Unusual quasiparticle correlation in stacked atomic layers

Philip Kim
Physics \& Applied Physics, Harvard University
'Real' Particles and 'Quasi' Particles
R. Mattuck, "A guide to Feynman diagrams in the many-body problem"

Landau Theory of Fermi Liquid

L. D. Landau (1957).

Fermi liquid: Weakly interacting quasiparticles

Non-Fermi liquid: Luttinger liquid (1D),
Strongly correlated system near the quantum criticality,

Assembling van der Waals Materials

- Semiconducting materials: WSe_{2}, $\mathrm{iviOSe}_{2}, \mathrm{IvIO}_{2}, \mathrm{VvO}_{2}, \mathrm{br} \ldots$
- Complex-metallic compounds : $\mathrm{TaSe}_{2}, \mathrm{TaS}_{2}, \ldots$
- Magnetic materials: $\mathrm{Fe}-\mathrm{TaS}_{2}, \mathrm{CrSiTe}_{3}, \mathrm{Crl}_{3} \ldots$
- Superconducting: $\mathrm{NbSe}_{2}, \mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8-\chi}, \ldots$
- Topological Insulator/Wyle SM: $\mathrm{Bi}_{2} \mathrm{Se}_{3}, \mathrm{MoTe}_{2}$

Atomic Layer-by-Layer Stacking Up of VdW Materials

A

L. Wang et al, Science (2013)

- Creation of multilayer systems with co-lamination techniques
- Encapsulated graphene in hBN
- Completely ballistic at low temperature

Xu et.al., Nature Nano (2015) (Hone group collaboration)

vdW Heterostructure Devices

Coulomb Drag in Graphene

WSe2/MoSe2 Optoelectric Device

Van der Waal Heterostructures

Planned

Outline

- Electron and hole interaction near the Dirac point: Dirac Fluid in graphene
- Electron and hole correlation across the vdW interface: Long lived interlayer excitons
- Electron and hole correlation across the Landau levels: Magnetoexciton condensation in Quantum Hall bilayer
- Feromagnetic Superconductors in Flat bands:

Twisted Double Bilayers

- Electron and hole correlation by superconducting proximitized quantum Hall edge: Crossed Andreev reflection

Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene

Jess Crossno

Kin Chung Fong
J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A. Ohki, K. C. Fong Science 351, 1058-1061 (2016).

Jing K. Shi

Ke Wang Achim Harzheim

Thomas Ohki

Andrew Lucas

Subir Sachdev

T. Taniguchi, K. Watanabe

Jonah Waissman Artem Talanov

Zhonging Yan

Sang-Jin Sin

Matt Forster

Dirac Point in Graphene

Band structure of graphene (Wallace 1947)

Physics at Dirac Point

- Symmetry protected degeneracy
- Charge Neutral
- Strong electro-electron interaction

Zט• Quantum Criticality

Effective
Fine Structure Constant

Effective Dirac Hamiltonian: $\quad H_{e f f}= \pm \hbar v_{F} \vec{\sigma} \cdot \vec{k}_{\perp}$

Hydrodynamic Transport in Dirac Point in Graphene

Condition of hydrodynamic description:

$$
\boldsymbol{\tau}_{e e} \ll \boldsymbol{\tau}_{i m p}
$$

Sheehy and Schmalian, PRL 99, 226803 (2007)
Fritz, Schmalian, Muller, and Sachdev, PRB (2008).
Mueller, Fritz, and Sachdev, PRB (2008).
Foster and Aleiner, PRL (2009).
Mueller, Schmalian, Fritz, PRL (2009)

Dirac Fluid at the CNP of graphene

Disorder and Charge Puddles Near the Neutrality

Graphene sample

Potential Mapping by Scanning Single Electron Transistor

Stacking graphene on hBN

Potential Fluctuation Measured by STM

Dean et al. Nature Nano (2009) Hone, Kim and Shepard groups collaboration

- Co-lamination techniques
- Submicron size precision
- Atomically smooth interface

Density fluctuation: $\delta n<10^{10} / \mathrm{cm}^{2}$ can be attainable

Graphene
SiO_{2}

LT Mobility : $\sim 1,000,000 \mathrm{~cm}^{2} V^{-1} \mathrm{~s}^{-1}$ RT Mobility : $\sim 100,000 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$

Non-Degenerate Electron Gas at Dirac Point

hBN encapsulated single layer graphene

Thermal broadening

Disorder broadening

Wiedemann Franz Law in Fermi Liquid

Thermal conductivity versus electrical conductivity

$$
\frac{\kappa}{\sigma T}=\frac{\pi^{2}}{3}\left(\frac{k_{B}}{e}\right)^{2}=L_{0}: \text { Sommerfeld value }
$$

Relaxation of charge current and heat current

$$
\begin{aligned}
& j=-e n_{e}<v_{e}> \\
& j_{Q}=u_{e} n_{e}<v_{e}>
\end{aligned}
$$

Works well for graphene in the degenerate limit...

NANO

Wiedemann-Franz Relation and Thermal-Transistor Effect in Suspended Graphene
S. Yigen and A. R. Champagne*

Department of Plysics, Concordia University, Montréal, Québec, H4B IR6 Canada

PHYSICAL REVIEW X 3, 041008 (2013)

Measurement of the Electronic Thermal Conductance Channels and Heat Capacity of Graphene at Low Temperature

Kin Chung Fong, ${ }^{1}$ Emma E. Wollman, ${ }^{1}$ Harish Ravi, ${ }^{1}$ Wei Chen, ${ }^{2}$ Aashish A. Clerk, ${ }^{2}$

Wiedenmann Franz in Non Fermi Liquid

ARTICLE

NATURE COMMUNICATIONS | 2:396 | DOI: 10.1038/ncomms1406
Received 25 Feb 2011 | Accepted 20 Jun 2011 | Published 19 Jul 2011
DOI: 10.1038/ncomms 1406
Gross violation of the Wiedemann-Franz law in a quasi-one-dimensional conductor

Nicholas Wakeham¹, Alimamy F. Bangura ${ }^{1,2}$, Xiaofeng Xu' ${ }^{1,3}$, Jean-Francois Mercure ${ }^{1}$, Martha Greenblatt ${ }^{4}$ \& Nigel E. Hussey ${ }^{1}$

REPORT

SOLID-STATE PHYSICS

Anomalously low electronic thermal conductivity in metallic vanadium dioxide

Sangwook Lee, ${ }^{1,2 *}$ Kedar Hippalgaonkar, ${ }^{3,4 *}$ Fan Yang, ${ }^{3,5 *}$ Jiawang Hong, ${ }^{6,7 *}$ Changhyun Ko, ${ }^{1}$ Joonki Suh, ${ }^{1}$ Kai Liu, ${ }^{1,8}$ Kevin Wang, ${ }^{1}$ Jeffrey J. Urban, ${ }^{5}$ Xiang Zhang, ${ }^{3,8,9}$ Chris Dames, ${ }^{3,8}$ Sean A. Hartnoll, ${ }^{10}$
Olivier Delaire, ${ }^{7, \mathbf{1 1}}+$ Junqiao $\mathbf{W u}{ }^{1, \mathbf{s}}+$

Charge and Heat Transport at Dirac Point

For a Dirac fluid at chemical potential $\mu=0$;

Density: $n_{e}=n_{h}$
Energy density: $u_{e}=u_{h}$
Drift velocity: $\quad\left|<v_{e}>\left|=\left|<v_{h}>\right|\right.\right.$
Charge current: $\quad j=e n_{h}<v_{h}>+(-e) n_{e}<v_{e}>\quad$ Heat current: $j_{Q}=u_{h} n_{h}<v_{h}>+u_{e} n_{e}<v_{e}>$

Electric Transport

$$
\begin{gathered}
j \neq 0 \\
j_{Q}=0
\end{gathered}
$$

Thermal Transport

$$
\begin{gathered}
j=0 \\
j_{Q} \neq 0
\end{gathered}
$$

$e-h$ interaction provides no friction to heat current!

Near the charge neutrality,

$$
\frac{\kappa}{\sigma T}>\frac{\pi^{2}}{3}\left(\frac{k_{B}}{e}\right)^{2}=L_{0}
$$

Johnson Noise Thermometry for Thermal Conductivity Measurement

J. Crossno et al., APL (2015)
(a) LC matching

$$
\sqrt{4 k_{b} T \Delta f R}=V_{R M S}
$$

Electron temperature can be measured in the range of 1-300 K @ 100 MHz

Joule heating by DC bias through bias T

$$
\begin{aligned}
& \text { Johnson Noise } \\
& \text { Temperature }
\end{aligned} T_{J N}=\frac{\int \dot{q}(x, y) * T(x, y) d A}{\int \dot{q}(x, y) d A}
$$

Electronic Thermal Conductance Near the Neutrality

Lorentz Number as Function of Temperature and Density

Experimentally obtained Lorentz value:

$$
L=\frac{\kappa}{\sigma T} \approx \frac{G_{t h} R}{12 T}
$$

Sommerfeld value:

$$
L_{0}=\frac{\pi^{2}}{3}\left(\frac{k_{B}}{e}\right)^{2}
$$

Relativistic Hydrodynamics Analysis

Muller et al, PRB (2008) \& Foster et al., PRB (2009)
Lorentz number for Dirac fluid

$$
L=\frac{1}{\left(\left(n / n_{0}\right)^{2}+1\right)} L_{c}
$$

$\eta / s \sim 10>1 / 4 \pi$ (Kovtun-Son-Starinets li

$$
\begin{aligned}
& L_{c}=\frac{v_{r}}{\sigma_{\operatorname{mon}} T^{2}} \frac{\mathcal{H}_{d}}{} \\
& n_{0}^{2}=\frac{\sigma_{\min }}{e^{2} v_{F}\left(\frac{\mathcal{H}}{\left(\mathcal{H}_{e}\right)}\right.}
\end{aligned}
$$

\mathcal{H} : Fluid enthalpy density
$\ell_{e l}:$ elastic mean free path

Electrical and Thermal Conductance

Effect of Disorder

$$
\begin{gathered}
\partial_{\mu} \mathrm{T}^{\mu v}=\mathrm{e} \mathrm{~F}^{\mu v} \mathrm{~J}_{v} \text { and } \quad \partial_{\mu} J^{\mu}=0 \\
\mathrm{~T}^{\mathrm{ti}}=(\varepsilon+\mathrm{P}) v^{\mathrm{i}} \\
\mathrm{~T}^{\mathrm{ij}}=\mathrm{P} \delta^{\mathrm{ij}}-\eta\left(\partial^{\mathrm{i} v^{j}}+\partial^{\left.\mathrm{i} v^{\mathrm{i}}\right)-(\zeta-\eta) \delta^{\mathrm{ij}} \partial_{\mathrm{k}^{k}} v^{\mathrm{k}}}\right. \\
\mathrm{J}^{\mathrm{i}}=\mathrm{n} v^{\mathrm{i}}-\sigma_{\mathrm{Q}}\left[\partial_{\mathrm{i}}\left(\mu-\mu_{0}\right)-(\mu / \mathrm{T}) \partial_{\mathrm{i}} \mathrm{~T}\right]
\end{gathered}
$$

$$
F_{\mathrm{ext}}^{t i}=-F_{\mathrm{ext}}^{i t}=\partial_{i} \mu_{0}
$$

Disorder affect charge current more than energy current

Slow Imbalance
Foster and Aleiner PRB (2012);

$$
\begin{aligned}
& e^{-} \leftrightarrow e^{-}+e^{-}+h^{+}, \\
& h^{+} \leftrightarrow h^{+}+h^{+}+e^{-} .
\end{aligned}
$$

Kinematical constraint of the Dirac cone make the electron and hole current are nearly conserved separately.

Holography of the Dirac Fluid in Graphene with two currents Yunseok Seo ${ }^{1}$, Geunho Song ${ }^{1}$, Philip Kim ${ }^{2,3}$, Subir Sachdev ${ }^{2,4}$ and Sang-Jin Sin ${ }^{1}$

PRL (2017)
$\sigma=W_{0}+Z_{0}+\frac{Q^{2}}{k^{2} r_{0}^{2}}, \kappa=\frac{\left(4 \pi r_{0}^{2}\right)^{2} T}{r_{0}^{2} k^{2}+\left(Q^{2}+Q_{n}^{2}\right) / 2 Z_{0}}$

Charged current: $J=J_{e}+J_{h}$

Neutral current: $J_{n}=J_{e}-J_{h}$

Corresponding conservative quantities by continuity equation: Q, Q_{n}

Magento-Thermal Transport Measurement

Magneto Thermal Transport in Corbino Device

Corbino without bridge contact

Corbino with bridge contact

Moses, $T=50 K, n=-4 e 11 \mathrm{~cm}^{-2}$
Normalized
Magneto-Resistance

$$
\Delta R=\frac{R(B)}{R(0)}-1=A_{e l} \cdot B^{2}
$$

Electrical

Thermal

Magneto-Exciton Condensation in quantum Hall Graphene Double Layers

Bert Halperin

Quantum Hall Drag of Exciton Condensate in Graphene X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, P. Kim Nature Physics 13, 746-750 (2017)

Interlayer fractional quantum Hall effect in a coupled graphene double-layer X. Liu, Z. Hao, K. Watanabe, T. Taniguchi, B. Halperin, P. Kim Nature Physics 15, 893-897 (2019)

Crossover between Strongly-coupled and Weakly-coupled Exciton Superfluids
X. Liu1, J.I.A Li, K. Watanabe, T. Taniguchi, J. Hone, B. I. Halperin, C.R. Dean, and P. Kim in preparation

Superconductor and Superfluid

Superconductor: magnetic levitation

Cooper pair

Exciton/e-h Phase Diagram

Schematic Meta Stable Phase Diagram of electron-hole in 3D

Excitons in semiconducting quantum wells

Direct and indirect excitons in semiconducting quantum wells

Semiconductor heterostructure

a Direct exciton b

Spontaneous coherence in cold interlayer exciton gas formed in GaAs quantum wells

Excitons in 2D Materials

A. Chernikov et al. Phys. Rev. Lett. 113, 076802 (2014).

Atomically Thin vdW p-n junction

Band gaps and alignment of vdW semiconductors

Appl. Phys. Lett. 102, 012111 (2013)

L. Jauregui et. al, unpublished (Collaboration with H. Park and M. Lukin groups)

Toward Interlayer Exciton Condensation

Laser power dependent PL

Blue shift due to the excitonexciton interaction
$\delta E=n_{e h} e^{2} d / \varepsilon$
Estimated exciton density: $n_{\mathrm{IE}} \sim 10^{11} \mathrm{~cm}^{-2}$

Fogler, M. M.; et al. Nat. Commun. 5, 4555 (2014).

Exciton condensation between Landau levels

Review: J. P. Eisenstein, Annu. Rev. Condens. Matter Phys. 5, 159 (2014).

Two partially filled Landau levels

Exciton condensation between Landau levels

J. P. Eisenstein, Annu. Rev. Condens. Matter Phys. 5, 159 (2014).

Two partially filled Landau levels

$$
|\Psi\rangle=\prod_{k} \frac{1}{\sqrt{2}}\left(c_{k, T}^{\dagger}+e^{i \phi} c_{k, B}^{\dagger}\right)|0\rangle
$$

Total Landau level quantum Hall effect

GaAs Double Quantum Well

- Quantum Hall effect for two partially filled complementary LLs
- Quantized drag Hall

Exciton Current and Quantized Drag

Counter Flow Current

Dissipationless counter flow current flow: $\quad R_{x x}^{C F}=\frac{V_{x x}}{I_{C F}}=0$

No net force on exciton:

$$
R_{x y}^{C F}=\frac{V_{x y}}{I_{C F}}=0
$$

GaAs 2DEG: Princeton \& MPI (2004)

Double Graphene Layer Drag Device

- Mobility ~ $10^{6} \mathrm{~cm}^{2} /$ Vsec
- hBN thickness $d=3 \mathrm{~nm}$
- top and bottom gate
- contact gate
- interlayer bias

Quantized Hall Drag for $v_{\text {tot }}=1$ and 3

Partial coherent exciton current:
Partially filled $N_{\text {top }}=1$
Partially filled $N_{\text {bot }}=3$

Coherent exciton current:
Partially filled $N_{\text {top }}=1$
Partially filled $N_{\text {bot }}=1$

Exciton BEC Energy Scale and Counter Flow

X. Liu et al, J. Li et al, Nature Physics (2017)

Superfluidic Counter flow

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right] \times\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]} \\
& V_{\text {top }}^{C F}=R_{\text {top }} I-R_{\text {drag }} I \\
& V_{\text {bot }}^{C F}=R_{\text {drag }} I-R_{\text {bot }} I
\end{aligned}
$$

$\Delta \sim 8 \mathrm{~K}$.

Counter-Flow Resistance of $v_{\text {tot }}=-1$

Xiaomeng Liu et al, unpublished (collaboration with Dean group)

Temperature Dependence

BEC

BCS

Exciton/e-h Phase Diagram

Schematic Meta Stable Phase Diagram of electron-hole in 3D

T. Ogawa and K. Asano (2008)

Activation Gap at the BEC Limit

BKT Transition at the BCS Limit

BCS-BEC Crossover in Magnetoexciton Condensate

Ground States

- $d \ll l_{B}$: Halperin (111) state

$$
\begin{array}{r}
|\Psi\rangle=\prod\left(z_{i}-z_{j}\right)\left(w_{i}-w_{j}\right)\left(z_{i}-w_{j}\right) \times \\
e^{-\frac{1}{4}\left(\sum\left|z_{i}\right|^{2}+\sum\left|w_{i}\right|^{2}\right)}
\end{array}
$$

- $d \gg l_{B}$
: weakly coupled composite fermions
$\left.|\Psi\rangle=P_{L L L} \prod\left(z_{i}-z_{j}\right)^{2}\left(w_{i}-w_{j}\right)^{2} \Psi_{(} k_{F, T}, k_{F, B}\right)$
- $d \sim l_{B}$: many proposals
N. E. Bonesteel, et al., PRL 77, 3009 (1996)
J. Alicea, et al., PRL 103, 256403 (2009).
G. Moller, et al., PRB 79, 125106 (2009)
I. Sodemann, et al., PRB 95, 085135 (2017)

Topological defects:

vorticity and fractionalized charges

Bound vortex/anti-vortex

Magneto Exciton Insulator: $v_{\text {tot }}=0$

Monlayer/hBN/Monolayer

Exciton insulator!

Topological Insulating Exciton Condensation

Exciton condensation between LL (topological exciton insulator)

$$
B \gg 0
$$

$$
\begin{array}{ll}
R_{x x}^{C F}=0 & R_{x x}^{s y m}=0 \\
R_{x y}^{C F}=0 & R_{x y}^{s y m}=\frac{h}{\nu_{t o t} e^{2}}
\end{array}
$$

Exciton condensation (exciton insulator)

Counter Flow Symmetric Flow

$$
R_{C F}=0 \quad R_{\text {sym }}=\infty
$$

Anyon Pairing Across vdW Gap

Interlayer composite fermion pairing

Anyonic quasiparticles pairings with fractionalized charges
$\underset{f}{\text { Semiquantization of drag Hall }}$

Ferromagnetic Superconductivity in Twisted Double Bilayer Graphene

Xiaomeng Liu

Zeyu Hao

Ashvin Vishwanath

Jong Yeon Lee

Eslam khalaf

T. Taniguchi, K. Watanabe

Spin-polarized Correlated Insulator and Superconductor in Twisted Double Bilayer Graphene X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim arXiv:1903.08130, submitted

Graphene

Dirac Fermions

Quantum Hall Effect

 Klein TunnelingFractional Quantum Effect

Fractal Quantum Hall Effect

Hydrodynamics

Superconductivity?
Magnetism ?
since 2004

Twisted Graphene Bilayer: Magic Angle

Moire Structure in Twisted Graphene on Graphene

Special 'magic' angle

Localized electron wave function at AA sites

Bistritzer \& MacDonald, PNAS (2011)
S. Fang, E. Kaxiras. PRB 93, 235153 (2016)

Superconductivity of Magic Angle TBG

Followed by:
Yankowitz et. al., Science 363 (2018): pressure tunable superconductivity Chen et. al. Nature (2019): trilayer graphene/hBN
Lu et. al. Nature (2019): superconductivity and orbital magnet in magic angle graphene

Ferromagnetic Superconductors

Superconductivity on the border of itinerant-electron ferromagnetism in $\mathrm{UGe}_{\mathbf{2}}$

S. S. Saxena ${ }^{\not \dagger \ddagger, ~ P . ~ A g a r w a l ~}{ }^{\star}$, K. Ahilan ${ }^{\star}$, F. M. Grosche ${ }^{\star} \ddagger$, R. K. W. Haselwimmer ${ }^{\star}$, M. J. Steiner ${ }^{\star}$, E. Pugh ${ }^{\star}$, I. R. Walker ${ }^{\star}$, S. R. Julian ${ }^{\star}$, P. Monthoux*, G. G. Lonzarich*, A. Huxley§, I. Sheikin§, D. Braithwaite§ \& J. Flouquet§

Department of Physics, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, UK
\dagger Materials Science Centre, University of Groningen, Nigenborgh 4, 9747AG, The Netherlands
§Département de Recherche Fondamentale sur la Matière condensée - SPSMS, CEA Grenoble, 17 Av. des Martyrs, Grenoble 38054, France

NATURE|VOL 406| 10 AUGUST 2000|

Followed by URhGe (Aoki et al., 2001) UCoGe (Huy et al., 2007)

Ferromagnetic Superconductors: H_{c} versus T

Equal-Spin p-wave Pairing: Superfluid ${ }^{3} \mathrm{He}$ A phase

A-phase Superfluid ${ }^{3} \mathrm{He}$

$\Psi_{\text {pair }}(\mathbf{r})=$

p-wave pairing

Superfluid ${ }^{3} \mathrm{He}$ in High Magnetic Fields: The Phase Diagram

Mott Insulator

Mott Insulator

Mott Insulator and Magnetism

The Mott insulators can further be correlated, considering the exchange interaction of localized electrons.

Anti-Ferromagnetic Mott Insulators are more common, as tightly localized electrons/holes prefer for anti-ferromagnetic spin coupling with neighbors.

However, ferromagnetic Mott Insulators are also possible for more extended Wannier orbitals.

$$
\text { Examples: } \mathrm{YTiO}_{3}, \mathrm{Lu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}, \mathrm{Ba}_{2} \mathrm{NaOsO}_{6} \ldots
$$

Correlated Quantum State in Twisted Graphene Bilayer

Spin unpolarized Mott Insulators (?)

Y. Cao et al. Nature (2018) x 2

Twisted Double Bilayer Graphene

Twisted Double Bilayer Graphene: Tunability

Tight binding with effective Wannier orbits

Band Gaps

Isolated Conduction band width

Mott Insulators in tDBG: $\theta=1.33^{\circ}$

Top and bottom Gate dependent 4-terminal ρ
Temperature dependent 2-p conductance

Ferromagnetic Mott Insulators in tDBG $\theta=1.33^{\circ}$

- $n_{s} / 4$ \& $3 n_{s} / 4$ gaps appear at finite $B_{/ /}$
- $n_{s} / 2$ states become stronger

- Gap increases with $B_{/ /}$
- $g \approx 2$

Superconductivity in tDBG

Parallel Magnetic Field Dependent SC

Superconducting state is enhanced by low magnetic field!

Equal-Spin p-wave Pairing: Superfluid ${ }^{3} \mathrm{He}$ A phase

A-phase Superfluid ${ }^{3} \mathrm{He}$

$\Psi_{\text {pair }}(\mathbf{r})=$

p-wave pairing

Superfluid ${ }^{3} \mathrm{He}$ in High Magnetic Fields: The Phase Diagram

Ferromagnetic Superconductivity in tDBG

Spin-polarized SC State

Cooper Pair: Spin triplet \& Valley singlet

$$
\begin{aligned}
& T_{c}(B)=T_{c}+a B-b B^{2} \\
& \quad a=2 \mu_{B} T_{c} \chi \frac{N^{\prime}\left(\epsilon_{F}\right)}{N\left(\epsilon_{F}\right)} \ln \frac{\Lambda}{T_{c}}, \quad b=\frac{\mu_{B}^{2}}{T_{c}} \int_{\mathrm{FS}} \sum_{\sigma= \pm} \frac{d \boldsymbol{k}}{\kappa}\left|\phi_{\boldsymbol{k}}\right|^{2}\left(\hat{e}_{\boldsymbol{B}} \cdot \boldsymbol{g}_{\sigma, \boldsymbol{k}}\right)^{2}
\end{aligned}
$$

J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, A. Vishwanath, Nature Comm. 10, 5333 (2019).

Superconducting Twisted bilayer WSe_{2}

~ 8 K
Superconducting-like state $\mathrm{T}_{\mathrm{c}} \sim 0.3=3 \mathrm{~K}$ has been realized in a wide angle range!

Superconducting Or Not Superconducting?

Atomic Registry in Domains and Boundaries

$\mathrm{MoS}_{2} / \mathrm{MoS}_{2}$

~ 0 degree

Circular AA domains where 6 domains (3 AB domains and 3 BA domains) meet each other

~ 180 degree

Triangular AB' and BA^{\prime} domains where 3 domains ($A A^{\prime}$) meet each other.

Yoo et al., (Collaboration with Muller group at Cornell)

Twisting Engineering of Moire Superlattice

Graphene/graphene 0.1-0.2deg

Summary and Outlook

- Spin polarized Mott gap state is realized in half-filled tDBL bands tuned by D.
- Quarter filled tDBT band can develop a spin polarized gap.
- Superconductivity appears near the half field states in 1.26 degree rotated tDBL.
- Superconductivity appeared in tDBL samples can be tuned by D and n.
- Tc enhanced with small in-plane magnetic fields.

Going Forward:

- What is the optimal Tc in tDBT?
- Will spin-polarized SC in tDBL exhibit topological superconductivity?

