Density-Matrix Renormalisation Group/ Matrix Product States

Ulrich Schollwöck

University of Munich

fundamental problem of solid state

what do we need DMRG for? problem class:
fundamental Hamiltonian (without lattice vibrations...!):

$$
H=\sum_{j=1}^{e^{-}} \frac{\mathbf{p}_{j}^{2}}{2 m_{e}}+\frac{1}{2} \frac{1}{4 \pi \epsilon_{0}} \frac{q_{e}^{2}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sum_{j}^{e^{-}} V_{\mathrm{eff}}\left(\mathbf{r}_{j}\right)
$$

we don't know how to solve the Schrödinger equation!
problem: electron-electron interactions

compression of information

\square compression of information necessary and desirable
\square diverging number of degrees of freedom
\square emergent macroscopic quantities: temperature, pressure, ...
\square classical spins
\square thermodynamic limit: $N \rightarrow \infty \quad 2 N$ degrees of freedom (linear)
\square quantum spins
\square superposition of states
\square thermodynamic limit: $N \rightarrow \infty \quad 2^{N}$ degrees of freedom (exponential)

classical simulation of quantum systems

\square compression of exponentially diverging Hilbert spaces
\square what can we do with classical computers?
\square exact diagonalizations
\square limited to small lattice sizes: 40 (spins), 20 (electrons)
\square stochastic sampling of state space
\square quantum Monte Carlo techniques
\square negative sign problem for fermionic systems
\square physically driven selection of subspace: decimationvariational methodsrenormalization group methodshow do we find the good selection? DMRG!

DMRG: a young adult

09.II. 1992 S.R.White: Density Matrix Formulation for Quantum Renormalization Groups (PRL 69, 2863 (1992))

„This new formulation appears extremely powerful and versatile, and we believe it will become the leading numerical method for ID systems; and eventually will become useful for higher dimensions as well."
~2004 old insight „DMRG is linked to MPS (Matrix Product States)" goes viral

Östlund, Rommer, PRL 75, 3537 (I995), Dukelsky, Martin-Delgado, Nishino, Sierra, EPL43, 457 (I998)
Vidal, PRL 93, 040502 (2004), Daley, Kollath, Schollwöck,Vidal, J. Stat. Mech. P04005 (2004), White, Feiguin, PRL 93, 07640 (2004), Verstraete, Porras, Cirac, PRL 93, 227205 (2004), Verstraete, Garcia-Ripoll, Cirac, PRL 93, 207204 (2004),Verstraete, Cirac, cond-mat/0407066 (2004) (some) reviews:
U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005) - „old" statistical physics perspective, applications
U. Schollwöck, Ann. Phys. 326, 96 (20II) - „new" MPS perspective, technical
F.Verstraete,V. Murg, J. I. Cirac, Adv. Phys. 57, I43 (2008) - as seen from quantum information

matrix product states: definitions

quantum system living on L lattice sites
d local states per site $\left\{\sigma_{i}\right\} \quad i \in\{1,2, \ldots, L\}$
example: spin I/2: $\quad d=2 \quad|\uparrow\rangle,|\downarrow\rangle$

Hilbert space:

$$
\mathcal{H}=\otimes_{i=1}^{L} \mathcal{H}_{i} \quad \mathcal{H}_{i}=\left\{\left|1_{i}\right\rangle, \ldots,\left|d_{i}\right\rangle\right\}
$$

most general state (not necessarily ID):

$$
|\psi\rangle=\sum_{\sigma_{1}, \ldots, \sigma_{L}} c^{\sigma_{1} \ldots \sigma_{L}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
$$

abbreviations: $\quad\{\sigma\}=\sigma_{1} \ldots \sigma_{L} \quad c^{\{\sigma\}}$

(matrix) product states

exponentially many coefficients!
standard approximation: mean-field approximation

$$
c^{\sigma_{1} \ldots \sigma_{L}}=c^{\sigma_{1}} \cdot c^{\sigma_{2}} \cdot \ldots \cdot c^{\sigma_{L}} \quad d^{L} \rightarrow d L \text { coefficients }
$$

often useful, but misses essential quantum feature: entanglement consider 2 spin I/2: $\quad \mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \quad \mathcal{H}_{i}=\left\{\left|\uparrow_{i}\right\rangle,\left|\downarrow_{i}\right\rangle\right\}$

$$
|\psi\rangle=c^{\uparrow \uparrow}|\uparrow \uparrow\rangle+c^{\uparrow \downarrow}|\uparrow \downarrow\rangle+c^{\downarrow \uparrow}|\downarrow \uparrow\rangle+c^{\downarrow \downarrow}|\downarrow \downarrow\rangle
$$

singlet state: $|\psi\rangle=\frac{1}{\sqrt{2}}|\uparrow \downarrow\rangle-\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle \quad c^{\uparrow \downarrow} \neq c^{\uparrow} c^{\downarrow}$
generalize product state to matrix product state:

$$
c^{\sigma_{1}} \cdot c^{\sigma_{2}} \cdot \ldots \cdot c^{\sigma_{L}} \rightarrow M^{\sigma_{1}} \cdot M^{\sigma_{2}} \cdot \ldots \cdot M^{\sigma_{L}}
$$

matrix product states

useful generalization even for matrices of dimension 2:
AKLT (Affleck-Kennedy-Lieb-Tasaki) model
general matrix product state (MPS):

$$
|\psi\rangle=\sum_{\sigma_{1}, \ldots, \sigma_{L}} M^{\sigma_{1}} M^{\sigma_{2}} \ldots M^{\sigma_{L}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{L}\right\rangle
$$

matrix dimensions:
$\left(1 \times D_{1}\right),\left(D_{1} \times D_{2}\right), \ldots,\left(D_{L-2} \times D_{L-1}\right),\left(D_{L-1} \times 1\right)$
non-unique: gauge degree of freedom
$X X^{-1}=1 \quad M^{\sigma_{i}} \rightarrow M^{\sigma_{i}} X \quad M^{\sigma_{i+1}} \rightarrow X^{-1} M^{\sigma_{i+1}}$

matrix product states

Why are matrix product states interesting?
\square any state can be represented as an MPS (even if numerically inefficiently)
\square MPS are hierarchical: matrix size related to degree of entanglement
\square MPS emerge naturally in renormalization groups
\square MPS can be manipulated easily and efficiently
\square MPS can be searched efficiently:
which MPS has lowest energy for a given Hamiltonian?

singular value decomposition (SVD)

key workhorse of MPS manipulation and generally very useful!
general matrix A of dimension $(m \times n) \quad k=\min (m, n)$
then

$$
A=U S V^{\dagger}
$$

with $U \operatorname{dim} .(m \times k) \quad U^{\dagger} U=I$ (ON col); if $m=k: U U^{\dagger}=I$
$S \operatorname{dim} .(k \times k)$ diagonal: $s_{1} \geq s_{2} \geq s_{3} \geq \ldots$ non-neg.: $s_{i} \geq 0$ singular values, non-vanishing $=\operatorname{rank} r \leq k$
$V^{\dagger} \operatorname{dim} .(k \times n) \quad V^{\dagger} V=I \quad$ (ON row); if $k=n: V V^{\dagger}=I$
popular notation: (left) singular vectors $\left|u_{i}\right\rangle$

$$
U=\left[\left|u_{1}\right\rangle\left|u_{2}\right\rangle \ldots\right]
$$

SVD and EVD (eigenvalue decomp.)

singular value decomposition (always possible):

$$
A=U S V^{\dagger} \quad s_{1} \geq s_{2} \geq s_{3} \geq \ldots \quad s_{i} \geq 0
$$

eigenvalue decomposition (for special square matrices):

$$
A U=U \Lambda \quad \lambda_{i} \quad U=\left[\left|u_{1}\right\rangle\left|u_{2}\right\rangle \ldots\right] \quad \text { eigenvectors }
$$

connection by „squaring" A: $A^{\dagger} A \quad A A^{\dagger}$
$A A^{\dagger}=U S V^{\dagger} V S U^{\dagger}=U S^{2} U^{\dagger} \Rightarrow\left(A A^{\dagger}\right) U=U S^{2}$
$A^{\dagger} A=V S U^{\dagger} U S V^{\dagger}=V S^{2} V^{\dagger} \Rightarrow\left(A^{\dagger} A\right) V=V S^{2}$
eigenvalues $=$ singular values squared
eigenvectors $=$ left, right singular vectors

any state can be decomposed as MPS

reshape coefficient vector into matrix of dimension ($d \times d^{L-1}$) and SVD:

$$
\begin{aligned}
& \quad c^{\sigma_{1} \sigma_{2} \ldots \sigma_{L}} \rightarrow \Psi_{\sigma_{1}, \sigma_{2} \ldots \sigma_{L}}=\sum_{a_{1}} U_{\sigma_{1}, a_{1}} S_{a_{1}, a_{1}} V_{a_{1}, \sigma_{2} \ldots \sigma_{L}}^{\dagger} \\
& \text { slice } U \text { into d row vectors: }
\end{aligned}
$$

$$
U_{\sigma_{1}, a_{1}} \rightarrow\left\{A^{\sigma_{1}}\right\} \quad \text { with } \quad A_{1, a_{1}}^{\sigma_{1}}=U_{\sigma_{1}, a_{1}}
$$

rearrange SVD result:

$$
c^{\sigma_{1} \sigma_{2} \ldots \sigma_{L}}=\sum_{a_{1}} A_{1, a_{1}}^{\sigma_{1}} c^{a_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{L}} \quad c^{a_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{L}}=S_{a_{1}, a_{1}} V_{a_{1}, \sigma_{2} \ldots \sigma_{L}}^{\dagger}
$$

reshape coefficient vector into matrix of $\operatorname{dim} .\left(d^{2} \times d^{L-2}\right)$ and SVD:

$$
c^{a_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{L}} \rightarrow \Psi_{a_{1} \sigma_{2}, \sigma_{3} \ldots \sigma_{L}}=\sum_{a_{2}} U_{a_{1} \sigma_{2}, a_{2}} S_{a_{2}, a_{2}} V_{a_{2}, \sigma_{3} \ldots \sigma_{L}}^{\dagger}
$$

slice U into d matrices:

$$
A_{a_{1}, a_{2}}^{\sigma_{2}}=U_{a_{1} \sigma_{2}, a_{2}}
$$

rearrange SVD result: $c^{\sigma_{1} \sigma_{2} \ldots \sigma_{L}}=\sum_{a_{1}, a_{2}} A_{1, a_{1}}^{\sigma_{1}} A_{a_{1}, a_{2}}^{\sigma_{2}} c^{a_{2} \sigma_{3} \sigma_{3} \ldots \sigma_{L}}$ and so on!

Schmidt decomposition

bipartition of ,,universe" $A B$ into subsystems A and B :

read coefficients as matrix entries, carry out SVD:

$$
\begin{array}{r}
|\psi\rangle=\sum_{\alpha=1}^{r} s_{\alpha}|\alpha\rangle_{A}|\alpha\rangle_{B} \quad \text { Schmidt decomposition } \\
|\alpha\rangle_{A}=\sum_{i=1}^{\operatorname{dim} \mathcal{H}_{A}} U_{i \alpha}|i\rangle_{A} \quad|\alpha\rangle_{B}=\sum_{j=1}^{\operatorname{dim} \mathcal{H}_{B}} V_{j \alpha}^{*}|j\rangle_{B} \text { orthonormal } \\
\text { sets! }
\end{array}
$$

bipartite entanglement in MPS

\square measuring bipartite entanglement S : reduced density matrix

\square arbitrary bipartition
AAAAAAAA AAAAAAAAAAAAAAA

$$
|\psi\rangle=\sum^{\mathbf{M}} \sqrt{w_{\alpha}}\left|\alpha_{S}\right\rangle\left|\alpha_{E}\right\rangle
$$

use Schmidt decomposition
\square reduced density matrix and bipartite entanglement

$$
\hat{\rho_{S}}=\sum_{\alpha} w_{\alpha}\left|\alpha_{S}\right\rangle\left\langle\alpha_{S}\right| \quad \begin{array}{cc}
S=-\sum_{\alpha} w_{\alpha} \log _{2} w_{\alpha} \leq \log _{2} M \\
\text { codable maximum }
\end{array}
$$

entanglement scaling: gapped systems

Latorre, Rico, Vidal, Kitaev (03)
\square entanglement grows with system surface: area law
\square for ground states! Eisert, Cramer, Plenio, RMP (I0)

Bekenstein `73 Callan, Wilczek `94

gapped $\quad S(L) \sim$ cst.

$$
S \leq \log _{2} M \Rightarrow M \geq 2^{S}
$$

states

$$
M>2^{c s t}
$$

$$
M>2^{L}
$$

Hilbert space size: just an illusion?

\square random state in Hilbert space: entanglement entropy extensive
\square expectation value for entanglement entropy extensive and maximal
\square states with non-extensive entanglement set of measure zero
\square merit of MPS: parametrize this set efficiently!
ground states are here!

work with MPS: diagrammatics

matrix: vertical lines $=$ physical states, horizontal lines $=$ matrix indices

bulk

σ_{ℓ}
right edge complex conjug.
rule: connected lines are contracted (multiplied and summed)

matrix product state in graphical representation

block growth, decimation and MPS

RG schemes: grow blocks while decimating basis

simple rearrangement of expansion coefficients into matrices:

$$
M_{a_{\ell-1}, a_{\ell}}^{\sigma_{\ell}}=\left\langle a_{\ell-1}, \sigma_{\ell} \mid a_{\ell}\right\rangle
$$

recursion easily expressed as matrix multiplication:

$$
\left|a_{\ell}\right\rangle=\sum_{\sigma_{1}, \ldots, \sigma_{\ell}}\left(M^{\sigma_{1}} M^{\sigma_{2}} \ldots M^{\sigma_{\ell}}\right)_{1, a_{\ell}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{\ell}\right\rangle
$$

(left and right) normalization

both state decomposition and block growth scheme give special gauge

$$
\begin{array}{rlrl}
\delta_{a_{\ell}^{\prime}, a_{\ell}} & = & \left\langle a_{\ell}^{\prime} \mid a_{\ell}\right\rangle= & \sum_{a_{\ell-1}^{\prime} \sigma_{\ell}^{\prime} a_{\ell-1} \sigma_{\ell}} M_{a_{\ell-1}^{\prime}, a_{\ell}^{\prime}}^{\sigma_{\ell}^{\prime *}} M_{a_{\ell-1}, a_{\ell}^{\prime}}^{\sigma_{\ell}}\left\langle a_{\ell-1}^{\prime} \sigma_{\ell}^{\prime} \mid a_{\ell-1} \sigma_{\ell}\right\rangle \\
= & & \sum_{a_{\ell-1} \sigma_{\ell}} M_{a_{\ell-1}, a_{\ell}^{\prime}}^{\sigma_{\ell} *} M_{a_{\ell-1}, a_{\ell}^{\prime}}^{\sigma_{\ell}}=\sum_{\sigma_{\ell}}\left(M^{\sigma_{\ell} \dagger} M^{\sigma_{\ell}}\right)_{a_{\ell}^{\prime}, a_{\ell}}
\end{array}
$$

left normalization (called A); more compact representation:

$$
I=\sum_{\sigma_{\ell}} M^{\sigma_{\ell} \dagger} M^{\sigma_{\ell}} \equiv \sum_{\sigma_{\ell}} A^{\sigma_{\ell} \dagger} A^{\sigma_{\ell}}
$$

right normalization (called B):

$$
I=\sum_{\sigma_{\ell}} B^{\sigma_{\ell}} B^{\sigma_{\ell} \dagger}
$$

mixed normalization:

$A A A A A M B B B B B B B B B$

matrix product operators (MPO)

general operator:

$$
\hat{O}=\sum_{\{\sigma\}} \sum_{\left\{\sigma^{\prime}\right\}} c^{\sigma_{1} \ldots \sigma_{L}, \sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle\left\langle\sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}\right|
$$

rearrange indices:

$$
c^{\sigma_{1} \ldots \sigma_{L}, \sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}} \rightarrow c^{\sigma_{1} \sigma_{1}^{\prime} \sigma_{2} \sigma_{2}^{\prime} \ldots \sigma_{L} \sigma_{L}^{\prime}}
$$

„mean-field" very useful: $c^{\sigma_{1} \sigma_{1}^{\prime} \sigma_{2} \sigma_{2}^{\prime} \ldots \sigma_{L} \sigma_{L}^{\prime}} \rightarrow c^{\sigma_{1} \sigma_{1}^{\prime}} \cdot c^{\sigma_{2} \sigma_{2}^{\prime}} \cdot \ldots \cdot c^{\sigma_{L} \sigma_{L}^{\prime}}$

$$
\begin{aligned}
& \hat{S}_{i}^{z} \rightarrow \hat{I}_{1} \otimes \hat{I}_{2} \otimes \ldots \otimes \hat{S}_{i}^{z} \otimes \ldots \otimes \hat{I}_{L} \\
& c^{\sigma_{1} \sigma_{1}^{\prime} \sigma_{2} \sigma_{2}^{\prime} \ldots \sigma_{L} \sigma_{L}^{\prime}}=\delta_{\sigma_{1}, \sigma_{1}^{\prime}} \cdot \delta_{\sigma_{2}, \sigma_{2}^{\prime}} \cdot \ldots \cdot\left(\hat{S}^{z}\right)_{\sigma_{i}, \sigma_{i}^{\prime}} \ldots \cdot \delta_{\sigma_{L}, \sigma_{L}^{\prime}}
\end{aligned}
$$

matrix product operator:

$$
\hat{O}=\sum_{\{\sigma\}} \sum_{\left\{\sigma^{\prime}\right\}} M^{\sigma_{1} \sigma_{1}^{\prime}} M^{\sigma_{2} \sigma_{2}^{\prime}} \ldots M^{\sigma_{L} \sigma_{L}^{\prime}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle\left\langle\sigma_{1}^{\prime} \ldots \sigma_{L}^{\prime}\right|
$$

applying an MPO to an MPS

graphical representation with ingoing and outgoing physical states:

applying an MPO to an MPS: new MPS with matrix dims multiplied

$$
\tilde{M}_{(a b),\left(a^{\prime} b^{\prime}\right)}^{\sigma_{i}}=\sum_{\sigma_{i}^{\prime}} N_{a a^{\prime}}^{\sigma_{i} \sigma_{i}^{\prime}} M_{b b^{\prime}}^{\sigma_{i}^{\prime}}
$$

normalization and compression I

problem: matrix dimensions of MPS grow under MPO application solution: compression of matrices with minimal state distance assume state is given in mixed normalized form:

$$
|\psi\rangle=\sum_{\{\sigma\}} A^{\sigma_{1}} A^{\sigma_{2}} \ldots A^{\sigma_{\ell}} M^{\sigma_{\ell+1}} B^{\sigma_{\ell+2}} \ldots B^{\sigma_{L}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
$$

stack M matrices into one:

$$
M_{a_{\ell}, \sigma_{\ell+1} a_{\ell+1}}=M_{a_{\ell}, a_{\ell+1}}^{\sigma_{\ell+1}}
$$

carry out SVD, and use results: $\quad M=U S V^{\dagger}$

$$
\begin{aligned}
& A^{\sigma_{\ell}} \leftarrow A^{\sigma_{\ell}} U \quad \text { orthonormality of } U! \\
& B_{a_{\ell}, a_{\ell+1}}^{\sigma_{\ell+1}}=V_{a_{\ell}, \sigma_{\ell+1} a_{\ell+1}}^{\dagger}
\end{aligned}
$$

normalization and compression II

now introduce orthonormal states:

$$
\begin{aligned}
\left|a_{\ell}\right\rangle_{A} & :=\sum_{\sigma_{1}, \ldots, \sigma_{\ell}}\left(A^{\sigma_{1}} \ldots A^{\sigma_{\ell}}\right)_{1, a_{\ell}}\left|\sigma_{1} \ldots \sigma_{\ell}\right\rangle \\
\left|a_{\ell}\right\rangle_{B} & :=\sum_{\sigma_{\ell+1}, \ldots, \sigma_{L}}\left(B^{\sigma_{\ell+1}} \ldots B^{\sigma_{L}}\right)_{a_{\ell}, 1}\left|\sigma_{\ell+1} \ldots \sigma_{L}\right\rangle
\end{aligned}
$$

read off Schmidt decomposition: $|\psi\rangle=\sum_{a_{\ell}} s_{a_{\ell}}\left|a_{\ell}\right\rangle_{A}\left|a_{\ell}\right\rangle_{B}$
compress matrices $A^{\sigma_{\ell}}, B^{\sigma_{\ell+1}}$ by keeping D largest singular values

$$
|\psi\rangle=\sum_{\{\sigma\}} A^{\sigma_{1}} A^{\sigma_{\ell}} \ldots A^{\sigma_{\ell-1}} M^{M_{\ell}} B^{\sigma_{\ell+1}} \ldots B^{\sigma_{\ell}}\left|\sigma_{1} \ldots \sigma_{L}\right\rangle
$$

mixed rep shifted by I site: sweep through chain; also normalization

time-evolution

assume initial state in MPS representation; time evolution:

$$
|\psi(t)\rangle=\mathrm{e}^{-\mathrm{i} \hat{H} t}|\psi(0)\rangle
$$

how to express the evolution operator as an MPO?
one solution:Trotterization of evolution operator into small time steps

$$
N \rightarrow \infty \quad \tau \rightarrow 0 \quad N \tau=T \quad \tau \sim 0.01
$$

Heisenberg model: $\quad \hat{H}=\sum_{i=1}^{L-1} \hat{h}_{i} \quad \hat{h}_{i}=\mathbf{S}_{i} \cdot \mathbf{S}_{i+1}$

$$
\mathrm{e}^{-\mathrm{i} \hat{H} T}=\prod_{i=1}^{N} \mathrm{e}^{-\mathrm{i} \hat{H} \tau}=\prod_{k=1}^{N} \mathrm{e}^{-\mathrm{i} \sum_{i=1}^{L-1} \hat{h}_{i} \tau \xlongequal{\varrho} \prod_{k=1}^{N} \prod_{i=1}^{L-1} \mathrm{e}^{-\mathrm{i} \hat{h}_{i} \tau} .{ }^{2} .}
$$

first-order Trotter decomposition

Trotter decomposition

calculation of $\mathrm{e}^{-\mathrm{i} \hat{h}_{i} \tau}$ as $\left(d^{2} \times d^{2}\right)$ matrix:

$$
H_{i} U=U \Lambda \quad H_{i}=U \Lambda U^{\dagger} \quad \Rightarrow \quad \mathrm{e}^{-\mathrm{i} H_{i} \tau}=U \mathrm{e}^{-\mathrm{i} \Lambda \tau} U^{\dagger}=U \cdot \operatorname{diag}\left(\mathrm{e}^{-\mathrm{i} \lambda_{1} \tau}, \mathrm{e}^{-\mathrm{i} \lambda_{2} \tau}, \ldots\right) \cdot U^{\dagger}
$$

problem: exponential does not factorize if operators do not commute

$$
\mathrm{e}^{\hat{A}+\hat{B}}=\mathrm{e}^{\hat{A}} \mathrm{e}^{\hat{B}} \mathrm{e}^{\frac{1}{2}[\hat{A}, \hat{B}]}
$$

but error is negligible as $\quad \tau \rightarrow 0$

$$
\left[\hat{h}_{i} \tau, \hat{h}_{i+1} \tau\right] \propto \tau^{2}
$$

convenient rearrangement:

$$
\begin{gathered}
\hat{H}=\hat{H}_{\text {odd }}+\hat{H}_{\text {even }} ; \quad \hat{H}_{\text {odd }}=\sum_{i} \hat{h}_{2 i-1}, \quad \hat{H}_{\text {even }}=\sum_{i} \hat{h}_{2 i} \\
\mathrm{e}^{-\mathrm{i} \hat{H} T}=\mathrm{e}^{-\mathrm{i} \hat{H}_{\text {even }} \tau} \mathrm{e}^{-\mathrm{i} \hat{H}_{\text {odd }} \tau} ; \quad \mathrm{e}^{-\mathrm{i} \hat{H}_{\text {even }} \tau}=\prod_{i} \mathrm{e}^{-\mathrm{i} \hat{h}_{2 i} \tau}, \quad \mathrm{e}^{-\mathrm{i} \hat{H}_{\text {odd }} \tau}=\prod_{i} \mathrm{e}^{-\mathrm{i} \hat{h}_{2 i-1} \tau}
\end{gathered}
$$

tDMRG, tMPS, TEBD

bring local evolution operator into MPO form:
$U^{\sigma_{1} \sigma_{2}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}}=\left\langle\sigma_{1} \sigma_{2}\right| \mathrm{e}^{-\mathrm{i} \hat{h}_{1} \tau}\left|\sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle$
$U^{\sigma_{1} \sigma_{2}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}}=\quad \bar{U}_{\sigma_{1} \sigma_{1}^{\prime}, \sigma_{2} \sigma_{2}^{\prime}} \stackrel{S V D}{=} \sum_{b} W_{\sigma_{1} \sigma_{1}^{\prime}, b} S_{b, b} W_{b, \sigma_{2} \sigma_{2}^{\prime}}$

$$
=
$$

even bonds odd bonds one time step: dimension grows as d^{2} initial state
\square apply one infinitesimal time step in MPO form
\square compress resulting MPS

single-particle excitation

\square quarter-filled Hubbard chain: U/t=4
\square add spin-up electron at chain center at time $=0$
\square measure charge and spin density
time $=0.2$
time-dependent
DMRG

\square separation of charge and spin

some comments ...

real time evolution limited by entanglement growth:

$$
S(t) \leq S(0)+\nu t \quad S \sim \ln D
$$

in the worst case, matrix dimensions grow exponentially!
ground states can be obtained by imaginary time evolution (SLOW!):

$$
\begin{gathered}
|\psi\rangle=\sum_{n} c_{n}|n\rangle \quad \hat{H}|n\rangle=E_{n}|n\rangle \quad E_{0} \leq E_{1} \leq E_{2} \leq \ldots \\
\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta \hat{H}}|\psi\rangle=\lim _{\beta \rightarrow \infty} \sum_{n} \mathrm{e}^{-\beta E_{n}} c_{n}|n\rangle=\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta E_{0}}\left(c_{0}|0\rangle+\sum_{n>0} \mathrm{e}^{-\beta\left(E_{n}-E_{0}\right)} c_{n}|n\rangle\right. \\
= \\
\lim _{\beta \rightarrow \infty} \mathrm{e}^{-\beta E_{0}} c_{0}|0\rangle
\end{gathered}
$$

long-ranged interaction: Krylov

what can we do if interactions are long-ranged and Trotter fails?
Krylov time evolution
\square bring Hamiltonian into MPO form: exact, small dimension
\square calculate successive powers $|\psi\rangle, H|\psi\rangle, H^{2}|\psi\rangle, \ldots$ Krylov vectors
\square apply Hamiltonian MPO
\square compress resulting MPS

\square orthonormalize powers
\square tridiagonalize Hamiltonian in new basis, calculate $e^{i H \Delta t}|\psi\rangle$
\square for small time steps, 4 to 5 Krylov vectors sufficient; quasi-exact

limitations ...

\square do correlations in non-relativistic systems spread at finite velocity?

$$
\left\|\left[A_{0}(0), B_{d}(t)\right]\right\| \leq c s t .\|A\|\|B\| \exp [-(d-v t)]
$$

\square correlations Lieb-Robinson theorem (CMP, I972)
\square entanglement bound:

$$
S(t) \leq S(0)+c s t . \times 2 v t
$$

linear in time exponential resources

(sub)system length ℓ
out-of-equilibrium cartoon:
quasiparticles entangle in „,light" cone

Calabrese, Cardy (since 2004) and others

overlaps

$$
\langle\psi(t) \mid \psi(0)\rangle \quad\left\langle S_{i}^{z}(t)\right\rangle=\langle\psi(t)| \hat{S}_{i}^{z}|\psi(t)\rangle
$$

overlap contractions:

$$
\begin{aligned}
& \langle\phi \mid \psi\rangle=\sum_{\{\sigma\}} \sum_{\left\{\sigma^{\prime}\right\}}\left\langle\left\{\sigma^{\prime}\right\}\right| \tilde{M}^{\sigma_{1}^{\prime} *} \ldots \tilde{M}^{\sigma_{L}^{\prime}{ }^{*} *} M^{\sigma_{1}} \ldots M^{\sigma_{L}}|\{\sigma\}\rangle=\sum_{\{\sigma\}} \tilde{M}^{\sigma_{1} *} \ldots \tilde{M}^{\sigma_{L}{ }^{*}} M^{\sigma_{1}} \ldots M^{\sigma_{L}} \\
& \langle\phi \mid \psi\rangle=
\end{aligned}
$$

cost O(dLD ${ }^{3}$)
two-point correlators: long-range or superposition of exponentials

$$
E^{\left(a_{\ell-1} a_{\ell-1}^{\prime}\right),\left(a_{\ell}, a_{\ell}^{\prime}\right)}:=\sum_{\sigma_{\ell}} A_{a_{\ell-1}, a_{\ell}}^{\sigma_{\ell} *} A_{a_{\ell-1}^{\prime}, a_{\ell}^{\prime}}^{\sigma_{\ell}}
$$

hence: power laws only „by approximation"

dynamical quantum simulator

coherent dynamics! controlled preparation? local measurements?
first experiments: period-2 superlattice

- double-well formation
- staggered potential bias

- pattern loading
- odd/even resolved measurement

(Fölling et al. (2007))

first theory proposals:
- prepare $|\psi\rangle=|1,0,1,0,1,0, \ldots\rangle$
- switch off superlattice
- observe Bose-Hubbard dynamics

Cramer et al., PRL IOI, 063001 (2008)
Flesch et al., PRA 78, 033608 (2008)

dynamical quantum simulator

Trotzky et al., Nat. Phys. 8, 325(2012)

45,000 atoms, $\mathrm{U}=5.2$
momentum distribution

densities II

no free fit
parameters!
fully controlled relaxation in closed quantum system!
validation of dynamical quantum simulator
time range of experiment > $10 \times$ time range of theory real „analog computer" that goes beyond theory

nearest-neighbour correlators

- again three regimes
- $U \approx 3$: crossover regime
- at large U, I/U fit of relaxed correlator can be understood as perturbation to locally relaxed subsystems

currents

measurement: split in double wells, measure well oscillations

phase and amplitude

sloshing;
no c.m. motion

current decay as power law?

nearest neighbour correlations

momentum distribution
visibility proportional to nearest neighbour correlations

interaction strength

build-up of quantum coherence general trend, I/U correct!

build-up of quantum coherence

long-time limit of
nearest-neighbor correlations (here: visibility of momentum distribution)
discrepancy because original theory ignored trap:

measurement at ,.long time"
old theory prediction for long times without trap
trap allows particle migration to the „edges" energy gained in kinetic energy:

$$
E_{k i n}=-J\left\langle b_{i}^{\dagger} b_{i+1}+b_{i+1}^{\dagger} b_{i}\right\rangle
$$

external potential

neutron scattering at $T>0$

structure function
by neutron scattering
(Broholm group)
high flux
precise lineshapes
\square problem: experiment usually $T=4.2 \mathrm{~K}$, energy scales at $J=O$ (IOK) definitely not at $T=0$!
\square desired feature because of achievable field strengths: H should be of order J -- rule of thumb IK=IT

finite-temperature dynamics

\square purification
density matrix of physical system: pure state of physical system plus auxiliary system

evolution of pure state in enlarged state space

purification and finite-T evolution

purification: any mixed state can be expressed by a pure state on a larger system (P: physical, Q: auxiliary state space)

$$
\begin{gathered}
\hat{\rho}_{P}=\sum_{n} \rho_{n}|n\rangle_{P}{ }_{P}\langle n| \quad|\psi\rangle_{P Q}=\sum_{n} \sqrt{\rho_{n}}|n\rangle_{P}|n\rangle_{Q} \\
\hat{\rho}_{P}=\operatorname{tr}_{Q}|\psi\rangle_{P Q P Q}\langle\psi| \quad \text { simplest way: } \mathrm{Q} \text { copy of } \mathrm{P}
\end{gathered}
$$

expectation values as before:
$\left\langle\hat{O}_{P}\right\rangle_{\hat{\rho}_{P}}=\operatorname{tr}_{P} \hat{O}_{P} \hat{\rho}_{P}=\operatorname{tr}_{P} \hat{O}_{P} \operatorname{tr}_{Q}|\psi\rangle_{P Q}{ }_{P Q}\langle\psi|=\operatorname{tr}_{P Q} \hat{O}_{P}|\psi\rangle_{P Q}{ }_{P Q}\langle\psi|={ }_{P Q}\langle\psi| \hat{O}_{P}|\psi\rangle_{P Q}$ time evolution as before:
$\hat{\rho}_{P}(t)=\mathrm{e}^{-\mathrm{i} \hat{H} t} \hat{\rho}_{P} \mathrm{e}^{+\mathrm{i} \hat{H} t}=\mathrm{e}^{-\mathrm{i} \hat{H} t} \operatorname{tr}_{Q}|\psi\rangle_{P Q P Q}\langle\psi| \mathrm{e}^{+\mathrm{i} \hat{H} t}=\operatorname{tr}_{Q}|\psi(t)\rangle_{P Q P Q}\langle\psi(t)|$

$$
|\psi(t)\rangle_{P Q}=\mathrm{e}^{-\mathrm{i} \hat{H} t}|\psi\rangle_{P Q}
$$

time-evolution of thermal states

problem: usually we do not have mixed state in eigenrepresentation thermal states: easy way out by imaginary t-evolution
$\mathrm{e}^{-\beta \hat{H}}=\mathrm{e}^{-\beta \hat{H} / 2} \cdot \hat{I}_{P} \cdot \mathrm{e}^{-\beta \hat{H} / 2}=\operatorname{tr}_{Q} \mathrm{e}^{-\beta \hat{H} / 2}\left|\rho_{0}\right\rangle_{P Q}{ }_{P Q}\left\langle\rho_{0}\right| \mathrm{e}^{-\beta \hat{H} / 2}$
purification of infinite-T state: product of local totally mixed states gauge degree of freedom: arbitrary unitary evolution on Q
lots of room for improvement:
build MPOs and compress them:

$\langle\hat{B}(2 t) \hat{A}\rangle_{\beta}=Z(\beta)^{-1} \operatorname{tr}\left(\left[\operatorname{er}^{\mathrm{i} \hat{H} t} \mathrm{e}^{-\beta \hat{H} / 2} \hat{B} \mathrm{e}^{-\mathrm{i} \hat{H} t}\right]\left[\mathrm{e}^{-\mathrm{i} \hat{H} t} \hat{A} \mathrm{e}^{-\beta \hat{H} / 2} \mathrm{e}^{\mathrm{i} \hat{H} t}\right]\right)$

linear prediction

(Barthel, Schollwöck,White, PRB 79, 245 I 0 I (2009))
\square ansatz: data is linear combination of p previous data points

$$
\begin{aligned}
& \text { prediction } \\
& \qquad \tilde{x}_{n}=-\sum_{i=1}^{p} a_{i} x_{n-i} \quad \text { calculation } \\
& \text { index labels time: time series }
\end{aligned}
$$

\square find prediction coefficients by minimising error for available data

$$
E=\sum_{n} \frac{\left|\tilde{x}_{n}-x_{n}\right|^{2}}{w_{n} \quad \text { error estimate }}
$$

\square iteratively continue time series from data using ansatz

some results of linear prediction

\square transverse Ising model: prediction of $S(k, t)$
\square spinons in spin-I/2 chain: experiment vs. numerics

perfect agreement with high-precision neutron scattering

Lake, ... Barthel, US, ...
PRL III, I37 (2013)

when does it work?

why do we predict $S(k, t)$ in time and not e.g. $G(x, t)$ (and Fourier transform to momentum space later)?
linear prediction works best for special time series
\square superposition of exponential decays

$$
x_{n+m}=\sum_{\nu=1}^{p} c_{\nu} e^{i\left(\omega_{\nu}-\eta_{\nu}\right) m} x_{n}
$$

\square cf. pole structure of momentum-space of Green's functions

$$
G(k, \omega)=\frac{1}{\omega-\epsilon_{k}-\Sigma(k, \omega)} \quad G(k, t)=a_{1} e^{-i \omega_{1} t-\eta_{1} t}
$$

variational ground state search: DMRG

problem: find MPS (of a given dimension) that minimizes energy

$$
\min \frac{\langle\psi| \hat{H}|\psi\rangle}{\langle\psi \mid \psi\rangle} \quad \Leftrightarrow \quad \min (\langle\psi| \hat{H}|\psi\rangle-\lambda\langle\psi \mid \psi\rangle)
$$

graphical representation of expression to be minimized:

multilinear :-(
variational minimization with respect to one matrix:

mixed normalization MPS: eigenvalue problem

ground state DMRG

analytical representation of variational problem:

$$
\begin{aligned}
& \frac{\partial}{\partial M^{\sigma_{i} *}}(\langle\psi| \hat{H}|\psi\rangle-\lambda\langle\psi \mid \psi\rangle) \stackrel{!}{=} 0
\end{aligned}
$$

$$
\begin{aligned}
& H \mathbf{m}=\lambda N \mathbf{m}
\end{aligned}
$$

DMRG algorithm:
\square start with random or guess initial MPS
\square maintaining mixed normalization, sweep „hot site" forth and back
\square at each step, optimize local matrices by solving eigenvalue problem
convergence: monitor $\langle\psi| \hat{H}^{2}|\psi\rangle-(\langle\psi| \hat{H}|\psi\rangle)^{2}$

Hamiltonians in MPO form

construct Hamiltonian as automaton that moves through chain (e.g. from right to left) building Hamiltonian

$$
\begin{aligned}
& \hat{H}=\hat{M}^{[1]} \hat{M}^{[2]} \ldots \hat{M}^{[L]} \quad \hat{M}^{[i]}=\sum_{\sigma_{i}, \sigma_{i}^{\prime}} M^{\sigma_{i}, \sigma_{i}^{\prime}}\left|\sigma_{i}\right\rangle\left\langle\sigma_{i}^{\prime}\right| \\
& \hat{H}=J \sum_{i=1}^{L-1} \frac{1}{2}\left(\hat{S}_{i}^{+} \hat{S}_{i+1}^{-}+\hat{S}_{i}^{-} \hat{S}_{i+1}^{+}\right)+\hat{S}_{i}^{z} \hat{S}_{i+1}^{z}+h \sum_{i=1}^{L} \hat{S}_{i}^{z}
\end{aligned}
$$

Hamiltonians in MPO form II

short ranged Hamiltonians find very compact, exact representation!

$$
\begin{gathered}
\hat{M}^{[i]}=\left[\begin{array}{ccccc}
\hat{I} & 0 & 0 & 0 & 0 \\
\hat{S}^{+} & 0 & 0 & 0 & 0 \\
\hat{S}^{z} & 0 & 0 & 0 & 0 \\
\hat{S}^{-} & 0 & 0 & 0 & 0 \\
h \hat{S}^{z} & (J / 2) \hat{S}^{-} & J^{z} \hat{S}^{z} & (J / 2) \hat{S}^{+} & \hat{I}
\end{array}\right] \\
\hat{M}^{[1]}=\left[\begin{array}{lllll}
h \hat{S}^{z} & (J / 2) \hat{S}^{-} & J^{z} \hat{S}^{z} & (J / 2) \hat{S}^{+} & \hat{I}
\end{array}\right] \quad \hat{M}^{[L]}=\left[\begin{array}{c}
\hat{I} \\
\hat{S}^{+} \\
\hat{S}^{z} \\
\hat{S}^{-} \\
h \hat{S}^{z}
\end{array}\right]
\end{gathered}
$$

frustrated magnetism in 2D

\square „classic" candidates (spin length I/2):

Yan et al, Science (20II)
Depenbrock et al, PRL (2012)
$J_{1}-J_{2}$ model on a square lattice

kagome lattice

herbertsmithite $\mathrm{ZnCu}_{3}(\mathrm{OH})_{6} \mathrm{Cl}_{2}$

\square extensive $T=0$ entropy
\square agreement: no magnetic order for $S=1 / 2$

DMRG in two dimensions

\square map 2D lattice to ID (vertical) ,snake" with long-ranged interactions

vertically $O B C$

vertically PBC: extra cost!
\square horizontally: ansatz obeys area law: easy axis, long at linear cost
\square vertically: ansatz violates area law: hard axis, long at exponential cost
\square consider long cylinders of small circumference c : mixed BC
circumference c

ground state energies

\square fully $S U(2)$ invariant DMRG code
\square up to 3,800 representatives (I6,000 U(I) DMRG states)
100\% increase
\square cylinders up to circumference $c=17.3, N=726$
50\% increase
\square tori up to $N=(6 \times 6) \times 3=108$ sites

\square TD limit energy estimate: $-0.4386(5)$
$\square i$ iDMRG (infinite cylinder) upper bounds below HVBC; YC8: -0.4379 iDMRG: I.P. McCulloch, arXiv:0804.2509

triplet gap

\square fully $S U(2)$ invariant DMRG code
\square eliminates need for special edge manipulations of $U(I)$ DMRG: ground state of $S=\mid$ sector

bond energy deviations from mean
\square bulk excitation
\square much smoother gap curve
\square triplet gap estimate: 0.13 (I)

triplet gap for infinitely long cylinders
singlet gap estimate: approx 0.05
(Yan et al. (201 I))

TEE in the kagome lattice

\square extrapolate Renyi entropies to circumference $c=0$negative intercept is TEE
\square find topological order!

$\gamma \approx 0.94 \quad D \approx 2$

\square TEE extracted from random state in GS manifold lower bound
\square true value for so-called minimum entropy state
\square DMRG seems to systematically pick those

Zhang, Grover, Turner, Oshikawa,Vishvanath, PRB (2012)

DMFT primer

\square dynamical mean field theory (DMFT):
\square Hubbard model replaced by single impurity embedded in non-interacting effective bath
\square impurity dynamically exchanges electrons with bath: beyond static mean-field theory
\square self-consistency condition: local lattice self-energy = self-energy of effective impurity model etc.
\square exact in the limit of infinite coordination number (dimension)
\square many applications also in more material-oriented simulations
\square impurity solver needed to calculate spectral functions place of methodological progress!!!

spectral functions in DMFT (T=0)

star geometry

\square calculate in frequency space

$$
C_{\eta}(\omega)=\langle 0| d \frac{1}{H-\omega-E_{0}+\mathrm{i} \eta} d^{\dagger}|0\rangle
$$

\square calculate in real-time space: superior

$$
C(t)=\langle 0| \mathrm{e}^{\mathrm{i}\left(H-E_{0}\right) t} d \mathrm{e}^{-\mathrm{i}\left(H-E_{0}\right) t} d^{\dagger}|0\rangle
$$

FT trafo to frequency space damping with eta
limit: reachable times
\square bath often mapped to one-dimensional chain
impurity high energy band

why DMRG as DMFT solver?

\square there are many impurity solvers:
\square exact diagonalization (ED)
\square numerical renormalization group (NRG)
\square continuous quantum Monte Carlo (QMC; in various incarnations)
\square what advantages of DMRG/MPS solver were hoped for:
\square larger bath sizes (compared to ED)
\square homogeneous energy resolution (compared to NRG)
\square no analytic continuation from imaginary axis (compared to QMC)
\square no sign problem for complex problems (compared to QMC)
\square previous attempts: single-band DMFT (C=I) stuck for about 10 years!

Hallberg et al. (since 2004)
Nishimoto, Jeckelmann Karski, Raas, Uhrig

Our Method

$$
\begin{aligned}
G_{l o c}\left(i \omega_{n}\right) & =\int d k \frac{1}{i \omega_{n}+\mu-\epsilon_{k}-\Sigma_{l a t t}\left(i \omega_{n}\right)} \\
G_{i m p}\left(i \omega_{n}\right) & =\frac{1}{i \omega_{n}+\mu-\Lambda\left(i \omega_{n}\right)-\Sigma_{i m p}\left(i \omega_{n}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& G_{l o c}=G_{i m p} \\
& \Sigma_{l a t t}=\Sigma_{i m p}
\end{aligned} \begin{aligned}
& G_{l o c}=G_{i m p} \\
& \Sigma_{l a t t}=\Sigma_{i m p}
\end{aligned} \quad \chi=\frac{1}{N} \sum_{n=1}^{N}\left|\Lambda\left(i \omega_{n}\right)-\Lambda_{D i s c r}\left(i \omega_{n}\right)\right|^{2}
$$

$$
\Sigma_{\mathrm{imp} p}\left(i \omega_{n}\right)=G_{\mathrm{im} p, 0}^{-1}\left(i \omega_{n}\right)-G_{\mathrm{imp}}^{-1}\left(i \omega_{n}\right)
$$

$$
G\left(i \omega_{n}\right)=\int_{-\infty}^{\infty} d \tau e^{-i \omega_{n} \tau}\left[-\theta(\tau) G^{p}(\tau)+\theta(\tau) G^{h}(\tau)\right]
$$

$$
\begin{aligned}
& G^{p}(\tau)=\langle\Psi| c e^{-(H-E) \tau} c^{\dagger}|\Psi\rangle \\
& G^{h}(\tau)=\langle\Psi| c^{\dagger} e^{-(H-E) \tau} c|\Psi\rangle
\end{aligned}
$$

$$
G_{\eta}^{r e t}(\omega)=-i \int_{0}^{\infty} d t\left[G^{p}(t)+G^{h}(t)\right] e^{i \omega t} e^{-\frac{\eta^{2} t^{2}}{2}}
$$

$$
\begin{aligned}
& G^{p}(t)=\langle\Psi| c e^{-i H t} c^{\dagger}|\Psi\rangle \\
& G^{h}(t)=\langle\Psi| c^{\dagger} e^{-i H t} c|\Psi\rangle
\end{aligned}
$$

towards realistic DMFT

\square originally a single impurity and a single valence band:

\square in real substances, often multiple valence bands (orbitals):

\square improve realism by multiple sites (DCA) - bands from DFT

\square figure of merit C : sites times orbitals; here I-3-6

DMFT: two-site cluster DCA

\square hole-doped Hubbard model on square lattice, 4% doping, U=I0

\square calculation time: ca. 50 hs for spectral function (Chebyshev 20II)

CT-QMC: Ferrero, Cornaglia, De Leo, Parcollet, Kotliar, Georges, PRB (2009) DMRG/MPS:Wolf, McCulloch, Parcollet, Schollwöck, PRB (2014)
no doping: see also Ganahl et al, PRB (2014)

which bath geometry?

Wolf, McCulloch, Schollwöck, PRB 90, 235I3I (2014)
\square bath modeled by chain geometry in DMRG, MPS, NRG

\square only restriction: deliver self-consistent hybridization function
\square star geometry emerges more naturally
\square so why chain geometry?
\square Wilson NRG: separation of energy scales
\square DMRG, MPS: star must be arranged as chain (short-ranged hopping), star generates undesirable long-range entanglement (conventional wisdom)
\square is this so?

star geometry is better!

lower entanglement: star or chain geometry?

(i) $\quad \widetilde{\mathrm{v}}_{1} \bullet \bullet \bullet$ blue
(ii) $\square \sim v_{1}$ green
(iii)

strongly different growth of MPS bond dimensions

Wolf et al., PRB (2014)

2-site cluster DCA in k-space

DMRG/MPS:Wolf, McCulloch, Parcollet, Schollwöck, PRB (2014)
\square model: hole-doped (4\%) Hubbard model on 2d square latticespectral function: time evolution, linear prediction
\square bath discretization: linear; $L_{b} / L_{c}=30 \ldots 40$; geometry: starCPU time: 60 min ground state; 40 min spectral (down from several days!)

$U=2 D$

$C=2$

where do we do the spectral function?

Wolf, Go, McCulloch, Millis, Schollwöck, PRX 5, 041032 (2015)
\square spectral function can be calculated anywhere in complex plane
\square Quantum Monte Carlo: imaginary axis only; ill-conditioned analytic continuation to real axis for freq. info
\square advantage: DMRG/MPS on real axis! but cumbersome!
\square now switch to imaginary axis:
\square much smaller bath sizes possible
\square essentially no entanglement growth
\square much larger no of sites/orbitals (up to $C=20$) where QMC fails totally
\square no analytic continuation: spectral function from converged DMFT
\square prize to pay: partial loss of detailed information

2-site cluster DCA in k-space

\square model: hole-doped (4\%) Hubbard model on 2d square lattice
\square Matsubara Green's function: imaginary time evolution
\square bath discretization: fitting; $L_{b} / L_{c}=3$; geometry: star
\square CPU time: I min ground state; 4 min spectral
$U=2 D \quad C=2$

pseudogap not reproduced, other features represented!

more details

- I band Hubbard model
> good agreement on the + Patch but not for - Patch on real axis
> broadening and finite size effects
> on imaginary axis good

the model - vanadate

> Real material $\mathrm{Sr}_{2} \mathrm{VO}_{4}$: insulator
> DMFT overestimates U_{c} by a factor 2
> Dispersion relation from DFT
> 6 bands and no k_{z}-dependence

- Neglect coupling between Sr atoms -> 3 bands
> Hund's coupling

three-band Hubbard-Kanamori model

(Wolf, Go, McCulloch, Millis, Schollwöck, PRX (20I5))

$$
\begin{gathered}
H=H_{\mathrm{loc}}+H_{\mathrm{coupl}}+H_{\mathrm{bath}} \\
H_{\mathrm{loc}}=\sum_{a} U n_{a, \uparrow} n_{a, \downarrow}+\sum_{a>b, \sigma}\left[U^{\prime} n_{a, \sigma} n_{b,-\sigma}+\left(U^{\prime}-J\right) n_{a, \sigma} n_{b, \sigma}\right] \\
-\sum_{a \neq b} J\left(d_{a, \downarrow}^{\dagger} d_{b, \uparrow}^{\dagger} d_{b, \downarrow} d_{a, \uparrow}+d_{b, \uparrow}^{\dagger} d_{b, \downarrow}^{\dagger} d_{a, \uparrow} d_{a, \downarrow}+\right.\text { h.c.) } \\
H_{\mathrm{coupl}}=\sum_{k, a, \sigma} V_{k, a, \sigma} d_{a, \sigma}^{\dagger} c_{k, a, \sigma}+h . c . \\
H_{\mathrm{bath}}=\sum_{k, a, \sigma} \varepsilon_{k, a} c_{k, a, \sigma}^{\dagger} c_{k, a, \sigma} \\
\text { bath discretization using numerical optimization } \\
\text { on the imaginary axis (Caffarel \& Krauth, PRL (I994)) }
\end{gathered}
$$

three bands: reproducing CTQMC

(CTQMC by Werner et al., PRL IOI (2008), Werner et al., PRB (2009))
\square using only 3 bath states per correlated state (total size $L=12$)
\square quantitatively reproduce Mott transition (DMFT loop mins/hrs)

The First Results: J=0.7

phase diagram: $\mathrm{J}=0.7$

three-bands: reproducing CTQMC

\square reproduce anomalous low-frequency behavior of self-energy

\square one site, three bands $(C=3)$ is as far as QMC can go here!!! (unless temperature is quite high!)
\square explore the unknown ...

2 sites \& 3 bands: beyond CTQMC

\square move to 2 sites (patches) with 3 bands: physics changes!

\square drastic shift of position of Mott insulator transition
$\square U=D$: conductor in I site, very good insulator in 2 site approx
\square physical reason: I site approximation misses interaction energy cost of hopping to neighboring sites!
in reality: charge fluctuations frozen out; insulator favored

conclusions

\square ID: DMRG/MPS currently most powerful method
\square ground states
\square time-evolution, also at non-zero temperature
\square limitation: exponential growth of resources; entanglement growth
\square 2D: DMRG/MPS starts making very interesting forays
\square long cylinders
\square suboptimal ansatz, but numerically extremely stable
\square barring new ideas, key challenges for powerful codes:
\square parallelization
\square (non-)Abelian quantum numbers
\square non-trivial geometries (impurity solvers, quantum chemistry)
\square convergence of ground states

