

Hafnium greatly improves Nb₃Sn superconductor for high field magnets

 Shreyas Balachandran¹, Chiara Tarantini¹, Peter J. Lee¹, Fumitake Kametani^{1,2}, Yi-Feng Su¹, Benjamin Walker¹, William L. Starch¹, and David C. Larbalestier^{1,2}
NHMFL, Florida State University; 2. Dept of Mechanical Engineering, Florida State University

Funding Grants: G.S. Boebinger (NSF DMR-1157490, NSF DMR-1644779); DOE (DE-SC0012083)

Niobium-Tin, Nb₃Sn, conductors are the conductor of choice in high-field magnet applications for nuclear magnetic resonance, accelerators, and fusion. Nb₃Sn magnets will be needed for a next-generation (100TeV) proton collider; however, the desired non-Copper current density (J_c) of 1500A/mm² (at 16T and 4.2K) is substantially above the best presently available Nb₃Sn conductor designs.

A variety of variants of Nb₃Sn monofilament wires were fabricated in-house at the MagLab to include Nb₄Ta rods with Zirconium (Zr) and Hafnium (Hf) additions, both with and without SnO₂ suitable for internal oxidation of the Zr and Hf. The properties of the various wires were measured over the entire superconducting range at fields up to 31T at MagLab.

<u>Researchers found that group IV alloying (by Zr and Hf) in the</u> <u>presence of Tantalum (Ta) increases the global vortex pinning</u> force (Layer F_P) at 4.2K, more than doubling any previous <u>Nb₃Sn production wire (Figure 1)</u>. This, in turn, raises the irreversibility field (H_{irr}) of the wire, thus expanding the magnetic field range over which the superconductor has a zero resistance.

The layer critical current density (Layer J_c) at 16T and 4.2K, exceeds 3500 A/mm² (Figure 2.), which at the typical 60% fill factor of present high- J_c wires, suggests a non-Copper J_c of 2000 A/mm², <u>exceeding the goal for the next-generation</u> *Future Circular Collider (FCC) planned for CERN.*

Facility used: DC Field Facility's 31T, 50mm Bore Magnet - Cell 7
Citation: S. Balachandran, C. Tarantini, P.J.. Lee, F. Kametani, Y. Su, B. Walker, W.L. Starch, D.C. Larbalestier, Beneficial influence of Hf and Zr additions to Nb4at%Ta on the vortex pinning of Nb₃Sn with and without an O source, Superconductor Science and Technology, 32, 044006 (2019) doi.org/10.1088/1361-6668/aaff02

Figure 2. Layer critical current density in Hf-based conductors indicate a performance boost of 60% at 16T above the present state-of-the-art Restack Rod Process (RRP) commercial wire.