The quest for Majorana II

Mourik et al., Science 2012

Jason Alicea (Caltech)

Summary so far

Theoretical toy models to experimental blueprints

Kitaev chain

Realistic proposals in (i) 2D topological insulator edges, (ii) ID wires

2D p+ip superconductor

Realistic proposals in (i) 3D topological insulator surfaces, (ii) 2D semiconductor structures

Majorana detection schemes

(i) Fractional Josephson effect(ii) "Teleportation" experiments

Experiments on 3D topological insulators

Outline for final lecture

Majorana detection via transport

- Experimental progress
 - ID wires
 - 2D topological insulators

Outlook: where are we going?

Outline for final lecture

Majorana detection via transport

- Experimental progress
 - ID wires
 - 2D topological insulators

• Outlook: where are we going?

...otherwise right half is **trivial**, and does not support Majoranas

...otherwise right half is **trivial**, and does not support Majoranas

Normal reflection

Andreev reflection

Assume metallic left half has just one conduction channel...

Insulator

$$H_{\text{metal}} = \int_{-\infty}^{0} dx \left(-iv_F \psi_R^{\dagger} \partial_x \psi_R + iv_F \psi_L^{\dagger} \partial_x \psi_L \right)$$

$$H_{\text{metal}} = \int_{-\infty}^{0} dx \left(-iv_F \psi_R^{\dagger} \partial_x \psi_R + iv_F \psi_L^{\dagger} \partial_x \psi_L \right)$$

 $H = H_{\text{metal}} + H_{\text{junction}}$

Terms generated by superconducting half; depend on whether topological or trivial

$$H = H_{\rm metal} + H_{\rm junction} \checkmark$$

Terms generated by superconducting half; depend on whether topological or trivial

Trivial case:

$$H_{\text{junction}} = \int_{-\infty}^{\infty} dx \left[\Delta(\psi \partial_x \psi + H.c.) \right] \delta(x)$$

$$H = H_{\rm metal} + H_{\rm junction} \checkmark$$

Terms generated by superconducting half; depend on whether topological or trivial

Trivial case:

$$H_{\text{junction}} = \int_{-\infty}^{\infty} dx \left[\Delta(\psi \partial_x \psi + H.c.) \right] \delta(x)$$

Trivial
$$H_{\text{junction}} = \int_{-\infty}^{\infty} dx \left[\Delta(\psi \partial_x \psi + H.c.) \right] \delta(x)$$

Topological
$$H_{\text{junction}} = t \int_{-\infty}^{\infty} dx \gamma_1 (\psi^{\dagger} - \psi) \delta(x)$$
 case:

$$H = H_{\rm metal} + H_{\rm junction} \checkmark$$

Terms generated by superconducting half; depend on whether topological or trivial

Trivial
case:
$$H_{\text{junction}} = \int_{-\infty}^{\infty} dx \left[\Delta(\psi \partial_x \psi + H.c.) \right] \delta(x)$$

Topological
$$H_{\text{junction}} = t \int_{-\infty}^{\infty} dx \gamma_1 (\psi^{\dagger} - \psi) \delta(x)$$
 case:

$$H = H_{\text{metal}} + H_{\text{junction}} \leftarrow$$

Terms generated by superconducting half; depend on whether topological or trivial

Trivial
$$H_{\text{junction}} = \int_{-\infty}^{\infty} dx \left[\Delta(\psi \partial_x \psi + H.c.) \right] \delta(x)$$

Topological
$$H_{\text{junction}} = t \int_{-\infty}^{\infty} dx \gamma_1 (\psi^{\dagger} - \psi) \delta(x)$$
 case:

$$H = H_{\rm metal} + H_{\rm junction}$$

$$\Gamma_E = \int_{-\infty}^{\infty} dx e^{-i\frac{Ex}{v_F}} \left[P_E(x)\psi(x) + H_E(x)\psi^{\dagger}(x) \right] \checkmark$$

Diagonalizes Hamiltonian (in either topological or trivial case)

$$H = H_{\rm metal} + H_{\rm junction}$$

$$\Gamma_E = \int_{-\infty}^{\infty} dx e^{-i\frac{Ex}{v_F}} \left[P_E(x)\psi(x) + H_E(x)\psi^{\dagger}(x) \right] \checkmark$$

Diagonalizes Hamiltonian (in either topological or trivial case)

$$\begin{bmatrix} P_E(\infty) \\ H_E(\infty) \end{bmatrix} = \begin{bmatrix} S_{PP}(E) & S_{PH}(E) \\ S_{HP}(E) & S_{HH}(E) \end{bmatrix} \begin{bmatrix} P_E(-\infty) \\ H_E(-\infty) \end{bmatrix}$$

Outgoing amplitudes

Scattering matrix

Incoming amplitudes

$$H = H_{\rm metal} + H_{\rm junction}$$

$$\Gamma_E = \int_{-\infty}^{\infty} dx e^{-i\frac{Ex}{v_F}} \left[P_E(x)\psi(x) + H_E(x)\psi^{\dagger}(x) \right] \checkmark$$

Diagonalizes Hamiltonian (in either topological or trivial case)

 $\mathbf{2}$

 $\begin{bmatrix} P_E(\infty) \\ H_E(\infty) \end{bmatrix} = \begin{bmatrix} S_{PP}(E) & S_{PH}(E) \\ S_{HP}(E) & S_{HH}(E) \end{bmatrix}$

$$\begin{bmatrix} P_E(-\infty) \\ H_E(-\infty) \end{bmatrix}$$

$$\int G(V) = \frac{2e^2}{h} |S_{PH}(eV)|$$

Outgoing amplitudes

Scattering matrix

Incoming amplitudes

Universal in limit $V \rightarrow 0 !!$

Sengupta et al. (2001); Bolech, Demler (2007); Law, Lee, Ng (2009); Fidkowski, JA, Lindner, Lutchyn, Fisher (2012)

Outline for final lecture

Majorana detection via transport

- Experimental progress
 - ID wires
 - 2D topological insulators

• Outlook: where are we going?

Signatures of Majorana Fermions in Hybrid Superconductor-Topological Insulator Devices

J. R. Williams,¹ A. J. Bestwick,¹ P. Gallagher,¹ Seung Sae Hong,² Y. Cui,^{3,4} Andrew S. Bleich,⁵ J. G. Analytis,^{2,4} I. R. Fisher,^{2,4} and D. Goldhaber-Gordon¹

arXiv:1312.3713 [pdf]

Topological Superconductor Bi2Te3/NbSe2 heterostructures

Jin-Peng Xu, Canhua Liu, Mei-Xiao Wang, Jianfeng Ge, Zhi-Long Liu, Xiaojun Yang, Yan Chen, Ying Liu, Zhu-An Xu, Chun-Lei Gao, Dong Qian, Fu-Chun Zhang, Qi-Kun Xue, Jin-Feng Jia

arXiv:1309.6040 [pdf]

Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure

Qing Lin He, Hongchao Liu, Mingquan He, Ying Hoi Lai, Hongtao He, Gan Wang, Kam Tuen Law, Rolf Lortz, Jiannong Wang, Iam Keong Sou

arXiv:1307.7764 [pdf]

Evidence for an anomalous current-phase relation of a dc SQUID with tunable topological junctions Cihan Kurter, Aaron D. K. Finck, Yew San Hor, Dale J. Van Harlingen

arXiv:1309.0163 [pdf, other]

insulator

Vladimir Orlyanchik, Martin P. Stehno, Christopher D. Nugroho, Pouyan Ghaemi, Matthew Brahlek, Nikesh Koirala, Seongshik Oh, Dale J. Van Harlingen

PHYSICAL REVIEW X 3, 021007 (2013)

Josephson Supercurrent through the Topological Surface States of Strained Bulk HgTe

Jeroen B. Oostinga,¹ Luis Maier,¹ Peter Schüffelgen,¹ Daniel Knott,¹ Christopher Ames,¹ Christoph Brüne,¹ Grigory Tkachov,² Hartmut Buhmann,¹ and Laurens W. Molenkamp¹

...and many others!

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices

V. Mourik,¹* K. Zuo,¹* S. M. Frolov,¹ S. R. Plissard,² E. P. A. M. Bakkers,^{1,2} L. P. Kouwenhoven¹[†]

Evidence of Majorana fermions in an Al – InAs nanowire topological superconductor

Anindya Das^{*}, Yuval Ronen^{*}, Yonatan Most, Yuval Oreg, Moty Heiblum[#], and Hadas Shtrikman

Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device

M. T. Deng,¹ C. L. Yu,¹ G. Y. Huang,¹ M. Larsson,¹ P. Caroff,² and H. Q. Xu^{1,3,*}

Observation of the fractional ac Josephson effect: the signature of Majorana particles

Leonid P. Rokhinson,^{1,2,*} Xinyu Liu,³ and Jacek K. Furdyna³

Anomalous Modulation of a Zero-Bias Peak in a Hybrid Nanowire-Superconductor Device

A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li Phys. Rev. Lett. **110**, 126406 (2013)

Superconductor-Nanowire Devices from Tunneling to the Multichannel Regime: Zero-Bias Oscillations and Magnetoconductance Crossover

H. O. H. Churchill,^{1,2} V. Fatemi,² K. Grove-Rasmussen,³ M. T. Deng,⁴ P. Caroff,⁴ H. Q. Xu,^{4,5} and C. M. Marcus

Teledyne Scientific and Imaging, Thousand Oaks, California 91630, USA

arXiv:1312.2559 [pdf. other]

Induced Superconductivity in the Quantum Spin Hall Edge

Sean Hart, Hechen Ren, Timo Wagner, Philipp Leubner, Mathias Mühlbauer, Christoph Brüne, Hartmut Buhmann, Laurens W. Molenkamp, Amir Yacoby

Despite fewer experiments to date, there is reason to be excited about the near-term prospects of this route to Majorana.

The Kouwenhoven experiment

Mourik et al., Science 2012

The Kouwenhoven experiment

So has a Majorana mode now been seen?

My answer: Maybe, but experiment falls short of "smoking gun".

-Agrees qualitatively but not quantitatively with theory (peak height far too small)

-Disorder may lead to similar peaks **even in a trivial superconductor**

-Gap is "soft", and suggests system is far from clean limit

-No signature of bulk phase transition from trivial to topological phase as magnetic field increases

-Wires are quite small, so finite-size effects may be an issue

Mourik et al., Science 2012

<u>Good news:</u> New generation of experiments is well underway. Situation likely to be clarified within 1-2 years.

New experiments on 2D topo. insulator junctions

Outline of experiment:

- (i) Apply a magnetic field through Josephson junction
- (ii) Drive current between superconductors, measure voltage across junction
- (iii) Extract "critical current" at which a finite voltage drop first develops
- (iv) Repeat for many magnetic fields

From critical current versus field data, can extract the <u>spatial distribution of</u> <u>current</u> through junction!

Reasons for enthusiasm

-Edge transport confirmed by new means

-Superconducting proximity effect clearly induced in topological insulator regime

Hart et al., arXiv:1312.2559

-Once this happens, topological superconductivity is almost guaranteed! (Not easy to find alternatives.)

Challenge to theory/experiment: find ways of conclusively revealing topological superconductivity, Majorana fermions

Reasons for enthusiasm

-Edge transport confirmed by new means

-Superconducting proximity effect clearly induced in topological insulator regime

Hart et al., arXiv:1312.2559

-Once this happens, topological superconductivity is almost guaranteed! (Not easy to find alternatives.)

Challenge to theory/experiment: find ways of conclusively revealing topological superconductivity, Majorana fermions

Homework Set 3

I. Consider the ID wire transport setup we analyzed earlier. Show that (independent of any details of the Hamiltonians) the scattering matrix MUST be either purely diagonal or purely off-diagonal in the limit E = 0.

$$\begin{bmatrix} P_E(\infty) \\ H_E(\infty) \end{bmatrix} = \begin{bmatrix} S_{PP}(E) & S_{PH}(E) \\ S_{HP}(E) & S_{HH}(E) \end{bmatrix} \begin{bmatrix} P_E(-\infty) \\ H_E(-\infty) \end{bmatrix}$$

2. In the topological case, compute the conductance as a function of bias voltage and show that it is a Lorentzian.

3. Within a single theoretical framework, capture all of the major features of the conductance measured by Kouwenhoven et al., including the "soft gap", non-quantized zero-bias peak, etc. Submit your result to Physical Review Letters.

Outline for final lecture

Majorana detection via transport

- Experimental progress
 - ID wires
 - 2D topological insulators

Outlook: where are we going?

$$\psi(\mathbf{r_1},\ldots,\mathbf{r_N})$$

$$\psi(\mathbf{r_1},\ldots,\mathbf{r_N})$$

$$\psi(\mathbf{r_1},\ldots,\mathbf{r_N})$$

$$\psi(\mathbf{r_1},\ldots,\mathbf{r_N})$$

Describes how wavefunctions transform when indistinguishable particles exchange positions

$$\psi(\mathbf{r_1},\ldots,\mathbf{r_N}) \longrightarrow \psi'(\mathbf{r_1},\ldots,\mathbf{r_N})$$

Extraordinarily fundamental!

Underlies most condensed matter phenomena.

Anyons are now possible!

d = I Exchange not well defined...

d = | Exchange not well defined...

d = I Exchange not well defined...

Non-Abelian anyons

(e.g., vortices in a p+ip superconductor)

Non-Abelian anyons

$$\psi_a \to U_{ab} \psi_b$$

Interesting for 2 reasons:

• Fundamental physics

Non-Abelian anyons

- Fundamental physics
- Decoherence-free quantum computation

Kitaev; Freedman; etc. Nayak, Simon, Stern, Freedman, & Das Sarma, RMP **80**, 1083 (2008)

A conundrum

Majorana zero-modes in 2D topological superconductors are clearly interesting in this regard.

But Majorana modes also occur in ID topological superconductors, where exchange statistics is ill-defined.

Question: Are Majoranas in ID as interesting/useful as in 2D?

Answer: YES!!

