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Introduction

We are going to discuss the application of the Green’s function
Monte Carlo (GFMC) Method for lattice Fermions.

The GFMC method has been successfully applied to lattice
bosons [Trivedi and Ceperley, 1989,
Trivedi and Ceperley, 1990, Carlson, 1989, Runge, 1992]. The
application is straightforward as it does not suffer from the
fermion minus-sign problem.

The GFMC method has been extended to the study of lattice
fermions for the case of the few holes in the t-J model
[Boninsegni and Manousakis, 1992,
Boninsegni and Manousakis, 1993] and for a finite density of
fermions [Hellberg and Manousakis, 1997,
Hellberg and Manousakis, 2000].
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Projection

We project a trial wave function |Ψ〉 onto the ground state by
generating a series of increasingly accurate approximants

|m〉 = (H −W )m|Ψ〉.
H is the Hamiltonian and W is an appropriate constant.

Expanding |Ψ〉 in the basis of the exact eigenstates |Φn〉
|Ψ〉 = a0|Φ0〉+ a1|Φ1〉+ · · · an = 〈Φn|Ψ〉

where the an’s are expansion coefficients.
With En the corresponding exact eigenenergies, we obtain

|m〉 = a0(E0 −W )m|Φ0〉+ a1(E1 −W )m|Φ1〉+ · · ·

∝
{
|Φ0〉+

a1

a0

(
E1 −W
E0 −W

)m
|Φ1〉+ · · ·

}
For large m |m〉 → |Φ0〉 provided that

|En>0 −W | < |E0 −W |
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Projection (Continued)

The inequality

|En>0 −W | < |E0 −W |
is easy to satisfy for lattice Hamiltonians which are bounded

from below and above, by choosing W to be at least as large
as the largest eigenvalue of H. Continuum problems require a
different form for the projection operator. In what follows, we
assume the offset constant W is incorporated in the
Hamiltonian.
The rate of convergence with m

|m〉 ∝
{
|Φ0〉+

a1

a0

(
E1 −W
E0 −W

)m
|Φ1〉+ · · ·

}
is governed by the overlap a0 of the trial state with the

ground state and the energy of the lowest excited state
overlapping the trial state. We will describe the steps taken to
insure fast convergence.
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Projection(Continued)

To calculate ground state expectation values of an arbitrary
operator A, we take the large m limit of

〈Φ0|A|Φ0〉
〈Φ0|Φ0〉

= lim
m→∞

〈m|A|m〉
〈m|m〉

.

For large values of m, we cannot evaluate Hm directly. The
number of position-space states generated diverges
exponentially with the power m, so we calculate Hm by a
stochastic method similar to Neumann-Ulam matrix inversion.
We decompose H into a product of a transition probability
pαβ to make a transition from state α to state β and a
residual weight wαβ as

Hαβ = pαβwαβ

where ∑
β

pαβ = 1, pαβ ≥ 0. (1)
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Projection (Continued)

To evaluate

〈α0|Hm|αm〉 =
∑

α1,...,αm−1

〈α0|H|α1〉〈α1|H|α2〉...〈αm−1|H|αm〉

stochastically, we average over m-step random walks
α0 → α1 → · · · → αm−1 → αm, where each αi is a position space
state, giving each walk the accumulated weight

W (α0, α1, ..., αm) = wα0α1wα1α2 · · ·wαm−1αm .

The probability of the walk α0 → α1, · · · → αm is

P (α0, α1, ..., αm) = pα0α1pα1α2 · · · pαm−1αm . (2)

Thus, it follows that

〈α0|Hm|αm〉 =
∑

α1,...,αm−1

W (α0, α1, ..., αm) (3)

for a large number of walks guided by the probability (2).
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Importance sampling

The Monte Carlo sum (3) is evaluated most efficiently using
importance sampling. We cannot use the trial state as a guiding
function for the random walk: the guiding function must be
positive for all allowed states. We let,

pαβ =
1
zα

ΨG
β

ΨG
α

Hαβ (4)

where ΨG is our guiding function and

zα =
∑
β

ΨG
β

ΨG
α

Hαβ. (5)

Defined in this way, (4) satisfies (1), and the residual weight is

wαβ = zα
ΨG
α

ΨG
β

, (6)

and the accumulated weight for the m-step walk given by Eq. (2).
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Importance sampling (Continued)

For an antisymmetric trial wave function ΨT , the standard
algorithm to evaluate

〈ΨT |Hm|ΨT 〉 =
∑
αβ

ΨT∗
α 〈α|Hm|β〉ΨT

β , (7)

where ΨT∗
α = 〈ΨT |α〉, is to generate a set of M initial states {αi}

with probabilities proportional to Qαi ∝ |ΨT
αi
|2 using Metropolis

sampling as in Variational Monte Carlo. At each initial state |αi〉,
we start an m-step random walk, ending in the state |βi〉. For
large M ,

〈ΨT |Hm|ΨT 〉 → 1
M

M∑
i=1

ΨT∗
αi
W (αi, ..., βi)ΨT

βi

Qαi

. (8)
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An efficient approach

The standard algorithm is inefficient since a random walk in
configuration space of length m must be generated for each
term in the sum (8). The details of the intermediate states
are thrown away.
The expectation value 〈Ψ|Hm|Ψ〉 can be evaluated more
efficiently if the generation of the initial states {αi} is
combined with the generation of the random walks.
After a large number of random walk steps new states are
distributed with probability

Qα ∝ zα[ΨG
α ]2 (9)

which is derived by solving the “detailed balance” condition

Qαpαβ = Qβpβα, (10)

where pαβ is the probability to make a transition from
configuration α to β, and Qα is the probability to visit a state
|α〉.
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An efficient approach (Continued)

Thus we may use states generated in the m-step random walk
as initial states for new m-step random walks. For maximum
efficiency, we use every state generated as the starting point
for a new walk, so at each step we calculate different stages of
m-walks simultaneously. We simply generate one very long
random walk using the probability (4).

Keep walking
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An efficient approach (Continued)

At each step in the walk, we look m steps into the past to
evaluate an element of (8). The computer time needed to
calculate a given number of observations of 〈Hm〉 is
independent of m. An additional advantage is that since only
one long random walk is generated, we may calculate all
different powers m in parallel. The fundamental observation
becomes

〈ΨT |Hm|ΨT 〉 =
1
M

M∑
i=1

ΨT∗
αi−m

W (αi−m, ..., αi)ΨT
αi

zαi−m |ΨG
αi−m
|2

. (11)
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An efficient approach (Continued)

The method is easily generalized to evaluate the expectation
value Am ≡ 〈Ψ|HmAHm|Ψ〉 for any diagonal operator A,
such as the density or spin structure factors, ninj and Szi S

z
j .

At each stage in the walk, we look m steps into the past to
obtain the expectation value of 〈A〉 and 2m steps into the
past to calculate the accumulated weight. By summing M
observations from a walk, we find

Am =
1
M

M∑
i=1

ΨT∗
αk
W (αk, ..., αi)ΨT

αi

zαk
|ΨG

αk
|2

〈αj |A|αj〉. (12)

where j = i−m and k = i− 2m.
The speed of convergence of the procedure with power m is
determined by the ratio R = |E1 −W |/|E0 −W | < 1. Since
this gap is caused by the finite size of the system, we generally
calculated powers of the Hamiltonian up to several times the
linear system size.
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Trial wave functions

For high efficiency, care is needed to choose a trial state with
maximal overlap with the true ground state. We restrict
ourselves to total spin singlet states with zero momentum and
try to write a very arbitrary form yielding a good initial guess
throughout the phase diagram.

We use a Jastrow resonating-valence-bond wave function for
the trial-state, written as

ΨT =
∏

i<j,σ,σ′

f(ri,σ − rj,σ′)|RVB〉 (13)

=
∏

i<j,σ,σ′

f(ri,σ − rj,σ′)PN
∏
k

(uk + vkc
†
k↑c
†
−k↓)|0〉,

where c†kσ is the usual Fermion creation operator and PN
projects the state onto the subspace with the number of
particles fixed to be N .
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Trial wave functions (Continued)

It is important that the Jastrow factor f correlate all pairs of
particles independent of spin, yielding a correlated state that
is still a total spin singlet. If we allow different Jastrow factors
for like and unlike spins, the resultant state would be a
superposition of many spin states and in general would
overlap excited states with non-zero spin closer in energy to
the ground state than the lowest spin zero excited state,
resulting in slower projection than a singlet trial state with
higher variational energy.
The ratio ak ≡ vk/uk is the physical quantity, and, assuming
ak = a−k, we define a(r) as its Fourier transform, then:

|RVB〉 =

 ∑
ri↑,rj↓

a(ri↑ − rj↓)c†ri↑
c†rj↓

N/2

|0〉 (14)

a(r) =
∑
k

ak cos(k · r). (15)
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Trial wave functions (Continued)

Therefore, |RV B〉 can be written as the N
2 ×

N
2 determinant

|D| =

∣∣∣∣∣∣∣∣∣∣
a(r1↑ − r1↓) a(r1↑ − r2↓) · · · a(r1↑ − rN

2
↓)

a(r2↑ − r1↓) a(r2↑ − r2↓) · · · a(r2↑ − rN
2
↓)

...
...

. . .
...

a(rN
2
↑ − r1↓) a(rN

2
↑ − r2↓) · · · a(rN

2
↑ − rN

2
↓)

∣∣∣∣∣∣∣∣∣∣
(16)

in position space.
In this form, |RVB〉 spans a broad class of Fermion wave functions.
A Fermi liquid state corresponds to

ak =
{

1 k ∈ Fermi sea
0 otherwise

(17)

while by allowing other choices for ak, the wave function can
describe a pairing state, which may be s-wave, d-wave, or
something more general.
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Guiding function

We are tempted to use the magnitude of the trial state as our
guiding wave function but this would be a serious mistake. By
construction, the sites of a periodic lattice lie at high symmetry
points, and the nodes of a Fermion wave function also respect
these symmetries. One finds 〈ΨT

α |α〉 = 0 for a significant fraction
of states in the Hilbert space not violating the Pauli exclusion
principle.
We choose as guiding function one that reduces the functuations
in |ΨT |/|ΨG|. We define

ΨG ≡ max
{
|ΨT |, cΨB

}
, (18)

where ΨB is a positive function, typically a good variational state
of the bosonic Hamiltonian. We take ΨB to be a spin-dependent
Jastrow function. This is similar to a choice used in continuum
problems, but on a discrete lattice, it is not necessary to match the
first derivatives as in the continuum.
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Guiding function (Continued)

We rescale c so the effective number of configurations contributing
to the norm is approximately N ≈ 1/L for an L× L system.
This guiding function is shown schematically below:
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Guiding function (Continued)

For the guiding function, we use the Jastrow-pairing function

ΨB =
∏
i<j

f(ri↑ − rj↑)
∏
i<j

f(ri↓ − rj↓)
∏
i,j

g(ri↑ − rj↓) (19)

of Bose spin 1
2 particles (i.e., two kinds of bosons, up bosons and

down bosons). We have chosen this function to mimic the physics
of the Fermion state as closely as possible without having nodes.
Since it is not important to guide with a spin singlet function, we
use a more arbitrary spin-dependent Jastrow factor where like spin
particles are correlated differently than opposite spin particles.
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Walking through the nodes

To evaluate the determinant in the guiding function we used the so
called “inverse update” first applied to condensed matter systems
by Ceperley, Chester and Kalos. One calculates the determinant
and the inverve of the matrix (16) together at the start of each
run, an operation taking O(N3) steps for a N ×N determinant.
Then with each single particle move in the random walk, we update
the determinant in O(N) steps and the inverse in O(N2) steps.
Starting with the matrix D and its inverse I, suppose we change
row l of the matrix to Dlj → rj . Since the inverse is the transpose
of the matrix of cofactors normalized by the determinant,

Iij = cofji(D)/|D|, (20)

the ratio of the determinant of D before and after the change is

q ≡ |D
′|

|D|
=
∑
j

rjIjl. (21)
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Walking through the nodes (Continued)

The new inverse matrix is given by

I ′ij = Iij

(
1 +

1
q
δlj

)
− 1
q
Iil
∑
k

rkIkj , (22)

and one can easily confirm
∑

j D
′
ijI
′
jk = δik. Changing one

column of the matrix results in a similar update for the inverse.
The algorithm is straightforward, and has been used in many
GFMC studies in the continuum and in Variational Monte
Carlo on a lattice. However, it cannot be used directly with
GFMC on a lattice since the random walk steps directly on
nodes for a significant fraction of steps. When the matrix
becomes singular, its inverse is undefined.
One way around this problem is to recalculate the determinant
and inverse after walking through a node. However, a large
fraction of steps (we find as many as 1 out of 3) will land on
nodes, and the running time will scale as O(N3).
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Walking through the nodes-Detour Walk

Detour Walk. We developed a new O(N2) technique to hop over
nodes without recalculation of the determinant or inverse.

The essence of the method is this:
When the random walk generated by
the guiding function hits a state or
series of states where the
determinant of the trial function
vanishes, we generate a “detour”
walk around the region where the
matrix is singular, rejoining the
guiding walk when the determinant
is non-zero again.

Node

Detour

The real random walk goes though the node, the detour walk is a
fictitious one which is used only to calculate the determinant and
its inverse. It serves only as a calculational tool for the inverse
update.



Introduction Projection Importance sampling An efficient approach Trial wave functions Guiding function Walking through the nodes Fitting projection output Test of convergence Conclusions Appendix

Walking through the nodes (Continued)

Since we often land on a node, where ΨT
α = 0, and the inverse of

the matrix (16) is not defined, it is difficult to calculate the
probabilities pαβ (Eqs. 4 and 5) for the random walk we defined
earlier. When we are on a node where ΨT

α = 0 and we need to
choose the next step of the walk from the various possible β states
we need to calculate zα using Eq. (5). Since we are on the node to
calculate each ΨT

β we need to make a detour walk which in itself

takes N2 steps. Thus, the calculation of zα is an O(N3) process,
whereas when ΨT

α 6= 0 it is an O(N2) process. Remember that the
calculation of the determinant without the inverse update, is an
O(N3) problem.
We make the following adjustments so that each step is an O(N2)
process.
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Walking through the nodes (Continued)

We define

pαβ =
1
zα
fαβHαβ zα =

∑
β

fαβHαβ (23)

where if ΨT
α 6= 0

fαβ =
{

ΨG
β /Ψ

G
α if ΨT

β 6= 0
c2ΨB

αΨB
β /|ΨG

α |2 if ΨT
β = 0

(24)

and if ΨT
α = 0,

fαβ =
ΨB
β

ΨB
α

(25)

It is easy to show that detailed balance is obeyed by these
definitions. The advantage of using these probabilities is that if
ΨT
α = 0, then calculating ΨT

β for all β with Hαβ 6= 0 is not
required. Since we don’t have the inverse matrix of the
determinant in ΨT

α , such a calculation would be expensive.



Introduction Projection Importance sampling An efficient approach Trial wave functions Guiding function Walking through the nodes Fitting projection output Test of convergence Conclusions Appendix

1 Introduction

2 Projection

3 Importance sampling

4 An efficient approach

5 Trial wave functions

6 Guiding function

7 Walking through the nodes

8 Fitting projection output

9 Test of convergence

10 Conclusions

11 Appendix



Introduction Projection Importance sampling An efficient approach Trial wave functions Guiding function Walking through the nodes Fitting projection output Test of convergence Conclusions Appendix

Fitting projection output

The Green’s Function Monte Carlo procedure takes a trial state
and projects it onto the exact ground state. Its output consists of
the observables for the energy

E(n) = 〈Ψ|Hn|Ψ〉 (26)

where the trial state |Ψ〉 has been normalized. For any operator A
which does not commute with the Hamiltonian, using the present
Monte Carlo method we calculate

amn = 〈Ψ|HmAHn|Ψ〉 (27)

as functions of powers of the Hamiltonian m and n.
These values converge to their ground state values, except for a
normalization factor, for large powers n and m. However, their
statistical errors increase exponentially with increasing power due
to the Fermion sign problem.
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Fitting projection output (Continued)

To extract the most information on the ground state, we use the
calculated observable for all powers less than some maximum
power. The highly converged small powers provide much more
accurate ground state properties than the large powers.
Ground state energy. We define the spectral function c(E) with
respect to the trial state |Ψ〉 as

c(E) ≡ 1
π

lim
η→0+

Im〈Ψ| 1
Ĥ − E + iη

|Ψ〉 =
∑
i

|〈Ψ|Φi〉|2δ(E − Ei)

We expand the trial state in the exact eigenstates |Φi〉 of Ĥ as

|Ψ〉 =
∑
i=0

ai|Φi〉.

The poles of c(E) and of the exact spectral function are at the
same energy values for those eigenstates |Φi〉 which have non-zero
overlap with the trial state |Ψ〉.
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Fitting projection output (Continued)

In order to proceed we discretize the energy interval using a fine
mesh with ∆E, thus, the energy takes discrete values E∗m,
m = 1, 2, ...,M and the spectral function c∗(E) is written as

c∗(E) =
M∑
m=1

c∗mδ(E − E∗m) (28)

where c∗m ≥ 0 are non-negative real numbers. Thus, the spectral
function is thought of as a histogram, where in each fine slice of
the histogram the value of the integral of c(E) multiplied by any
function f(E) is simply c∗mf(E∗m). We have used a mesh interval
∆E smaller than the finite-size gap between the lowest and the
first excited state. Thus, the contribution of the ground state to c∗

is accurately represented as a single delta-function peak. Namely,
up to some m = m0, c∗m<m0

= 0, while c∗m0
> 0 and

c∗m0<m<m1
= 0 and c∗m1

> 0, etc.
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Fitting projection output (Continued)

The moments of the spectral function c∗(E) can be
calculated as:

〈Ψ|Hn|Ψ〉 =
M∑
m=1

c∗mE
∗n
m (29)

where n = 0, 1, ..., pmax. Since pmax < M , because typically
pmax = 40− 60 and M = 200− 500, we have more unknowns
(the c∗m’s) than equations. However, the solution needs to
satisfy the contraint c∗m ≥ 0 which limits the possible
solutions. The optimal way to find the most likely solution is
to minimize the χ2.

We gain very large computational savings by calculating all
powers of H in parallel. However, this results in statistical
correlations between results of different powers which must be
treated accordingly [Toussaint, 1989].



Introduction Projection Importance sampling An efficient approach Trial wave functions Guiding function Walking through the nodes Fitting projection output Test of convergence Conclusions Appendix

Fitting projection output (Continued)

We divide the measurements into M bins. The covariance matrix
is defined

Cij =
1

M − 1

(
1
M

M∑
k=1

(E(i)
k − Ē

(i))(E(j)
k − Ē

(j))

)
(30)

where E
(i)
k is the average of the i’th power in the k’th bin. For

uncorrelated output, C is diagonal. With correlations, χ2 is defined

χ2 =
∑
ij

(Ē(i) − E(i)∗)C−1
ij (Ē(j) − E(j)∗), (31)

where E(i)∗ is the fitting function given in terms of the
coefficients Cm (which are to be determined by this minimization)
by means of Eq. (29).
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Fitting projection output (Continued)

When C is diagonal, its inverse is trivial. For more general C,
small errors in its components can result in large errors in its
inverse, so it is important to calculate C accurately.

Increasing the number of bins decreases the statistical error in
C but increases the systematic error due to autocorrelations.
To balance these two sourses of error, we choose the number
of measurements in each bin to be n = Mpmax, where pmax is
the maximum power of the Hamiltonian [Toussaint, 1989].

We calculate statistical errors with the bootstrap method.
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Fitting projection output (Continued)
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The lowest value of E∗ where we have a delta function peak gives
the lowest eigenstate of H which is not orthogonal to the trial
state. The value of the peak gives the square of the ovelap of the
lowest energy state to the trial state.
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Fitting projection output (Continued)

For an arbitrary operator A, we have

〈Ψ|HnAHn|Ψ〉 =
∑
ij

(EiEj)P 〈Ψ|Φi〉〈Φi|A|Φj〉〈Φj |Ψ〉

=
∫
dEE2pa(E) (32)

where the operator overlap function a(E) is given by

a(E) =
∑
ij

δ(E +
√
EiEj)〈Ψ|Φi〉〈Φi|A|Φj〉〈Φj |Ψ〉. (33)

Following the approach for the energy spectral function, we can
define a discrete overlap function

a∗(E) =
M∑
i=0

δ(E − E∗i )a∗i . (34)
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Fitting projection output (Continued)

Here the values of E where the spectral function a∗(E) attains
peaks are all possible geometric means

√
EiEj of all the

eigenenergies which correspond to eigenstates which have non-zero
overlap with |Ψ〉 and they give non-zero matrix element of A. The
lowest energy peak corresponds to the geometric mean of the
ground state energy with itself, i.e E0 =

√
E0E0 thus, if the

ground state is not degenerate it is uniquely specified. Here we
also need to solve for all the a∗i given that they obey the following
pmax equations:

〈Ψ|A|Ψ〉 =
M∑
i=0

a∗i

〈Ψ|HAH|Ψ〉 =
M∑
i=0

(E∗i )2a∗i
.

.

.

〈Ψ|HpAHp|Ψ〉 =
M∑
i=0

(E∗i )2pa∗i . (35)

Again, as in the case of the energy spectral function, we have
more unknowns than equations. Therefore the coefficients a∗i are
determined by Fig. 42 gives a typical example for the spectral
function a∗(E) obtained for the spin-structure function
S(π/2, π/2) from the calculation of the two-dimensional the t− J
model. Notice that the energy of the lowest peak is the energy of
the lowest energy state having non-zero overlap with the trial state
and which has non-zero matrix elements with the operator A. For
the value of the peak, which is a∗i , the expectation value of A can
be calculated in a straightforward manner.
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Fitting projection output (Continued)
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In principle, we can also extract information about the excited
states along with the ground state. This possibility is indicated by
the fact that we can see higher energy peaks in these spectral
functions.
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Test of convergence

We have tested our method by comparing our results with exact
results for the 4× 4 size lattice with several electrons. In Fig. 44
we show the results for the energy as a function of the iteration for
the case of 10 electrons.
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Test of convergence (Continued)
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In Fig. 45 we compare our results for the spin-spin correlation
function with that obtained by exact diagonalization of the 4x4
size system with 10 electrons.
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Conclusions

We have developed an efficient Quantum Monte Carlo
method which resembles the GFMC method where without
eliminating the minus-sign the fluctuations are controlled with
the aid of appropriately constructed guiding functions up to a
certain high power of the Green’s function.
Starting from a good initial state allows us to achieve
convergence before the statistical errors become too large.
We developed a powerful technique which uses all the
calculated powers of the Hamiltonian to extrapolate to infinite
power.
This technique comes also with solutions to a number of other
technical problems such as:
a) enabling the guided random walk to walk through the
nodes with an O(N2) algorithm using the idea of “detour
walk”. This does not restrict our calculation within the fixed
node approximation.
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Conclusions (Cont’d)

b) instead of using multiple walkers the introduction of a
single walker whose walk is very long allows us to compute all
the desired powers of Hm m = 0, 1, ..., pmax in parallel by
looking back in the past pmax steps of the walk.
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Inverse update through nodes

To evaluate the determinant in the trial state, we use the usual
“Inverse Update” trick first applied to condensed matter systems
by Ceperley, Chester, and Kalos [Ceperley et al., 1977]. We
calculate the determinant and inverse of the matrix (16) together
at the start of each run, an operation taking O(N3) steps for a
N ×N determinant. Then with each single particle move in the
random walk, we update the determinant in O(N) steps and the
inverse in O(N2) steps.
Starting with the matrix D and its inverse I, suppose we change
row l of the matrix to Dlj → rj . Since the inverse is the transpose
of the matrix of cofactors normalized by the determinant,

Iij = cofji(D)/|D|, (36)

the ratio of the determinant of D before and after the change is

q ≡ |D
′|

|D|
=
∑
j

rjIjl. (37)

The new inverse matrix is given by

I ′ij = Iij

(
1 +

1
q
δlj

)
− 1
q
Iil
∑
k

rkIkj , (38)

and one can easily confirm
∑

j D
′
ijI
′
jk = δik. Changing one column

of the matrix results in a similar update for the inverse.
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Inverse update through nodes (Continued)

The algorithm is straight forward, and has been used in many
GFMC studies in the continuum and in Variational Monte Carlo on
a lattice. However, it cannot be used directly with GFMC on a
lattice since the random walk steps directly on nodes for a
significant fraction of steps. When the matrix becomes singular, its
inverse is undefined, and the algorithm breaks down.
One way around this problem is to recalculate the determinant and
inverse after walking through a node. However, in a reasonably
dense system, a large faction of steps will land on nodes, and the
running time will scale as O(N3).
We developed a new O(N2) technique to hop over nodes without
recalculation of the determinant or inverse. The essence of the
method is this: Let us suppose that the random walk visits a node;
namely, the particles were in a configuration
~R = (~r1↑, ~r2↑, ..., ~rN/2↑, ~r1↓, ~r2↓, ..., ~rN/2↓) and by moving a
particle, say the first up-spin particle from position ~r1↑ to ~r′1↑ the
determinant defined by Eq. (16) is zero for the new configuration
~R′ = (~r′1↑, ~r2↑, ..., ~rN/2↑, ~r1↓, ~r2↓, ..., ~rN/2↓). That is a problem for
the application of the inverse update. Because in order to move to
the next configuration, say where particle 2 is positioned at ~r′2↑ and
this corresponds to a new configuration
~R′′ = (~r′1↑, ~r

′
2↑, ..., ~rN/2↑, ~r1↓, ~r2↓, ..., ~rN↓), we need the inverse

matrix I = I(~R′) for the configuration ~R′ and this does not exist
because the determinant D(~R′) = 0. The non-existense of the
inverse is no problem for the physics because all we need for
computing the observables is the determinant not the inverse; the
inverse matrix is only a tool which saves us from having to
recalculate the full determinant and the inverse (and to update the
old determinant by means of the inverse matrix which we keep in
memory and we keep updating) after passing through the node.
However, in a reasonably dense system, a large faction of steps will
land on nodes, and the running time will scale as O(N3). We have
been able to use the inverse update technique by making a
“detour” around the node as follows. The real motion of the
random walk was ~R→ ~R′ → ~R′′ and because D(~R′) = 0 we
cannot update the inverse to find I(~R′) which we need in order to
calculate D(~R′′). However, all we need is D(~R′′) and I(~R′′)
independently of how the random walk got there. Let us consider
the configuration ~R′2 = (~r1↑, ~r′2↑, ..., ~rN/2↑, ~r1↓, ~r2↓, ..., ~rN↓), which

is obtained from ~R by imagining that we moved (without actually
doing it) particle 2 with spin-up to ~r′2↑ and let us assume that

D(~R′2) 6= 0. Since ~R′′ can be obtained from ~R′2 by moving particle
1 to ~r′1↑, D(~R′′) and I(~R′′) can be obtained by imagining that the

walk went through ~R′2 to get to ~R′′. Thus, in order to calculate
D(~R′′) and I(~R′′) we only need to calculate D(~R′2) and I(~R′2
which is regular.



Introduction Projection Importance sampling An efficient approach Trial wave functions Guiding function Walking through the nodes Fitting projection output Test of convergence Conclusions Appendix

Inverse update through nodes (Continued)

When the random walk generated by the guiding function hits a
state or series of states where the determinant of the trial function
vanishes, we generate a “detour” walk around the region where the
matrix is singular, rejoining the guiding walk when the determinant
is non-zero again.
To choose the detour walk, we simply delay any move causing the
determinant to vanish and place the particle number and its future
site at the beginning of a list of moves to make. For any
subsequent move of a particle of the same spin, we try to move the
first particle in the list to that site. If that move yields a non-zero
determinant, we accept it and attempt to move the next particle in
the list in the same manner. We repeat the process until either all
moves give zero determinant or the list is empty, in which case the
true determinant is not zero.
Obviously, the procedure will not produce a non-zero determinant
when the true determinant is zero. However, it is important to
prove that the detour rejoins the guiding walk at the first step with
non-zero determinant.
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Inverse update through nodes (Continued)

We represent the rows of the matrix (16) by
D = {|r1), |r2), . . . , |rn)} where |~ri) represents the row

|~ri) = (a(~ri↑ − ~r1↓), a(~ri↑ − ~r2↓), ..., a(~ri↑ − ~rN/2↓)) (39)

which is labeled by ~ri. Suppose moving the first up particle to a
new site, changing the first row label to r1 → s, yields a zero
determinant. Then

|s) = α2|r2) + α3|r3) + · · ·+ αn|rn) (40)

for some coefficients α2, α3, . . . , αn.
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Inverse update through nodes (Continued)

Let the next random walk step move the second particle, changing
row r2 → t. Simply by checking if the matrix
D′ = {|t), |r2), . . . , |rn)} has zero determinant, we can determine
if the true matrix D′′ = {|s), |t), |r3), . . . , |rn)} is singular. If
|D′| 6= 0, we accept the move, swap the particles, and try to move
the first particle again. If |D′| = 0,

|t) = β2|r2) + β3|r3) + · · ·+ βn|rn) (41)

for certain coefficients β2, β3, . . . , βn. Combining (40) and (41) to
eliminate r2, we see that |D′| = 0 implies |D′′| = 0. Thus by
simply checking single particle moves, we can verify that the
determinant of the matrix two steps away is zero. The argument is
easily generalized to any number of delayed moves.
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Inverse update through nodes (Continued)

For a Fermi liquid state, (16) may be expanded into the product of
two Slater determinants, and this algorithm suffices as it stands.
However with a pairing trial state, this decomposition is not
possible, we must consider moves of opposite spin electrons
causing the determinant to vanish.
Suppose we find moving either the first up particle, changing the
first row to D1j → rj , or the first down particle, changing the first
column to Di1 → ci, results in a zero determinant for matrix (16).
If I11 6= 0 we move the first row with the first element shifted by
1/I11, noting

|D′| =

∣∣∣∣∣∣∣∣∣
r1 + 1

I11
r2 · · · rn

D21 D22 · · · D2n
...

...
. . .

...
Dn1 Dn2 · · · Dnn

∣∣∣∣∣∣∣∣∣ = |D|. (42)

We then try to change the first column in the standard manner.
We have artificially changed the upper left element of the
determinant, but since this element will be changed again before
we finish the detour walk, the change will not affect the true
determinant.
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Inverse update through nodes (Continued)

If I11 = 0, this modified step is no longer possible, and we need to
prove that the true determinant,

|D′′| =

∣∣∣∣∣∣∣∣∣
x r2 · · · rn
c2 D22 · · · D2n
...

...
. . .

...
cn Dn2 · · · Dnn

∣∣∣∣∣∣∣∣∣ = 0, (43)

vanishes. Here x is the upper left element after both moves.
We know there exist coefficients α2, α3, . . . , αn such that
rj =

∑
i≥2 αidij for all j. Since the inverse is related to the matrix

of cofactors by (36), cof11(D) = 0, and there are other coefficients
β2, β3, . . . , βn such that 0 =

∑
i≥2 βidij for all j ≥ 2. If∑

i≥2 βici = 0, then |D′′| = 0 trivially. Otherwise let γi = αi + λβi
where

λ =

x−∑
i≥2

αici

/∑
i≥2

βici. (44)

Then x =
∑

i≥2 γici and rj =
∑

i≥2 γidij for all j ≥ 2, so
|D′′| = 0.
Again, this argument can be extended to any number of delayed
moves. By combining the two types of moves described in this
section, we are able to keep track of the true determinant without
recalculating the inverse from scratch.
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