TALLAHASSEE WINTER SCHOOL 2018: ENTANGLEMENT IN MANY BODY STATES

Outline:

1. Brief Review of entanglement entropy and its scaling
2. Entanglement in Gaussian states:

* Fermions
* Bosons

"What do you mean, 'a quantum fluctuation?'
Didn't we discuss cause and effect?"

3. Entanglement and locality: a new quantum phase transition from area law to volume law

REDUCED DENSITY MATRIX ENTROPY

$$
\begin{aligned}
& \left.\boldsymbol{\lambda \wedge} \underset{A}{\boldsymbol{\lambda}}\right|_{B} ^{\boldsymbol{\lambda}} \\
& H=H_{A} \otimes H_{B} \\
& |\Psi\rangle_{A B}=\sum_{i=1}^{\operatorname{dim} H_{A}} \sum_{j=1}^{\operatorname{dim} C_{i j}}\left|u_{i}\right\rangle_{A}\left|v_{j}\right\rangle_{B} \\
& c_{i j}=U_{i k} \lambda_{k} V^{+}{ }_{k l} \\
& |\Psi\rangle_{A B}=\sum_{i=1}^{N} \lambda_{i}\left|\xi_{i}\right\rangle_{A}\left|\zeta_{i}\right\rangle_{B}
\end{aligned}
$$

N is called the Schmidt number

REVIEW OF ENTANGLEMENT ENTROPY:

Reduced density matrix:

$$
\rho_{A}=\operatorname{Tr}_{B} \rho=\sum_{i=1}^{N}\left|\lambda_{i}\right|^{2}\left|\xi_{i}\right\rangle_{A}\left\langle\xi_{i}\right|
$$

More proper definition for the reduced density matrix:

$$
\left\langle\psi_{A B}\right| \hat{O}_{A}\left|\psi_{A B}\right\rangle=\operatorname{Tr}_{A}\left(\rho_{A} \hat{O}_{A}\right)
$$

Different characterizations of the entropy in the state: Schmidt number, entropy, Renyi entropy, many more

ENTANGLEMENT ENTROPY:

$$
S_{A}=-\operatorname{Tr} \rho_{A} \log \rho_{A} \text { where } \rho_{A}=\operatorname{Tr}_{B} \rho
$$

Examples:
$S_{A}(|\uparrow \uparrow\rangle)=0$
and for the singlet state

$$
S_{A}\left(\frac{|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle}{\sqrt{2}}\right)=1
$$

EE is a "non-local" version of correlation functions
EE may be non-vanishing even at zero

temperature

QUANTUM INFORMATION INTERPRETATION: (bennet et al.96)

Given $\psi_{\mathrm{AB}} \in H_{A} \otimes H_{B}$
$\mathrm{k}(\mathrm{n})=\#$ of maximally entangled pairs that can be
extracted by local operations from $\psi_{\mathrm{AB}}{ }^{\otimes n}$
Then :
$\lim _{n \rightarrow \infty} \frac{k(n)}{n}=S_{A}$

Generalization:
How many maximally entangled pairs can be extracted between
 two parts of a spin chain?

Quantum Criticality

$$
H_{I}=J \sum\left(g \sigma_{i}^{\alpha}+\sigma_{i}^{z} \sigma_{i+1}^{z}\right)
$$

Domain wall quasi-particles
Flipped spin quasi-particles

gap closes, system described critical theory

SCALING OF ENTANGLEMENT ENTROPY:

General feature at Qauntum phase transition point:
To physicists all objects are point like froma far, characterised by their s-wave scattering.
From afar, many quantum critical $1 d$ systems are conformal field theories, characterized by their conformal charge

For CFTs:

$$
S_{L} \xrightarrow[L \rightarrow \infty]{ } \frac{c+\bar{c}}{6} \log L
$$

c is the central charge of the critical conformal field theory (Holzhey, Larsen \& Wilczek 94, Calabrese \& Cardy 04)

Universality

ENTROPY SCALING AND SIMULATIONS

A gapped system in 1D allows for classical simulation:

DMRG (white 92) , MPS Fannes Nachtengale Werner (92): chop into bigger and bigger blocks. size of effective block depends on correlation length. \# of effective degrees of freedom ~ exp(entanglement entropy of the block)

1d gapped $\exp (S) \sim$ saturates	$=>$ do-able
1d Critical $\exp (S) \sim L$	$=>$ still doable, but not very good

$\mathrm{d}>1=>$ area laws => much harder. Progress in 2D, MERA, PEPS etc..
Fermions much harder than bosons due to worse area law

Boson fields:

Entropy of a scalar field restricted to a subsystem was first studied by Bombelli et al (87) as a quantum contribution to BekensteinHawking entropy. Area law for bosonic systems (Srednicki93,Rigorized Plenio et al. (05))

Topological states $(2+1)$ dimensions (Kitaev\&Preskill, Levin\&Wen).

$$
\begin{aligned}
& S_{A} \sim \alpha L_{A}-\gamma_{\text {top }}+\ldots \quad ; \quad \gamma_{\text {top }}=\log D ; \\
& D=\text { "total quantum dimension" }
\end{aligned}
$$

Expect an area law for gaped systems at $D>1$. Not proven (yet).
In 1D area law for gaped states proved by Hastings.
With an exponentially improved bound: Arad et al (2013)

MODELS WITH EXACTLY COMPUTABLE ENTROPY ARE SCARCE

MAIN BENCHMARK SYSTEMS: SYSTEMS WITH QUADRATIC HAMILTONIANS

NEXT: FERMIONS

LEONID LEVITOV (MIT)
DIMITRY GIOEV (ROCHESTER)
GIL REFAEL (CALTECH)
ALESSANDRO SILVA (ICTP, TRIESTE)
CHRISTIAN FLINDT (GENEVA),
STEPHAN RACHEL, H. FRANCIS SONG,
KARYN LE HUR (YÁLE)

Reduced density matrices for Gaussian states

A quasi free state, or gaussian state, by Wicks theorem is characterized In terms of it's two-point correlations.

$$
\left\langle A_{1} . . A_{2 n}\right\rangle=\sum(\pm 1)^{P}\left\langle A_{P_{1}} A_{P_{2}}\right\rangle . .\left\langle A_{P_{2 n-1}} A_{P_{2 n}}\right\rangle
$$

In particular Wick's theorem holds for two point correlations functions restricted inside A

Given the restriction of the two point function to A
The state of fermions in A is can be read from it as:

Explicitly:

Recall Fermi-Dirac:
$\mathbf{n}_{k}=\left\langle\mathbf{a}_{\mathrm{k}}^{+} \mathrm{a}_{k}\right\rangle=\frac{1}{1+e^{\beta E(k)}}$

Excersise : True in a general basis
$M_{i j}=\left\langle\mathrm{a}_{\mathrm{i}}^{+} \mathrm{a}_{\mathrm{j}}\right\rangle=\left(\frac{1}{1+e^{\beta H}}\right)_{i j}$

Projection on A $P(x)=1$ if x in A
$\Rightarrow H_{\text {eff }}=\log \left(\frac{M_{A}-1_{A}}{M_{A}}\right)$

$$
M_{A}=M \text { restricted to } \mathrm{A}
$$

Reduced density matrix, explicitly:

$$
\rho_{A}=\frac{e^{-\left(H_{e f f}\right)_{i j} a_{\mathrm{i}}^{+} \mathrm{a}_{\mathrm{j}}}}{Z_{A}}
$$

PROPERTIES OF M

$$
M_{i j}=P_{A}(i)\left\langle\mathrm{a}_{\mathrm{i}}^{+} \mathrm{a}_{\mathrm{j}}\right\rangle P_{A}(j)=\left(\frac{1}{1+e^{H_{e f f}}}\right)_{i j}
$$

M positive, and $M<1$

Projection on A $P(x)=1$ if x in A

Spectrum of M corresponds to occupation probability of the eigenmodes of the effective H. Related to entanglement spectrum (Haldane's talk)

$$
\begin{aligned}
& \rho_{A}=\frac{e^{-\left(H_{e f f}\right)_{i j} a_{i a_{j}}}}{Z_{A}} ; \quad H_{e f f}=\log \left(\frac{M-1}{M}\right) \\
& \text { diagonalize } \Rightarrow \\
& \rho_{A}=\frac{e^{-\log \left(\frac{M_{k}-1}{M_{k}}\right) c_{t t_{k}}}}{Z_{A}}
\end{aligned}
$$

Note number fluctuations:

$$
\left\langle\Delta N_{A}\right\rangle^{2}=\operatorname{Tr} M(1-M)
$$

FERMIONS IN A FERMI SEA

Hamiltonian

$H=\int\left(E(k)-E_{F}\right) a^{+}(k) a(k) d^{k} k$

Ground state (lowest eigenvector of \mathbf{H})
$\psi=\prod_{k \in \Gamma} a^{+}(k) \mid O>$
Fermi surface $\partial \Gamma=\left\{k \mid E(k)=E_{F}\right\}$

M FOR A FERMI SEA:

At $\mathrm{T}=0$ the two point function is:
$\left\langle\mathbf{a}_{\mathrm{x}}{ }^{+} \mathbf{a}_{\mathrm{x}^{\prime}}\right\rangle=\langle x| \boldsymbol{\theta}\left(H-E_{f}\right)\left|x^{\prime}\right\rangle$

Fermi step in a general basis

So :
$M=P_{A} Q P_{A}$
Explicitly:

$$
\langle x| M\left|x^{\prime}\right\rangle=\chi_{\Omega}(x) \chi_{\Omega}\left(x^{\prime}\right) \int_{\Gamma} \frac{e^{i k\left(x-x^{\prime}\right)}}{(2 \pi)^{d}} d k
$$

M tries to simultaneously "localize" in space and momentum

TRANSLATIONALLY INVATRIANT SYSTEMS

$$
\langle x| M\left|x^{\prime}\right\rangle=\chi_{\Omega}(x) \chi_{\Omega}\left(x^{\prime}\right) \int_{\Gamma} \frac{e^{i k(x-x)}}{(2 \pi)^{d}} d k=\chi_{\Omega}(x) g\left(x-x^{\prime}\right) \chi_{\Omega}\left(x^{\prime}\right)
$$

In 1D M is a block of a Toeplitz matrix
Def: A is a Toeplitz matrix if (Operator)

$$
\left(\begin{array}{ccccc}
m_{1} & m_{2} & m_{3} & m_{4} & m_{5} \\
m_{-1} & m_{1} & m_{2} & m_{3} & m_{4} \\
m_{-2} & m_{-1} & m_{1} & m_{2} & m_{3} \\
m_{-3} & m_{-2} & m_{-1} & m_{1} & m_{2} \\
m_{-4} & m_{-3} & m_{-2} & m_{-1} & m_{1}
\end{array}\right)
$$

Spectrum can be studied using Szego theorems/Hartwig-Fisher asymptotics

$$
\operatorname{Det}_{1, . . N} A \xrightarrow{N \rightarrow \infty} C \exp \oint g(k) \frac{d k}{2 \pi}
$$

Fourier trans of g

FORMULA BASED ON WIDOM'S CONJ ECTURE

$$
S_{\Omega} \sim \frac{L^{d-1} \log L}{12(2 \pi)^{L-1}} \iiint_{\Omega \Omega, \pi T}\left|n_{x} \cdot n_{p}\right| d S_{x} d S_{p}+o\left(L^{d-1} \log L\right)
$$

\rightarrow Logarithmic violation of area law

Fermi sea

Seidel et al. prb2012: extension to interacting systems using higher dimensional Bosonization. Widom proved by Sobolev 2013

Measuring entanglement entropy for fermions

FERMION NUMBER FLUCTUATIONS:

Particle number fluctuations share with entropy two traits:

1) Subadditivity
2) Symmetry

Can be used as an indication for entanglement!

Can we do more?

MAIN TOOL: RELATION TO "FULL COUNTING STATISTICS" (FCS)
$p_{n}=$ Probability of having n fermions in A

$$
\chi(\lambda)=\sum p_{n} e^{i \lambda n}
$$

$\log \chi(\lambda)=\sum \frac{(i \lambda)^{n}}{n!} C_{n} \longleftrightarrow$ "Cumulants"
signal Noise Skewness
$C_{1}=\langle n\rangle \quad ; \quad C_{2}=\left\langle\delta n^{2}\right\rangle \quad ; \quad C_{3}=\left\langle<\delta n^{3} \gg \ldots\right.$

COUNTING STATISTICS
FOR PARTICLE NUMBERS:

$$
M=P_{A} P_{E} P_{A}
$$

Counting of particles in

$$
\chi(\lambda)=\sum_{n} p_{n} e^{i \lambda n}=\operatorname{det}\left(1-M+M e^{i \lambda}\right)
$$

Recall:

$$
S=-\operatorname{Tr}[M \log M+(1-M) \log (1-M)]
$$

We can find the spectral density of M from the counting statistics generating function and use it to express S

MAIN RESULT:

B_{m} are Bernoulli numbers

$$
S_{A}=\frac{\pi^{2}}{3} C_{2}+\frac{\pi^{4}}{15} C_{4}+\frac{2 \pi^{6}}{945} C_{6}+\ldots
$$

Coefficients are universal!

"I think you should be more explicit here in step two."

IDEA: ENTANGLEMENT ENTROPY \rightarrow TRANSPORT PROBLEM

Linear dispersion means excitations travel without changing shape, typical situation in 1d systems

ABRUPT AND PERFECT CONNECTION:

" t " is duration of connected state short time cutoff (switching time)
\rightarrow Recovered the result of Holzhey Larsen\& Wilczek!

RELATION (GENERICALLY) DOESN’ T CONVERGE!

H. Francis-Song, C. Flindt, S. Rachel, IK and K. Le-Hur2011

Re-summation:
The convergent expression is:

$$
\begin{aligned}
& S_{A}=\lim _{K \rightarrow \infty} \sum_{m \geq 2, E v e n}^{K} a_{m}(K) C_{m} \\
& a_{m}(K)=2 \sum_{j=m-1}^{K} \frac{s_{1}(j, m-1)}{j!j}
\end{aligned}
$$

$s_{1}-$ unsigned Stirling numbers of first kind

BOSONIC GAUSSIAN STATES

Crash course on Entanglement in Gaussian states:

Let $\left(x_{1}, p_{1}, \ldots x_{n}, p_{n}\right)=\left(O_{1}, \ldots O_{2 n}\right)$ where x, p conjugate
$\left[O_{j}, O_{k}\right]=i \hbar \sigma_{j k}$
$\sigma=\oplus_{j=1}^{n}\left(\begin{array}{cc}\mathrm{O} & 1 \\ -1 & \mathrm{O}\end{array}\right)$

Let γ be the covariance matrix:
$\gamma_{i j}=2 \operatorname{Re}\left\langle\left(O_{j}-\left\langle O_{j}\right\rangle\right)\left(O_{k}-\left\langle O_{k}\right\rangle\right)\right\rangle$

Entropy depends on simplectic eigenvalues of γ

Bombelli et al. 87. Modern outlook and reviews J. Eisert, M.B. Plenio JQI(2003),
A. Botero and B. Reznik PRA (2003) etc..

Transformations
$\left(\begin{array}{c}O_{1} \\ \ldots \\ O_{2 n}\end{array}\right) \longrightarrow S\left(\begin{array}{c}O_{1} \\ \ldots \\ O_{2 n}\end{array}\right)$
preserving commutations $\left[O_{j}, O_{k}\right]=i \hbar \sigma_{j k}$
are the symplecitc matrices $\mathrm{Sp}(2 \mathrm{n}) \equiv$ all S s.t. $\mathrm{S} \sigma S^{T}=\sigma$

Under a symplectic transformation
$\gamma \rightarrow S \gamma S^{T}$

Williamson / Darboux Thm: there is an S s.t. $S \gamma S^{T}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)$

Use the symplectic transformation to get to normal form, then : $\gamma \rightarrow S \gamma S^{T}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)$
and :
$\rho_{\text {field }}=\frac{1}{\mathrm{Z}} e^{-\sum_{m} \log \left(\frac{\lambda_{m}+1 / 2}{\lambda_{m}-1 / 2}\right) a_{m}{ }^{+} a_{m}}$

Finding the λ_{i} can be tricky, but assuming $\left\langle p_{k} x_{l}\right\rangle=0$
Then one can check that $\left|\lambda_{i}\right|^{2}$ are eigenvalues of

$$
\Gamma=4 \sum_{\mathrm{k}} G_{j k} H_{k l} \quad G=\left\langle x_{j} x_{k}\right\rangle \quad H=\left\langle p_{k} p_{l}\right\rangle
$$

Entropy:

$$
\begin{array}{ll}
S=\sum_{i} h\left(\lambda_{i}\right) & \begin{array}{l}
\lambda_{i} \text { are simplectic } \\
\text { eigenvalues of the covarian } \\
\text { matrix }
\end{array} \\
h(\lambda)=\frac{\lambda+1}{2} \log \frac{\lambda+1}{2}-\frac{\lambda-1}{2} \log \frac{\lambda-1}{2}
\end{array}
$$

Note $h(1)=0$. All eigenvalues are larger than 1 due to uncertainty relation:

$$
\lambda=2 \Delta x \Delta p \geq 1
$$

APPLICATION: RADIATION MATTER ENTANGLEMENT

IK Radiation matter entanglement, arXiv:1208.2474
IK On the entanglement of a quantum field with a dispersive medium, Phys. Rev. Lett. 109, 061601 (2012)

Entanglement cuts do not have to be spatial!

Consider an EM modes in a dielectric. What is the entanglement between the modes and the matter?

To summarize: effective action

$S_{e f f}=\frac{1}{4 \pi} \int d^{3} x d \omega \varphi^{*}(x, \omega)\left[\omega^{2} \varepsilon(x, \omega)-\nabla^{2}\right] \varphi(x, \omega)$
Allows to compue $\left\langle\varphi(x, t) \varphi\left(x^{\prime}, t^{\prime}\right)\right\rangle$ correlators.
$\left\langle\varphi(x, t) \varphi\left(x^{\prime}, t^{\prime}\right)\right\rangle=\frac{1}{4 \pi} \int_{0}^{\infty} d \omega \frac{e^{i \omega\left(t-t^{\prime}\right)}}{-\nabla^{2}+\omega^{2} \varepsilon(x, i \omega)}$
need:
$\left\langle\varphi(x, 0) \varphi\left(x^{\prime}, 0\right)\right\rangle=\frac{1}{4 \pi} \int_{0}^{\infty} d \omega \frac{1}{-\nabla^{2}+\omega^{2} \varepsilon(x, i \omega)}$

And assume conjugate momentum obeys $\pi_{\varphi}=\dot{\varphi}$
$S=\frac{1}{4 \pi} \int d^{3} x d \omega \varphi^{*}(x, \omega)\left[\omega^{2} \varepsilon(x, \omega)-\nabla^{2}\right] \varphi(x, \omega)$

Trivial example:

$\varepsilon(x, \omega) \equiv \varepsilon(x) \quad$ Independent of ω

No Entropy: Described by a hamiltonian

$$
H=\frac{1}{4 \pi} \int d^{3} x\left(\frac{\pi^{2}}{\varepsilon(x)}+(\nabla \varphi)^{2}\right)
$$

EXAMPLE:

Translationally invariant system, entropy per unit volume
Check free space:
$S=\frac{1}{2} \int d^{3} x \frac{d w}{2 \pi} \varphi_{w}^{*}(x)\left(w^{2}+\nabla^{2}\right) \varphi_{w}(x)$
$\left\langle\varphi(k) \varphi\left(k^{\prime}\right)\right\rangle_{\text {Free }}=\frac{\delta_{k k^{\prime}}}{\pi} \int_{0}^{\infty} d w \frac{\hbar}{w^{2}+k^{2}}=\frac{\hbar}{2 k} \delta_{k k^{\prime}}$
$\left\langle\pi(k) \pi\left(k^{\prime}\right)\right\rangle_{\text {Free }}=\frac{\delta_{k k^{\prime}}}{\pi} \int_{0}^{\infty} d w \frac{\hbar k^{2}}{w^{2}+k^{2}}=\frac{k \hbar}{2} \delta_{k k^{\prime}}$
$\Rightarrow G H(k)=\frac{4}{\hbar}\left\langle\varphi^{2}\right\rangle_{k}\left\langle\pi^{2}\right\rangle_{k}=1 \Rightarrow$ No entropy $\sqrt{ }$

MAIN RESULTS:

$$
\begin{aligned}
& \text { Typical dielectric }: \varepsilon(\omega)=1+4 \pi \frac{\omega_{p}^{2}}{\omega_{0}^{2}-\omega^{2}-i \gamma \omega} \\
& \frac{1}{Z} e^{-\sum_{k}^{E(k) c_{k}^{+} c_{k}}}=\frac{1}{Z} e^{-\sum_{k}\left(\log \left[\lambda_{k}+1 / 2\right]-\log \left[\lambda_{k}-1 / 2\right]\right)_{k}^{+} c_{k}}
\end{aligned}
$$

$$
\begin{array}{ll}
- & \omega_{\mathrm{p}}=2 \\
- & \omega_{p}=4 \\
- & \omega_{\mathrm{p}}=8 \\
- & \omega_{\mathrm{p}}=16
\end{array}
$$

Not linear \rightarrow not a simple thermal state! Too many conserved quantities (see Huse's talk)

HOW MUCH ENTANGLEMENT CAN A LOCAL HAMILTONIAN SUPPORT?

Supported by:
A Ahmadain, Z Zhang (Uva)
R Alexander (UNM) H Katsura, T Udagawa (Tokyo) V Korepin, O Salberger (Stony Broo

Refs:
Z. Zhang and IK, J. Phys. A, 50, 42 (2017);
Z. Zhang, A. Ahmadain and IK, PNAS, 114, 20 (2017);
O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, IK and V.

Korepin, J. Stat. Mech (2017): 063103

ENTANGLEMENT SCALING IN TYPICAL SYSTEMS:

Entanglement entropy:

$$
S_{A}=-\operatorname{Tr} \rho_{A} \log \rho_{A} \text { where } \rho_{A}=\operatorname{Tr}_{B} \rho
$$

Generic states in Hilbert space have extensive entanglement (page prl 93,foong prl 94,sen prl 96)

$$
S_{A} \approx\left\{\begin{array}{ccl}
L^{d} & \text { generic state } & \text { (Page prl 93) } \\
L^{d-1} & \text { gapped, "area law" } & \text { (Hastings 07,1d) } \\
L^{d-1} \log L & \text { free fermions } & \text { (Gioev IK 06,M Wolf 06,...) } \\
\frac{c}{3} \log L & \text { conformal } & \begin{array}{c}
\text { (Holzhey Larsen Wilczek 96, } \\
\text { many many more) }
\end{array}
\end{array}\right.
$$

EXTENSIVELY ENTANGLED STATES

First local Hamiltonian with volume scaling: Irani 2010. local Hilbert space dimension is $\mathbf{2 1}$

Simpler models but without translational invariance, and with exponentially varying couplings:

Gottesman Hastings 2010 (not frustration free)
Rainbow ground states:Vitagliano Riera Latorre 2010, Ramirez Rodriguez-Laguna Sierra 2014

Translationally invariant but with a square root scaling:
Movassagh Shor (2014), Salberger Korepin (2016)

Here: a simple spin chain with remarkable phase transition:

Product state

$$
S_{\mathrm{n}}=\mathrm{n}^{1 / 2}
$$

Basic intuition: How to create a highly entangled state?

EPR: electron-positron pair generation in an electric field as a source of entanglement

ANOTHER TYPE OF RAINBOW STATE IN THE LAB!

Pfister et al, 2004
Chen Meniccuci Pfister PRL2014, 60 mode cluster state

Optical frequency comb

Cavity eigenmodes

Nonlinear cavity

$$
\omega_{i n} \rightarrow \omega_{n}+\omega_{-n}=\omega_{i n}
$$

Incoming laser

CRITICALITY WITHOUT FRUSTRATION

Frustration free Hamiltonians:

$$
\begin{aligned}
& H=\sum H_{i} \quad, \quad H_{i} \text { are local non negative (i.e. }\langle f| H_{i}|f\rangle \geq 0 \text { for all } f \text {) } \\
& H|\Psi\rangle=0 \quad \text { and } \quad H_{i}|\Psi\rangle=0 \text { are local }
\end{aligned}
$$

Examples:

- Classical Hamiltonians such as Ising
- Toric Code
- AKLT model

Typically commuting and gapped.

MOTZKIN WALK HAMILTONIANS

Bravyi et al. 2012 "Criticality without frustration"

$$
|\Psi\rangle=\sum_{\substack{\text { Motzkin } \\ \text { paths }}} \left\lvert\, \sim S_{n} \propto \frac{1}{2} \log (n)\right.
$$

Movassagh and Shor 2014 "Power law violation of the area law in quantum spin chains"

$$
|\Psi\rangle=\sum_{\text {colored }} \mid
$$

REPRESENTING SPIN STATES AS MOTZKIN WALKS

Motzkin paths: $\mid 1,0,-1,1,1,-1,1,0,1,-1,-1,0,0,-1>$

Colored Motzkin paths: $\mid 1,0,-1,2,1,-1,1,0,2,-2,-1,0,0,-1>$

MOTZKIN HAMILTONIANS

$|\Psi\rangle=$

Basic idea - locally:

$$
\left.|\Phi\rangle\langle\Phi|\left|ノ^{-}\right\rangle+|-\nearrow\rangle=0 \quad \text { if } \quad|\Phi\rangle=|\ulcorner \rangle-|-\nearrow\right\rangle
$$

MOTZKIN HAMILTONIANS

Enforce a ground state superposition made of Motzkin paths by using projectors like:

$$
\begin{aligned}
& |\Phi\rangle=\mid \\
& |\Psi\rangle=| \rangle\rangle \\
& |\Theta\rangle=\mid \\
& \left.H=\sum|\Theta\rangle\right\rangle\langle\Theta|+|\Psi\rangle\langle\Psi|+|\Phi\rangle\langle\Phi|+ \\
& h_{1}+h_{2 n}+(\text { penalty unmatched colors })
\end{aligned}
$$

Boundary
 terms:

HOW COLOR ENHANCES ENTROPY

Height after n steps $=\#$ of unmatched up steps

For $n \gg 1$, typical Motzkin walk is like a Brownian walk.
\Rightarrow
Typical height after n steps $\propto \sqrt{n}$
\Rightarrow
\# of colorings of unmatched up steps $\propto s^{\sqrt{n}}$
all coloring schemes of unmatched equally likely
$\Rightarrow S_{n} \propto \sqrt{n}$

CAN WE SKEW THE MODEL TO PREFER RAINBOW STATES?

Main idea - up moves are like electrons and down moves are like positrons. They should go in different directions!

Can try:

$$
\begin{aligned}
& |\Phi\rangle=\cos \varphi_{i}|\curvearrowright\rangle-\sin \varphi_{i}|-\rangle-\sin \psi_{i}|>-\rangle \\
& \left.|\Psi\rangle=\cos \psi_{i}\left|->-\sin \theta_{i}\right|-\quad\right\rangle \\
& |\Theta\rangle=\cos \theta_{i} \mid \gg
\end{aligned}
$$

Choice of angles must satisfy a consistency condition:

$\cot \psi_{i+1} \tan \theta_{i} \equiv \tan \phi_{i} \tan \theta_{i+1}$

THE UNIFORM MODEL

$$
\begin{aligned}
& |\Phi\rangle=|\ulcorner \rangle-t|-> \\
& |\Psi\rangle=|\square\rangle-t|\backslash-\rangle \\
& |\Theta\rangle=|\wedge\rangle-t\left|_\right\rangle
\end{aligned}
$$

$$
|\Psi\rangle-\sum_{\substack{\text { colored } \\ \text { Motzkin } \\ \text { paths }}} t^{\text {Area }} \mid
$$

ENTANGLEMENT ENTROPY

Schmidt decomposition

$$
p_{n, m}=\frac{M_{n, m}^{2}}{N_{n}}
$$

$$
M_{n, m}=\sum_{\substack{i=0}}^{(n-m) / 2} s^{i} \sum_{\substack{\text { path from } 0 \text { to } \\ \text { heightm with } \\ \text { iunpaired colors }}} t^{\text {Areaunder path }}
$$

$$
N_{n}=\sum_{m=0}^{n} s^{m} M_{n, m}^{2}
$$

SCALING OF ENTROPY.

$$
S=-\sum s^{m} p_{n, m} \log p_{n, m}
$$

We need the asymptotics of $\mathrm{M}_{\mathrm{n}, \mathrm{m}}$

$$
M_{n, m}=\sum_{i=0}^{(n-m) / 2} s^{i} \sum_{\substack{\text { path from } 0 \text { to } \\ \text { height mwith } \\ \text { iunpaired colors }}} t^{\text {Areaunder path }}
$$

Charged particle in a field, Brownian particle with a drift

FREDKIN CHAIN

The Fredkin model of Salberger/Korepin 2016 has as ground state superposition of Dyck paths:

$$
|\Psi\rangle=\sum_{\substack{\text { colored } \\ \text { Dyck } \\ \text { paths }}}|\sim\rangle
$$

We deform it into:

$$
|\Psi\rangle=\sum_{\substack{\text { colored } \\ \text { Dyck } \\ \text { paths }}} t^{\text {Area under }} \mid
$$

Entropy scales linearly with $n \log (s)$! Same phase diagram.
Model has 3-nearest neighbor interactions.
O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, IK and V. Korepin, JSTAT (2017)

EXCITATION GAP

uncolored Motzkin $S \sim \frac{1}{2} \log (n) \quad \Delta \leq n^{-c}, c \sim 2+$
$t=1, \operatorname{Motzkin}, \quad S \sim \sqrt{n} \log (s) \quad n^{-c} \leq \Delta \leq n^{-2}(c \gg 1)$
$t=1$, Fredkin

Here:
$t>1$, Motzkin, $S \sim n \log (s) \quad \Delta \leq 8 n s t^{-n^{2} / 3}$
Levine and Movassagh, JphysA 2017
Beautiful proof uses mapping to Markov Chains and Cheeger Inequality

Alternative approach \rightarrow

VARIATIONAL PROOF FOR GAP SCALING:

Result is orthogonal to g.s. Energy exponentially small with t .
More sophisticated: flip the color of the last down making the larges interval gives $t^{\wedge}-n^{\wedge} 2 / 2$ gap.

EXCITATION GAP IN COLORLESS MODEL

Colorless model:
Gap for t<1
Gapless for $\mathrm{t}>1$ (although entropy obeys area law!)
Variational approach:

$$
|\Psi\rangle=\sum t^{\text {Area }} \mid
$$

Z Zhang and IK, JPA2017

TENSOR NETWORK FOR AREA-LAW STATES

Matrix Product States are a useful description for chains with area law. Take D matrices A:

$$
\begin{aligned}
& |\Psi\rangle=\sum C\left(\sigma_{1} \ldots \sigma_{N}\right)\left|\sigma_{1} \ldots \sigma_{N}\right\rangle \quad \sigma_{1} \in\{1,2, . . D\} \\
& C\left(\sigma_{1} \sigma_{2} \ldots \sigma_{N}\right)=A_{s_{1} s_{2}}^{\sigma_{1}} A_{s_{2} s_{3}}^{\sigma_{1}} A_{s_{3} s_{4}}^{\sigma_{1}} \ldots A_{s_{N} S_{N+1}}^{\sigma_{1}}=\left\langle s_{1}\right| A_{\sigma_{1}} A_{\sigma_{2}} \ldots A_{\sigma_{N}}\left|s_{N+1}\right\rangle
\end{aligned}
$$

Tensor network description:

Entanglement obtained by cutting a bond. It is bounded by log (dimension A).

EXACT HOLOGRAPHIC TENSOR NETWORK

THE TN IS NOT OPTIMAL FOR T=1. CAN WE DO BETTER?

Replace boundary term in Hamiltonian with amplitude of magnetization

$\stackrel{u}{1}_{u_{1}}$ •
 ,

Remark about holographic metric

Consistent with graph distance $D(x, y)=|y-x|$

But entanglement is bound:

$D_{\text {dual }}(x, y)=2$
S=const

