〉 	



Applying	translaYons:	

|1〉=1/(2√2){(1+ ei2k )|↑↓↑↓〉+ eik(1+ei2k)|↓↑↓↑〉} 
|2〉=1/2{|↑↑↓↓〉+eik|↓↑↑↓〉+ei2k|↓↓↑↑〉+ei3k|↑↓↓↑〉} 	

TranslaYons	

With	k=0,-π/2,	π/2,	π	

k=0)	 |1〉=1/√2{|↑↓↑↓〉+|↓↑↓↑〉} 
|2〉=1/2{|↑↑↓↓〉+|↓↑↑↓〉+|↓↓↑↑〉+|↑↓↓↑〉} 	

k=	-π/2)	 |2〉=1/2{|↑↑↓↓〉+e-iπ/2|↓↑↑↓〉-|↓↓↑↑〉+eiπ/2 |↑↓↓↑〉} 	

k=	π/2)	 |2〉=1/2{|↑↑↓↓〉+eiπ/2|↓↑↑↓〉-|↓↓↑↑〉+e-iπ/2 |↑↓↓↑〉} 	

k=	π)	 |1〉=1/√2{|↑↓↑↓〉-|↓↑↓↑〉} 
|2〉=1/2{|↑↑↓↓〉-|↓↑↑↓〉+|↓↓↑↑〉-|↑↓↓↑〉} 	



Limita2ons	:	small	laAces	
•  Hubbard	model:	20	sites	at	half	filling,	10↑	and	10↓,	D=20!(10!

10!)x20!(10!10!)	=	2.4e+10.	Auer	symmetries	D'=1.1e+8	
•  t-J	model	(only	|o〉, |↑〉 and	|↓〉	states):	32	sites	with	4	holes,	

14↑	and	14↓,	D	=	32!/(14!18!)x18!/(14!4!)	=	1.4e+12;		D'=5.6e9	
•  Heisenberg	model	(only	|↑〉 and	|↓〉	states):	36	sites,	18↑	and	

18↓,	D	=	36!/(18!18!)=9075135300;	D'	=D/(36x2x2x2x2)=1.5e6	
states	



Exact diag. is limited by system 
size… How can we overcome 

this problem? 

Po’ man’s solution: What about 
truncating the basis? 



“Classical”	analogy	
Image	compression	algorithms	(e.g.	Jpeg)	

We	want	to	achieve	“lossless	compression”	
…	or	at	least	minimize	the	loss	of	informa1on	



Idea 1: Truncated diagonalization 

|gs〉 =∑ ai|xi〉 

Usually, only a few important states  
possess most of the weight 

, ∑ |ai|
2 = 1 

Error = 1-∑' |ai|
2 

Cut	here	



Idea 2: Change of basis 

Can we rotate our basis to one where the weights are more concentrated, to 
minimize the error?

|gs〉 =∑ ai|xi〉 , ∑ |ai|
2 = 1 Error = 1-∑' |ai|

2 

Cut	here	 Cut	here	



What	does	it	mean	“to	truncate	the	basis”	

If	we	truncate	

This	transformaYon	is	no	longer	unitary,	does	not	preserve	norm	->loss	of	informaYon	



The	case	of	spins	
 
The two-site basis is given by the states  

|σσ’〉 ={|↑↑〉;|↑↓〉;|↓↑〉; |↓↓〉}	

We can easily diagonalize the Hamiltonian by rotating with the matrix: 

That yields the eigenstates: 



The	case	of	spins…	



Numerical	Renormaliza2on	Group	



Let’s	consider	the	1d	Heisenberg	model	
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For	a	single	site													,	the	operator	matrices	are:	

We	also	need	to	define	the	idenYty	on	a	block	of	l	sites	
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Building	the	Hamiltonian	a	la	NRG	
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This	recursion	will	generate	a	2lx2l	Hamiltonian	matrix	that	we	
can	easily	diagonalize	



Another	way	to	put	it…	
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Adding	a	single	site	to	the	block	

1+lα
lα

1+ls

Before	truncaYng	we	build	the	new	basis	as:	

11 ++ ⊗= lll sαα

And	the	Hamiltonian	for	the	new	block	as	

...'0,01,1, +⊗+⊗+⊗=+ OOHIIHH lLllLlL

01, OIO llL ⊗= −with	



|ψ〉 = ∑ijψij|i〉| j〉 

Dim=2L	

Dimension	of	the	block	grows	exponen2ally	

Idea 3: Density Matrix Renormalization Group 
S.R. White, Phys. Rev. Lett. 69, 2863(1992), Phys. Rev. B 48, 10345 (1993)  



Block	decimaYon	

Dim=2N									Dim=m	

constant	

|ψ〉 = ∑ijψij|i〉| j〉 



The	density	matrix	projec2on	

Universe 

system 

|i〉
environment 

| j〉

We need to find the transformation 

that minimizes the distance 

S=||ψ'〉 -|ψ〉|2 

|ψ〉 = ∑ijψij|i〉| j〉  |ψ'〉 = ∑m
αjaαj|α〉| j〉

Solution: The optimal states are the 
eigenvectors of the reduced density matrix 

ρii' = ∑jψ
*
ijψi'j    Tr ρ = 1 

 
with the m largest eigenvalues ωα



Understanding	the	density-matrix	
projecYon	

∑=
ij

BAijAB
jiψψ

∑==→

=

j
jiijAAAiiA

ABABBA

ii *
'' ')(

tr

ψψρρ

ψψρThe	reduced	density	matrix	is	
defined	as:	

Universe 

system 

|i〉
environment 

| j〉
Region	A	 Region	B	



ProperYes	of	the	density	matrix	
ψψρ

ABABBA tr=

•  HermiYan	->	eigenvalues	are	real	
•  Eigenvalues	are	non-negaYve	
•  The	trace	equals	to	unity->	Tr	ρA=1	
•  Eigenvectors	form	an	orthonormal	basis.	

1  and  0   with ; =≥= ∑∑
α

αα
α

α ωωααωρ
AAA



The	singular	value	decomposiYon	(SVD)	
Consider	a	matrix	

ψij=	 dimA	

dimB	

We	can	decompose	it	into	the	product	of	three	matrices	U,D,V:		
ψ =UDV†	

•  U	is	a	(dimAxdimB)	matrix	with	orthonormal	columns->	UU†=1;	U=U†	
•  D	is	a	(dimBxdimB)	diagonal	matrix	with	non-negaYve	elements	λα
•  V	is	a	(dimBxdimB)	unitary	matrix	->	VV†=1	

=	 x	x	ψ	 U	 D	 V	

(we	are	choosing		
dimB	<	dimA	for	convenience)	
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This	is	also	called	the	“Schmidt	decomposiYon”	of	the	state	



The	SVD	and	the	density	matrix	

)dim,min(dim  with BA

r

BAAB
r ==∑

α
α ααλψ

In	general:	

In	the	Schmidt	basis,	the	reduced	density	matrix	is		

∑

∑

=

==

r

BBB

r

AAABABBA

α
α

α
α

ααλρ

ααλψψρ

2

2

 and

tr

•  The	singular	values	are	the	eigenvalues	of	the	reduced	d.m.	squared	ωi=λi
 2	

•  The	two	reduced	density	matrices	share	the	spectrum	
•  the	singular	vectors	are	the	eigenvectors	of	the	density	matrix.	



OpYmizing	the	wave-funcYon	

S=||ψ'〉 -|ψ〉|2 

We	want	to	minimize	the	distance	between	the	two	states	

where	|ψ〉	is	the	actual	ground	state,	and	|ψ’〉	is	the	variaYonal	approximaYon	auer	
rotaYng	to	a	new	basis	and	truncaYng			

 |ψ'〉 = ∑m
αjaαj|α〉| j〉

We	reformulate	the	quesYon	as:	Given	a	matrix	ψ ,what	is	the	opYmal	matrix	ψ’	with		
fixed	rank	r	that	minimizes	the	Frobenius	distance	between	the	two	matrices.		
It	turn	out,	this	is	a	well	known	problem,	called	the	“low	rank	matrix	approximaYon”	
or	“pricipal	component	approximaYon”	(PCA)	in	machine	learning.		
If	we	order	the	eigenvalues	of	the	density	matrix	in	descending	order	ω1, ω2,…,ωm,…, 
ωr	we	obtain	

S=||ψ'〉 -|ψ〉|2 = ∑
+

r

m
i

1
ω TruncaYon	error!	



DMRG:	The	Algorithm	
How	do	we	build	the	reduced	basis	of	states?		

We	grow	our	basis	systema2cally,	adding	sites	to	our	system	at	each	step,	
and	using	the	density	matrix	projec2on	to	truncate	



2) We diagonalize the system and obtain the ground state |gs〉
=∑ψ1234|α1〉|s2〉|s3〉|β4〉 

3) We calculate the reduced density matrix ρ for blocks 1-2 and 3-4. 

4) We diagonalize ρ obtaining the eigenvectors and eigenvalues ωi 

1) We start from a small superblock with 4 sites/blocks, each with a 
dimension mi , small enough to be easily diagonalized   

1 2 3 4 m1 

H1 

The Algorithm 

∑=
43

*
34'2'1123421121 ''

β

ψψαρα
s

ss



5) We add a new site to blocks 1 and 4, expanding the basis for each 
block to m'1 = m m2 and m'4 = m3 m 

m2 m m'1=m m2 

7) We repeat starting from 2) replacing H1 by H'1 and H4 by H'4 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

6) We rotate the Hamiltonian and operators to the new basis keeping 
the m states with larger eigenvalues (notice that we no longer are in 
the occupation number representation) 



We add one site at a time, until we reach the desired system size 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

The	finite	size	algorithm	



1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

We sweep from left to right We sweep from right to left 

The	finite	size	algorithm	

…Until we converge 



Finite-size	DMRG	Flow	chart	



The discarded weight 1- ∑m
α=1ωα measures 

the accuracy of the truncation to m states 



Observa2ons	
•  Sweeping	is	essenYal	to	achieve	convergence	
•  Run	the	finite-size	DMRG	and	extrapolate	to	
the	thermodynamic	limit.	

•  For	each	system	size,	extrapolate	the	results	
with	the	number	of	states	m,	or	fix	the	
truncaYon	error	below	certain	tolerance.		



Density	Matrix	Renormaliza2on	Group	

A	varia2onal	method	without	a-priori	assump2ons	
about	the	physics.	

• Similar	capabili1es	as	exact	diagonaliza1on.	

• Can	calculate	proper1es	of	very	large	systems	(1D	and	
quasi-2D)	with	unprecedented	accuracy.	

• Results	are	varia1onal,	but	“quasi-exact”:	Accuracy	is	finite,	
but	under	control.	



Advantages	of	the	DMRG	

•  DMRG	is	very	versaYle,	and	easy	to	adapt	to	complex	
geometries	and	Hamiltonians.	

•  Can	be	used	to	study	models	of	spins,	bosons,	or	
fermions.	

•  General	and	reusable	code:	A	single	program	can	be	
used	to	run	arbitrary	models	without	changing	a	single	
line	(e.g.	ALPS	DMRG)		

•  Symmetries	are	easy	to	implement.	
	



Limita2ons	of	the	DMRG	

•  DMRG	is	the	method	of	choice	in	1d	and	quasi-1d	
systems,	but	it	is	less	efficient	in	higher	dimensions.	

•  Problems	with	(i)	criYcal	systems,	(ii)	long	range	
interacYons,	and	(iii)	periodic	boundary	condiYons.	

•  These	limitaYons	are	due	to:	
–  The	structure	of	the	variaYonal	wave	funcYon	used	by	the	
DMRG	(the	MPS	ansatz).		

–  Entanglement	entropy	follows	area	law.		



TechnicaliYes…	
Adding	a	single	site	to	the	block	

1+lα
lα

1+ls

Before	truncaYng	we	build	the	new	basis	as:	

11 ++ ⊗= lll sαα

And	the	Hamiltonian	for	the	new	block	as	

...'0,01,1, +⊗+⊗+⊗=+ OOHIIHH lLllLlL

01, OIO llL ⊗= −with	



..	and	for	the	right	block	

Before	truncaYng	we	build	the	new	basis	as:	

433 +++ ⊗= lll s ββ

And	the	Hamiltonian	for	the	new	block	as	

...' 4,0)4(04,13, +⊗+⊗+⊗= ++−++ lRlLlRlR OOIHHIH

3+lβ
4+lβ

3+ls

)1(0, +−⊗= lLlR IOOwith	



Puzng	everything	together	to	build	
the	Hamiltonian…	

...'    3,1,

3,1,3,1,
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1+lα 3+lβ



Trunca2on	
When we add a site to the left block we represent the new basis states as: 
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Similarly for the right block: 
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Measuring	observables	
Suppose	we	have	a	chain	and	we	want	to	
measure	a	correlaYon	between	sites	i	and	j 

iO jO'

i j

We	have	two	opYons:	
1.  Measure	the	correlaYon	by	storing	the	composite	operator	in	a	block	
2.  Measure	when	the	two	operators	are	on	separate	blocks	

We	shall	go	for	op2on	(2)	for	the	moment:	simpler	and	more	efficient	



Operators	on	separate	blocks	

iÔ jO'ˆ

i j

We	only	measure	when	we	have	the	following	situaYon:	

Then,	it	is	easy	to	see	that:	
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We	cannot	do	this	if	the	two	operators	are	in	the	same	block!!!	



Operators	on	the	same	block	
iÔ jO'ˆ

i j

We	need	to	propagate	the	product	operator	into	the	block,	the	
same	way	as	we	do	for	the	Hamiltonian	

Do	never	do	this:	
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Targe2ng	states	in	DMRG	

If we target the ground state only, we cannot expect to have 
a good representation of excited states (dynamics). 

 
If the error is strictly controlled by the DMRG truncation error, we say that the 
algorithm is “quasiexact”. 
 
Non quasiexact algorithms seem to be the source of almost all DMRG 
“mistakes”. For instance, the infinite system algorithm applied to finite systems 
is not quasiexact. 

Our DMRG basis is only guaranteed to represent targeted states, and those 
only after enough sweeps! 



Excited	states	

gsgsHHH Λ+=→ '

b)	At	each	step	of	the	DMRG	sweep,	target	the	ground	state,	and	the	ground	
state	of	the	modified	Hamiltonian:	

For	targeYng	the	two	states,	we	use	the	density	matrix:	

11
2
1

2
1

+= gsgsρ

a)	If	we	use	quantum	numbers,	we	can	calculate	the	ground	states	in	different	
sectors,	for	instance	S=0,	and	S=1,	to	obtain	the	spin	gap	



2D	Generaliza2on	



Why	does	the	DMRG	work???	
ωα

α	

good!	

bad!	

In	other	words:	what	makes	the	
density	matrix	eigenvalues	
behave	so	nicely?	



Entanglement	
We	say	that	a	two	quantum	systems	A	and	B		are	“entangled”	when	we	cannot	
describe	the	wave	funcYon	as	a	product	state	of	a	wave	funcYon	for	system	A,	
and	a	wave	funcYon	for	a	system	B	
	
For	instance,	let	us	assume	we	have	two	spins,	and	write	a	state	such	as:	

|ψ〉 =|↑↓〉 + |↓↑〉 + |↑↑〉 + |↓↓〉 
 

We	can	readily	see	that	this	is	equivalent	to:	

|ψ〉 =(|↑〉+|↓〉)⊗(|↑〉+|↓〉)=|↑〉x ⊗ |↓〉x 
->	The	two	spins	are	not	entangled!	The	two	subsystems	carry	informa2on	

independently	
Instead,	this	state:	 |ψ〉 =|↑↓〉 + |↓↑〉 

 
is	“maximally	entangled”.	The	state	of	subsystem	A	has	ALL	the	

informa2on	about	the	state	of	subsystem	B	



The	Schmidt	decomposiYon	

Universe 

system 

|i〉
environment 

| j〉

∑=
ij

BAijAB
jiψψ

We	assume	the	basis	for	the	leu	subsystem	has	dimension	dimA,	and	the	
right,	dimB.	That	means	that	we	have	dimA	x	dimB	coefficients.		
We	go	back	to	the	original	DMRG	premise:	Can	we	simplify	this	state	by	
changing	to	a	new	basis?	(what	do	we	mean	with	“simplifying”,	anyway?)	



The	Schmidt	decomposiYon	
We	have	seen	that	through	a	SVD	decomposiYon,	we	can	rewire	the	state	as:	

∑=
r

BAAB
α

α ααλψ

Where		

lorthonorma are  ;  and   0  );dim,min(dim
BABAr ααλα ≥=

NoYce	that	if	the	Schmidt	rank	r=1,	then	the	wave-funcYon	reduces	to	a	product	
state,	and	we	have	“disentangled”	the	two	subsystems.	

Auer	the	Schmidt	decomposiYon,	the	reduced	density	matrices	for	the	two	
subsystems	read:	

∑=
r

BABABA
α

α ααλρ
//

2
/



The	Schmidt	decomposiYon,	
entanglement	and	DMRG	

It	is	clear	that	the	efficiency	of	DMRG	will	be	determined	by	
the	spectrum	of	the	density	matrices	(the	“entanglement	
spectrum”),	which	are	related	to	the	Schmidt	coefficients:	
•  If	the	coefficients	decay	very	fast	(exponenYally,	for	
instance),	then	we	introduce	very	li3le	error	by	discarding	
the	smaller	ones.	

•  Few	coefficients	mean	less	entanglement.	In	the	extreme	
case	of	a	single	non-zero	coefficient,	the	wave	funcYon	is	a	
product	state	and	it	completely	disentangled.	

•  NRG	minimizes	the	energy…DMRG	concentrates	
entanglement	in	a	few	states.	The	trick	is	to	disentangle	the	
quantum	many	body	state!		



QuanYfying	entanglement	
In	general,	we	write	the	state	of	a	biparYte	system	as:	

∑=
ij

ij jiψψ

We	saw	previously	that	we	can	pick	and	orthonormal	basis	for	“leu”	and	
“right”	systems	such	that	

∑=
α

α ααλψ RL

We	define	the	“von	Neumann	entanglement	entropy”	as:	

22 log α
α

α λλ∑−=S
Or,	in	terms	of	the	reduced	density	matrix:	

( )LLLLL S ρρααλρ
α

α logTr2 −=→=∑



Entanglement	entropy	
Let	us	go	back	to	the	state:	

|ψ〉 =|↑↓〉 + |↓↑〉 
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We	obtain	the	reduced	density	matrix	for	the	first	spin,	by	tracing	over	the	
second	spin	(and	auer	normalizing):	

We	say	that	the	state	is	“maximally	entangled”	when	the	reduced	density	
matrix	is	propor2onal	to	the	iden2ty.		

2log
2
1log
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2
1log

2
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Entanglement	entropy	
•  If	the	state	is	a	product	state:	

{ } 0,...0,0,1 =→=→= SwRL αααψ

•  If	the	state	maximally	entangled,	all	the	wα	are	equal 

{ } DSDDDw log,...1,1,1 =→=→ α

where	D	is		

{ }RL HHD dim,dimmin=



Area	law:	IntuiYve	picture	
Consider	a	valence	bond	solid	in	2D	

singlet	

2logcut) bonds of(#2log LS ≈×=

The	entanglement	entropy	is	proporYonal	to	the	area	of	the	boundary	separaYng	
both	regions.	This	is	the	prototypical	behavior	in	gapped	systems.	NoYce	that	this	
implies	that	the	entropy	in	1D	is	independent	of	the	size	of	the	parYYon	



CriYcal	systems	in	1D	
c	is	the	“central	charge”	of	the	system,	a	
measure	of	the	number	of	gapless	modes	



Entropy	and	DMRG	
The	number	of	states	that	we	need	to	keep	is	related	to	the	entanglement	entropy:	

Sm exp≈

•  Gapped	system	in	1D:	m=const.	
•  CriYcal	system	in	1D:	m=Lα	
•  Gapped	system	in	2D:	m=exp(L)	
•  In	2D	in	general,	most	systems	obey	the	area	law	(not	free	fermions,	or	

fermionic	systems	with	a	1D	Fermi	surface,	for	instance)…		
•  Periodic	boundary	condiYons	in	1D:	twice	the	area	->	m2	



The	wave-func2on	transforma2on	
Before the transformation, the superblock state is written as: 
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After the transformation, we add a site to the left block, and we “spit out” 
one from the right block 
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After some algebra, and assuming                           , one readily obtains: 

∑
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What	have	we	leu	out?	

…ExploiYng	quantum	numbers	


