Unusual quasiparticle correlation in stacked atomic layers

Philip Kim Physics & Applied Physics, Harvard University

'Real' Particles and 'Quasi' Particles

Richard D. Mattuck

A Guide to Feynman Diagrams in the Many-Body Problem

R. Mattuck, "A guide to Feynman diagrams in the many-body problem"

Landau Theory of Fermi Liquid

L. D. Landau (1957).

Fermi liquid: Weakly interacting quasiparticles

Non-Fermi liquid: Luttinger liquid (1D), Strongly correlated system near the quantum criticality,

Assembling van der Waals Materials

- Semiconducting materials: WSe₂, wose₂, wos₂, ws₂, βρ...
- Complex-metallic compounds : TaSe₂, TaS₂, ...
- Magnetic materials: Fe-TaS₂, CrSiTe₃, Crl₃...
- Superconducting: NbSe₂, Bi₂Sr₂CaCu₂O_{8-x},...
- Topological Insulator/Wyle SM: Bi₂Se₃, MoTe₂

Atomic Layer-by-Layer Stacking Up of VdW Materials

L. Wang et al, Science (2013)

- Creation of multilayer systems with co-lamination techniques
- Encapsulated graphene in hBN
- Completely ballistic at low temperature

Xu et.al., Nature Nano (2015) (Hone group collaboration)

vdW Heterostructure Devices

Coulomb Drag in Graphene

Van der Waal Heterostructures

	Graphene	hBN	MoS ₂	WSe ₂	NbSe ₂	TaS ₂	Cr ₂ Ge ₂ Te ₆	Bi ₂ Se ₃
Graphene (semimetal)	Twisted O stacking	Hofstadter Butterfly; tunneling	Schottky diode	Schottky diode	Andreev reflection	Super lattice potential	Magnetic insulating	Contacting surface states
hBN (insulator)	0	Twisted O stacking	Encapsulation	Encapsulation	Encapsulation, tunneling	Encapsulating, tunneling	Control exchange interaction	Encapsulating, tunneling
MoS ₂ (n-semicond)	0	0	Twisted O stacking	Atomic pn junction	Supercond /Semicond juntion	Super lattice modulation	Magnetic semiconductor	Valley tronics
WSe ₂ (p-semicond)	0		0	Twisted stacking	Supercond /Semicond juntion	Super lattice modulation	Magnetic semiconductor	Valley tronics
NbSe ₂ (supercond.)	0	0			Josephson Coupling	Competing order parameters	Triplet superconductor	Majorana
TaS ₂ (CDW)	Δ	0				C-axis CDW orders	Competing order parameters	Super lattice modulation
Cr₂Ge₂Te₆ (magnetic)	0						C-axis magnetic orders	Creating gap in TI surface
Bi₂Se₃ (T. I.)	Δ	0						Annihilation of TI surface states
O performed ▲ in-progress □ Planned							_	

Outline

- Electron and hole interaction near the Dirac point: Dirac Fluid in graphene
- Electron and hole correlation across the vdW interface: Long lived interlayer excitons
- Electron and hole correlation across the Landau levels: Magnetoexciton condensation in Quantum Hall bilayer
- Feromagnetic Superconductors in Flat bands:

Twisted Double Bilayers

Electron and hole correlation by superconducting proximitized quantum Hall edge: Crossed Andreev reflection

Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene

Jess Crossno

J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A. Ohki, K. C. Fong *Science* **351**, *1058-1061 (2016)*.

Jing K. Shi

Ke Wang Achim Harzheim

Thomas Ohki

Andrew Lucas Subir Sachdev

Sang-Jin Sin

T. Taniguchi, K. Watanabe

Jonah Waissman Artem Talanov

Zhonging Yan

Andrew Lucas

Dirac Point in Graphene

Effective Fine Structure Constant

$$\alpha = \frac{e^2}{\varepsilon_r \hbar v_F} \sim 1$$

Effective Dirac Hamiltonian

 $H_{eff} = \pm \hbar v_F \vec{\sigma} \cdot \vec{k}_\perp$

Hydrodynamic Transport in Dirac Point in Graphene

Condition of hydrodynamic description:

 $\tau_{ee} << \tau_{imp}$

Sheehy and Schmalian, PRL 99, 226803 (2007) Fritz, Schmalian, Muller, and Sachdev, PRB (2008). Mueller, Fritz, and Sachdev, PRB (2008). Foster and Aleiner, PRL (2009). Mueller, Schmalian, Fritz, PRL (2009)

Dirac Fluid at the CNP of graphene

Disorder and Charge Puddles Near the Neutrality

Conductivity of Graphene on SiO₂ Substrate

Potential Mapping by Scanning Single Electron Transistor

Stacking graphene on hBN

RT Mobility : ~100,000 cm²V⁻¹s⁻¹

Non-Degenerate Electron Gas at Dirac Point

Wiedemann Franz Law in Fermi Liquid

Thermal conductivity versus electrical conductivity

$$\frac{\kappa}{\sigma T} = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 = L_0 \quad \text{: Sommerfeld value}$$

Relaxation of charge current and heat current

Wiedenmann Franz in Non Fermi Liquid

ARTICLE

NATURE COMMUNICATIONS | 2:396 | DOI: 10.1038/ncomms1406

Received 25 Feb 2011 | Accepted 20 Jun 2011 | Published 19 Jul 2011

DOI: 10.1038/ncomms1406

Gross violation of the Wiedemann-Franz law in a quasi-one-dimensional conductor

Nicholas Wakeham¹, Alimamy F. Bangura^{1,2}, Xiaofeng Xu^{1,3}, Jean-Francois Mercure¹, Martha Greenblatt⁴ & Nigel E. Hussey¹

Lee et al., Science 355, 371-374 (2017) 27 January 2017

SOLID-STATE PHYSICS

Anomalously low electronic thermal conductivity in metallic vanadium dioxide

Sangwook Lee,^{1,2*} Kedar Hippalgaonkar,^{3,4*} Fan Yang,^{3,5*} Jiawang Hong,^{6,7*} Changhyun Ko,¹ Joonki Suh,¹ Kai Liu,^{1,8} Kevin Wang,¹ Jeffrey J. Urban,⁵ Xiang Zhang,^{3,8,9} Chris Dames,^{3,8} Sean A. Hartnoll,¹⁰ Olivier Delaire,^{7,11}† Junqiao Wu^{1,8}†

Fig. 1. Thermal conductivity of VO2 across the metal-insulator transition. (A) False-color scanning

Charge and Heat Transport at Dirac Point

For a Dirac fluid at chemical potential $\mu = 0$;

Density:
$$n_e = n_h$$
 Energy density: $u_e = u_h$ **Drift velocity:** $|\langle v_e \rangle| = |\langle v_h \rangle|$
Charge current: $j = en_h \langle v_h \rangle + (-e)n_e \langle v_e \rangle$ **Heat current:** $j_Q = u_h n_h \langle v_h \rangle + u_e n_e \langle v_e \rangle$

Electric Transport -e $\mu = + \frac{e\delta V}{2}$ *e-h* interaction eδl *j* ≠ 0 provides a friction to electric current! $j_{0} = 0$ +e**Thermal Transport -***e e-h* interaction provides no friction T_0 $T_0 + \Delta T$ j = 0to heat current! $j_0 \neq 0$ +e

Near the charge neutrality,

$$\frac{\kappa}{\sigma T} > \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 = L_0$$

- L. Fritz, J. Schmalian, M. Müller, and S. Sachdev, Phys. Rev. B 78, 085416 (2008).
- M. Müller, L. Fritz, and S. Sachdev, Phys. Rev. B 78, 115406 (2008); M. Müller and S. Sachdev, *ibid.* 78, 115419 (2008).
- M. S. Foster and I. L. Aleiner, Phys. Rev. B 77, 195413 (2008).

Johnson Noise Thermometry for Thermal Conductivity Measurement

Electron temperature can be measured in the range of 1-300 K @ 100 MHz

Electronic Thermal Conductance Near the Neutrality

Lorentz Number as Function of Temperature and Density

Relativistic Hydrodynamics Analysis

Electrical and Thermal Conductance

Effect of Disorder

Lucas et al, PRB (2016).

$$\begin{split} \partial_{\mu} T^{\mu\nu} &= e \; F^{\mu\nu} J_{\nu} \; \text{ and } \; \partial_{\mu} J^{\mu} = 0 \\ T^{ti} &= (\epsilon + P) \; \nu^{i} \\ T^{ij} &= P \; \delta^{ij} - \eta \; (\partial^{i} \nu^{j} + \partial^{j} \nu^{i}) - (\zeta - \eta) \; \delta^{ij} \; \partial_{k} \nu^{k} \\ J^{i} &= n \nu^{i} - \sigma_{o} [\partial_{i} (\mu - \mu_{o}) - (\mu/T) \; \partial_{i} T] \end{split}$$

Yunseok Seo¹, Geunho Song¹, Philip Kim^{2,3}, Subir Sachdev^{2,4} and Sang-Jin Sin¹

$$\sigma = W_0 + Z_0 + \frac{Q^2}{k^2 r_0^2}, \ \kappa = \frac{(4\pi r_0^2)^2 T}{r_0^2 k^2 + (Q^2 + Q_n^2)/2Z_0}$$

Charged current: $J=J_e+J_h$

Neutral current: $J_n = J_e - J_h$

Corresponding conservative quantities by continuity equation: Q, Q_n

-200 0 200 400

-400

Magento-Thermal Transport Measurement

Ikushima et al (2007)

Crossno et al., unpublished

Magneto Thermal Transport in Corbino Device

Magneto-Exciton Condensation in quantum Hall Graphene Double Layers

Zeyu Hao **Xiaomeng Liu**

Jia Li.

Cory Dean.

Jim Hone

T. Taniguchi, K. Watanabe

Bert Halperin

Quantum Hall Drag of Exciton Condensate in Graphene X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, P. Kim Nature Physics 13, 746–750 (2017)

Interlayer fractional quantum Hall effect in a coupled graphene double-layer X. Liu, Z. Hao, K. Watanabe, T. Taniguchi, B. Halperin, P. Kim Nature Physics 15, 893–897 (2019)

Crossover between Strongly-coupled and Weakly-coupled Exciton Superfluids X. Liu1, J.I.A Li, K. Watanabe, T. Taniguchi, J. Hone, B. I. Halperin, C.R. Dean, and P. Kim in preparation

Superconductor and Superfluid

Superconductor: magnetic levitation

Superfluid ⁴He: fountain effect

Exciton/e-h Phase Diagram

Schematic Meta Stable Phase Diagram of electron-hole in 3D

Excitons in semiconducting quantum wells

Direct and indirect excitons in semiconducting quantum wells

Spontaneous coherence in cold interlayer exciton gas formed in GaAs quantum wells

A. High, Nature 2012

Excitons in 2D Materials

 $E_{exciton} = E_g - E_B$ $E_B = Exciton binding energy$ $E_g = Energy gap$

Exciton is a bound electron-hole pair.

A. Chernikov *et al. Phys. Rev. Lett.* **113**, 076802 (2014).

Exciton is strongly bound in 2D

Atomically Thin vdW p-n junction

L. Jauregui et. al, unpublished (Collaboration with H. Park and M. Lukin groups)

Toward Interlayer Exciton Condensation

L. Jauregui et. al, unpublished (Collaboration with H. Park and M. Lukin groups)

Exciton condensation between Landau levels

Review: J. P. Eisenstein, Annu. Rev. Condens. Matter Phys. 5, 159 (2014).

Exciton condensation between Landau levels

J. P. Eisenstein, Annu. Rev. Condens. Matter Phys. 5, 159 (2014).

 $|\Psi\rangle = \prod_{l} \frac{1}{\sqrt{2}} (c^{\dagger}_{k,T} + e^{i\phi} c^{\dagger}_{k,B}) |0\rangle$

Two partially filled Landau levels

Total Landau level quantum Hall effect

- Quantum Hall effect for two partially filled complementary LLs
- Quantized drag Hall

M. Kellogg, et. al, PRL (2002)

Exciton Current and Quantized Drag

Dissipationless counter flow current flow:

$$R_{xx}^{CF} = \frac{V_{xx}}{I_{CF}} = 0$$

No net force on exciton:

$$R_{xy}^{CF} = \frac{V_{xy}}{I_{CF}} = 0$$

GaAs 2DEG: Princeton & MPI (2004)

Double Graphene Layer Drag Device

- Mobility ~ 10⁶ cm²/Vsec
- hBN thickness *d* =3 nm
- top and bottom gate
- contact gate
- interlayer bias

Xiaomeng Liu et al, Nature Physics (2017); Similarly J. Li et al. Nature Physics (2017)

Quantized Hall Drag for $v_{tot} = 1$ and 3

Exciton BEC Energy Scale and Counter Flow

Counter-Flow Resistance of v_{tot} = -1

Xiaomeng Liu *et al*, unpublished (collaboration with Dean group)

Exciton/e-h Phase Diagram

Schematic Meta Stable Phase Diagram of electron-hole in 3D

Activation Gap at the BEC Limit

BKT Transition at the BCS Limit

BCS-BEC Crossover in Magnetoexciton Condensate

Magneto Exciton Insulator: v_{tot} = 0

Xiaomeng Liu et al, unpublished: collaboration with Dean group

Topological Insulating Exciton Condensation

Exciton condensation between LL (topological exciton insulator)

B >> 0

$$R_{xx}^{CF} = 0 \qquad R_{xx}^{sym} = 0$$

$$R_{xy}^{CF} = 0 \qquad R_{xy}^{sym} = \frac{h}{\nu_{tot}e^2}$$

Exciton condensation (exciton insulator)

Anyon Pairing Across vdW Gap

Ferromagnetic Superconductivity in Twisted Double Bilayer Graphene

All and a second

Xiaomeng Liu

В

Zeyu Hao

Ashvin Vishwanath

Jong Yeon Lee Eslam khalaf

T. Taniguchi, K. Watanabe

Spin-polarized Correlated Insulator and Superconductor in Twisted Double Bilayer Graphene X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim arXiv:1903.08130, *submitted*

Graphene

Dirac Fermions Quantum Hall Effect Klein Tunneling Fractional Quantum Effect Fractal Quantum Hall Effect

Hydrodynamics

000

Superconductivity ? Magnetism ?

since 2004

Twisted Graphene Bilayer: Magic Angle

Moire Structure in Twisted Graphene on Graphene

Localized electron wave function at AA sites

Bistritzer & MacDonald, PNAS (2011)

S. Fang, E. Kaxiras. PRB 93, 235153 (2016)

Superconductivity of Magic Angle TBG

Followed by:

Yankowitz et. al., *Science* 363 (2018): pressure tunable superconductivity Chen et. al. *Nature (2019)*: trilayer graphene/hBN Lu et. al. *Nature (2019)*: superconductivity and orbital magnet in magic angle graphene

• • •

Ferromagnetic Superconductors

Superconductivity on the border of itinerant-electron ferromagnetism in UGe₂

S. S. Saxena*†‡, P. Agarwal*, K. Ahilan*, F. M. Grosche*‡, R. K. W. Haselwimmer*, M. J. Steiner*, E. Pugh*, I. R. Walker*, S. R. Julian*, P. Monthoux*, G. G. Lonzarich*, A. Huxley§, I. Sheikin§, D. Braithwaite§ & J. Flouquet§

* Department of Physics, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK † Materials Science Centre, University of Groningen, Nigenborgh 4, 9747AG, The Netherlands § Département de Recherche Fondamentale sur la Matière condensée - SPSMS, CEA Grenoble, 17 Av. des Martyrs, Grenoble 38054, France

NATURE VOL 406 10 AUGUST 2000

Followed by URhGe (Aoki et al., 2001) UCoGe (Huy et al., 2007)

Ferromagnetic Superconductors: H_c versus T

Rh or Co

URhGe, UCoGe

UGe₂

 H_c exceeds the Pauli limit (~ 1.85 T_c [T/K])

From review by Aoki and Flouquet, JPSJ 83, 061011 (2014)

Equal-Spin p-wave Pairing: Superfluid ³He A phase

Mott Insulator

U : Coulomb interaction

Mott Insulator

N. Mott (1949)

Mott Insulator and Magnetism

The Mott insulators can further be correlated, considering the exchange interaction of localized electrons.

Anti-Ferromagnetic Mott Insulators are more common, as tightly localized electrons/holes prefer for anti-ferromagnetic spin coupling with neighbors.

However, ferromagnetic Mott Insulators are also possible for more extended Wannier orbitals.

Examples: YTiO₃, Lu₂V₂O₇, Ba₂NaOsO₆ ...

Correlated Quantum State in Twisted Graphene Bilayer

Spin unpolarized Mott Insulators (?)

Y. Cao et al. Nature (2018) x 2

Twisted Double Bilayer Graphene

Twisted Double Bilayer Graphene: Tunability

Mott Insulators in tDBG: $\theta = 1.33^{\circ}$

Ferromagnetic Mott Insulators in tDBG $\theta = 1.33^{\circ}$

- n_s/4 & 3n_s/4 gaps appear at finite B_{//}
- *n_s*/2 states become stronger

Superconductivity in tDBG

Parallel Magnetic Field Dependent SC

Superconducting state is enhanced by low magnetic field!

Equal-Spin p-wave Pairing: Superfluid ³He A phase

Ferromagnetic Superconductivity in tDBG

Cooper Pair: Spin triplet & Valley singlet

$$T_c(B) = T_c + aB - bB^2$$
$$a = 2\mu_B T_c \chi \frac{N'(\epsilon_F)}{N(\epsilon_F)} \ln \frac{\Lambda}{T_c}, \quad b = \frac{\mu_B^2}{T_c} \int_{\mathrm{FS}} \sum_{\sigma=\pm} \frac{d\mathbf{k}}{\kappa} |\phi_{\mathbf{k}}|^2 (\hat{\mathbf{e}}_B \cdot \mathbf{g}_{\sigma,\mathbf{k}})^2$$

J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, A. Vishwanath, Nature Comm. 10, 5333 (2019).

Superconducting Twisted bilayer WSe₂

10⁻⁸

50

0

I (nA)

-600

-50

-50

-300

-200

-100

0

I (nA)

100

200

300

Superconducting Or Not Superconducting?

Atomic Registry in Domains and Boundaries

MoS_2/MoS_2

~ 0 degree

Circular AA domains where 6 domains (3 AB domains and 3 BA domains) meet each other

<u>~ 180 degree</u>

Triangular AB' and BA' domains where 3 domains (AA') meet each other.

Twisting Engineering of Moire Superlattice

Graphene/graphene 0.1-0.2deg

Summary and Outlook

- Spin polarized Mott gap state is realized in half-filled tDBL bands tuned by *D*.
- Quarter filled tDBT band can develop a spin polarized gap.
- Superconductivity appears near the half field states in 1.26 degree rotated tDBL.
- Superconductivity appeared in tDBL samples can be tuned by *D* and *n*.
- Tc enhanced with small in-plane magnetic fields.

Going Forward:

- What is the optimal Tc in tDBT?
- Will spin-polarized SC in tDBL exhibit topological superconductivity?