

Phase diagram of URu_{2-x}Fe_xSi₂ in high magnetic fields

Sheng Ran^{a,b}, Inho Jeon^{b,c}, Naveen Pouse^{a,b}, Alexander J. Breindel^{a,b}, Noravee Kanchanavatee^{a,b}, Kevin Huang^{b,c}, Andrew Gallagher^d, Kuan-Wen Chen^d, David Graf^d, Ryan E. Baumbach^d, John Singleton^d, and M. Brian Maple^{a,b,c}. ^aPhysics, UCSD; ^bCenter for Advanced Nanoscience, UCSD; ^cMaterials Science and Engineering, UCSD; ^dNHMFL

Funding Grants: A. Gallagher, K.-W. Chen, D. Graf, R.E. Baumbach, J. Singleton (NSF DMR-1157490); N.P. Wilson, X.Xu S. Ran, I. Jeon, N. Pouse, A.J. Breindel, N. Kanchanavatee, K. Huang, M.B. Maple (DOE DE-FG02-04ER46105 and DE-NA0002909, NSF DMR-1206553)

The renowned and mysterious hidden-order (HO) phase in URu_2Si_2 is intimately related to the large-moment antiferromagnetic (LMAFM) phase that is induced under pressure or upon iron (Fe) substitution. MagLab users performed electrical resistivity measurements on single crystals of $URu_{2-x}Fe_xSi_2$ in magnetic fields of up to 45T (Hybrid Magnet) and 65T (Pulsed Magnets). Various phases including HO, LMAFM, HO* (reentrant HO phase), SDW (spin density wave), FL (ordinary Fermi-Liquid metallic phase, recovered at high field), and PM (paramagnetic phase at high temperature) were mapped, along with P1 (a possible new intermediate-field phase), to establish a three-dimensional (3D) field – composition - temperature (*H*, *x*, *T*) phase diagram for this complex material.

The 3D phase diagram establishes a "universal" relationship between the normalized transition temperature T/T_0 and the normalized critical magnetic field H/H_0 for the HO phase: the H/H_0 versus T/T_0 data in the lower figure collapses onto a single curve. This curve provides tight constraints on potential models for the order parameter of the HO phase.

Within a certain range of x values, x~0.17, the HO phase reenters when magnetic fields suppress the LMAFM phase. This is similar to the behavior observed for pure URu_2Si_2 crystals within a certain range of pressures.

Facilities and instrumentation used: 65 Tesla capacitor-driven

Upper: Three-dimensional phase diagram for URu_{2-x} Fe_xSi₂ single crystals, with temperature *T*, magnetic field (parallel to **c**) *H*, and Fe concentration *x* as the three axes. The labels for the phases are defined in the text.

Lower: Normalized criticalfield H/H_0 as a function of normalized critical temperature T/T_0 for URu_{2-x}Fe_xSi₂ single crystals, with x=0, 0.025, 0.05, 0.08, 0.1, 0.12, 0.15, 0.2, and 0.3. The solid and open symbols represent data for the Hidden Order(HO) and Large Moment Antiferromagnetic (LMAFM) phases, respectively. The dashed line represents the best fit of the equation $(T/T_0)^{\Pi}$ + $(H/H_0)^n = 1$ to the data, which yields n = 1.8. The inset shows $(T/T_0)^{1.8}$ as a function of $(H/H_0)^{1.8}$ for the crystals.

magnet at the MagLab's Pulsed Field Facility, Los Alamos; 45 T Hybrid Magnet at the MagLab' DC Magnet Facility, Florida State University; **Citation:** S. Ran, I. Jeon, N. Pouse, A.J. Breindel, N. Kanchanavatee, K. Huang, A. Gallagher, K.-W. Chen, D. Graf, R.E. Baumbach, J. Singleton, and M.B. Maple, *"Phase diagram of URu_{2-x}Fe_xSi₂ in high magnetic fields"*, **Proceedings of the National Academy of Sciences 114**, 37, 9826 (2017). https://doi.org/10.1073/pnas.1710192114