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An arbitrary quantum channel  (CPTP map) is the most 
general possible operation on a quantum system. 
 
Therefore if quantum error correction is possible, it can 
be performed via a quantum channel. 
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∑  ‘recovery map’ 

 ‘error map’ 

In the first lecture we learned: 

Under what conditions is recovery possible? 



3 

Let the system (‘sys’) be N physical qubits. 
A logical qubit encoded in sys consists of 
two orthogonal ‘words’ in the Hilbert of sys 
 
 
 
 
Knill-Laflamme condition 
A recovery map for a set of errors  
exists if 
 
 
where        is a Hermitian matrix.   
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In learning the error, we learn nothing about the stored information. 
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Knill-Laflamme condition 
A recovery map for a set of errors  
exists if 
 
 
where        is a Hermitian matrix.   
 
“Proof:” 
 
 
Different error states              are orthogonal and hence 
identifiable by measurement of the projector (which 
does not tell us about the stored quantum information) 
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Given knowledge of which error occurred, 
there exists a unitary map from the error state 
back to the original state in the code space. 
 
Errors can be non-unitary (increase entropy) 
But Knill-Laflamme condition says we can 
correct them with a unitary, if the choice of 
unitary is conditioned on measurement result. 

†
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j j j
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Next up:  Quantum Error Correction Codes for 
Bosonic Modes (microwave photons) 
 
Photons are excitations of harmonic oscillators 
(e.g. one mode of a microwave resonator) 
 
We will use superpositions of photon Fock states 
(number states) as quantum code words. 
 
 
Example:  Binomial Code (aka ‘kitten code’) 
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Code states                                Error states 

M. Michael et al., PRX 6, 031006 (2016) 
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Quantum channel for damped oscillator:  

1 1
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0 0
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1 1
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t t E E E E
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ρ δ ρ ρ
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Sanity check: probability of 1 photon loss: { }†1 1 1 ˆTrp E t nE ρ κδ= 〈= 〉

Experimentally realistic error model: 
 
1. Amplitude damping of harmonic oscillator 
2. No intrinsic dephasing (frequency noise) 

1 photon loss 0 photon loss 
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Quantum channel for damped oscillator:  

1 1
† †

0 0

1
†
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ˆ

t t E E E E

t a
E t
E

nE

ρ δ ρ ρ
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Sanity check: probability of 1 photon loss: 
{ }†1 1 1 ˆTrp E t nE ρ κδ= 〈= 〉

0 photon 
loss 

1 photon 
loss 

What is       ?   Completeness says: 0E 10
†

10
†1EE E E= −

10
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1 1 ;
2

1 E t a a UE E IU κ
δ= − ≈ − = 0 ˆexp

2
E t nκ

δ−= ⎧ ⎫
⎨ ⎬
⎩ ⎭

Exact answer:                     

Guess: 

† † †1( ) ( ) ( ) [
2

]( ) ( )t t t t a t a a t t aa aρ δ ρ κδ ρ ρ ρ⎧ ⎫+ = + +⎨
⎩

− ⎬
⎭

Lindblad master 
equation 
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1
† †

0 10( ) (0) (0)t t E E E Eρ δ ρ ρ+ = + +…

0 photon 
loss 

1 photon 
loss 

Quantum trajectory interpretation: 
 
Toss a coin to randomly select 
 
 
 
or select 

†
0 0

0

(0)( ) E Et t
p
ρ

ρ δ+ = with probability  { }†0 0 0Tr (0)p E Eρ=

1
†
1

1

(0)( ) E Et t
p

ρ
ρ δ+ = with probability  { }1 1

†
1Tr (0)p E Eρ=

Each Monte Carlo run simulates an actual experimental 
history (and gives a pure state).  Ensemble averaging 
gives same result as master equation evolution—density 
matrix becomes impure. 

[Master Equation] 
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What if, instead of Monte Carlo data, we had real data? 

PMT Resonator 

‘click’ ‘no click’ 

†
0 0

c
0

(0)( ) E Et t
p
ρ

ρ δ+ = with probability  { }†0 0 0Tr (0)p E Eρ=

1
†

c
1

1

(0)( ) E Et
p

t ρ
ρ δ+ = with probability  { }1 1

†
1Tr (0)p E Eρ=‘click’ 

‘no click’ 

The measurement record tells us exactly the state of the 
environment.  Hence the resonator cannot be entangled with it.   
 
‘Conditional density matrix’                    must be in a pure state(!) c ( )t tρ δ+
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What if, instead of Monte Carlo data, we had real data? 

PMT Resonator 

‘click’ ‘no click’ 

†
0 0

c
0

(0)( ) E Et t
p
ρ

ρ δ+ = with probability  { }†0 0 0Tr (0)p E Eρ=

1
†

c
1

1

(0)( ) E Et
p

t ρ
ρ δ+ = with probability  { }1 1

†
1Tr (0)p E Eρ=‘click’ 

‘no click’ 

Conditional density matrix is pure:      c c c( )t tρ δ ψ ψ+ =

1
c † †

1 1

0 0

0 0 0 0E a

E a

E a

ψ ψ
ψ

ψ ψ ψ ψ
= =If detector clicks:  
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But what happens if the detector does not click? 
0 0

0

0 0

ˆ
2

c †
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;
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ψ ψ
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==

Example 1 (Fock state): 

Example 2: 00 0ˆ0.99 0 0.01 100 ; 1nψ ψ ψ= + =

c c cˆ99             99  nψ ψ ψ= = (!!!) 

c 0.99 0 + 0.01exp  100 100
2
tκ

ψ δ⎛ ⎞∝ −⎜ ⎟
⎝ ⎠

Click: 

No click: 

 〈𝜓↓c | 𝑛 | 𝜓↓c 〉<1.  State changes even though  no click!! 

00   (eigenstate of )

       (no click)

1   (click)

n E

n

n

ψ

ψ

ψ

=

=

= −
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But what happens if the detector does not click? 

Sir Arthur Conan Doyle:   Silver Blaze 
 
Scotland Yard Detective:  “Is there any other point to which you wish  
                                            to draw my attention? 
 
Sherlock Holmes: “To the curious incident of the dog during the night.” 
 
Detective: “The dog did nothing in the night-time.” 
 
Holmes: “That was the curious incident.” 

The quantum state changes even if the dog does not bark. 
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If we keep track of when the dog barks and doesn’t bark, 
the system state remains pure.  We will use this for QEC. 

One scheme involves some remarkable properties of 
coherent states and Schrödinger cat states.   
(Mazyar Mirrahimi) 
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Quick review of microwave resonators and photonic states 
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Coherent state is closest thing to a classical 
sinusoidal RF signal 

0( ) ( )ψ ψ αΦ = Φ−



17 

Experimental setup: superconducting qubit (artificial two-
level atom) in a superconducting microwave resonator 

† †e e | 2 e e |r qH aaa aω ω χ+ 〈 + 〈=

Microwave resonator 
microwave drive 
 

artificial atom with states g ,| e〉

resonator qubit dispersive coupling 



Microwaves are particles! 

3 124…	

2χ

Photon number distribution in a coherent state 
(measured via quantized light shift of qubit transition frequency) 

N.B. power broadened 
100X 

New low-noise way to do axion dark matter detection? 
 (arXiv:1607.02529)  

†e2 e aV aχ= 3,000 ( ,[ )]2 κ γχ :
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(normalization is only approximate) 

We will use Schrödinger cat states of cavity photons 
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0246810

Spectroscopy frequency (GHz) 

Coherent state: 

Mean photon number: 4 

Even parity cat state: 

Odd parity cat state: 

Only photon numbers: 0, 2, 4, … 

Only photon numbers: 1, 3, 5, … 

Parity of Cat States 

P = eiπa
†a = −1( )n → P = pn (−1)

n

n
∑

P̂ ψ ψ= +

P̂ ψ ψ= −

2ψ α= =

ψ α α= + −

ψ α α= − −

Photon number 

R
ea

do
ut
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l 

Schoelkopf Lab 
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Key enabling technology:  ability to make  
nearly ideal measurement of photon number parity 

(without measuring photon number!) 

†

0

ˆ ( 1) ( 1)a a n

n
nP n

∞

=

= −= − ∑

We learn whether n is even or odd without learning the value of n. 

Measurement is 99.8% QND.  
(Can be repeated hundreds of times.) 

 
If we can measure parity, we can perform complete 

state tomography (measure Wigner function) 

†e e ˆi t ai aVe e g e e Pgπ−− → = +Use dispersive 
coupling:  



0	

0	

4	

4	

-4	

-4	

Wigner Function of a Cat State 
Vlastakis, Kirchmair, et al., Science (2013) 

1
2

α α− +⎡ + ⎤⎣ ⎦
Rapid parity oscillations 
With small displacements 

Interference fringes prove cat is coherent  
(even for sizes > 100 photons) 
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(Yes...this is data.) 

“X ” 

“P ” 
vacuum noise 

even parity 
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Using Schrödinger cat states 
to store and correct 
quantum information 
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The magic of coherent states: 
 
Lose a photon and stay in 
same state! 
 
The damped oscillator does 
NOT entangle with the 
environment and stays in a 
pure state! 
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Hence, damping comes not from loss of photons but from 
the ‘no click’ events (when the dog does not bark)! 
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Driven damped oscillator: 

† † †1( ) [ , ( )] ( ) [ ( ) ( )
2

]d t i V t a t a a t a
t

a
d

atρ ρ κ ρ ρ ρ−⎧ ⎫= + +⎨ ⎬
⎩ ⎭

Lindblad master 
equation 

( )†V i a a∗ −= [Ú̂ Ú

† † †1( ) ( ) [ ( ) ( ])
2
2( ) | |,

d t b t b b t t b
d

b b
t
ρ κ ρ ρ ρ

ρ α α α
κ

⎧ ⎫= +⎨ ⎬
⎩ ⎭

∞ → 〉〈 ≡

−

Ú

Define:     2b a
κ

= −
Ú

Energy is being stochastically dumped into the bath, yet the 
dissipation stabilizes a pure state (coherent state)! 
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Can we extend this idea to use dissipation to 
autonomously stabilize a manifold of 2 states? 
 
Two-photon pumping: 2 †2 2V i a aλ ⎡ ⎤= −⎣ ⎦

Two-photon damping: †2 2
2 2E t a aκ δ ⎡ ⎤= −⎣ ⎦

† † †1( ) ( ) [ ( ) ( ) ]
2

bd t b t b b t t b
dt

bρ κ ρ ρ ρ⎧= +− ⎫
⎨ ⎬
⎩ ⎭

2 2( )b a α= −

{ }pan ,| |s α α〉+ − 〉Stable manifold: 
(can be used as a qubit) 

Bath engineering 
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Devoret group:     arXiv:1705.02401 
 
Stable manifold using two-photon pumping and 
two-photon damping   

{ }1even parity
2

| |α α〉 ++ − 〉

Expt’l Wigner functions of cat states 

{ }|
2
|1 iα α〉 ++ − 〉

{ }1odd parity  | |
2

α α〉 −+ − 〉

{ }|
2
|1 iα α〉 −+ − 〉Problem:  still suffers from 

occasional single-photon loss. 
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Recall that if we can keep track of the state of the bath 
the system state remains pure. 

PMT Resonator 

‘click’ ‘no click’ 

†
0 0

c
0

(0)( ) E Et t
p
ρ

ρ δ+ = with probability  { }†0 0 0Tr (0)p E Eρ=

1
†

c
1

1

(0)( ) E Et
p

t ρ
ρ δ+ = with probability  { }1 1

†
1Tr (0)p E Eρ=‘click’ 

‘no click’ 

The measurement record tells us exactly the state of the 
environment.  Hence the resonator cannot be entangled with it.   
 
‘Conditional density matrix’                    must be in a pure state(!) c ( )t tρ δ+
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Problem:  We don’t actually have a PMT for microwave 
photons sitting outside the cavity.  (Also some of the photons 
are lost internally.) 
 
Solution:  We are able to measure the photon number parity. 
 
We said before that photon loss leaves coherent state 
invariant, but actually there is an important phase: 
 
 
 
This is necessary to achieve: 

{ } { }1 1
2
| |

2
| |a α α α α

⎡ ⎤
+ − +〉 + 〉 = 〉 −⎢ ⎥

⎣
− 〉

⎦

even                            
odd 

,| | | |a aα α α α α α〉 = + 〉 〉 = −+ + − − 〉

code word                   error word 
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{ } { }1 1
2
| |

2
| |a α α α α

⎡ ⎤
+ − +〉 + 〉 = 〉 −⎢ ⎥

⎣
− 〉

⎦

even                            
odd 

code word                   error word 

We therefore need a second code word with even parity. 



31 

1 2W Wψ ψ ψ
↑ ↓

= +

Encode information in two (nearly) orthogonal 
 even-parity code “words” 

1W α α= + −

2W i iα α= + −

Store a qubit as a superposition 
of two cats of same parity 

+ = 

code word Wigner functions: 

Photon loss flips the parity which is the error syndrome 
we can measure (and repeat hundreds of times). 

1W
2W



( ) ( )1     r (if eal)a W a α α α α α= − −→+ −

Coherent states are eigenstates of photon destruction operator.   

After loss of 4 photons cycle repeats: 

( ) ( )2 2 21 1 1 2
4

1a W W W Wξ ξ ξ ξ→+ +

We can recover the state if we know:  
(via monitoring parity jumps)   Loss 4modN

( ) ( ) 1
2 2

1a W a Wα α α α= + − + − =→

( ) ( )2a W a i ii i iα α α α= + − − −→

( ) ( )2 2
2 2

2( )a W a i Wi ii iα α α α= + − = + − = −

a α α α=

Effect of photon loss on code words: 



We can recover the state if we know:  
(via monitoring parity jumps)   Loss 4modN

Amplitude damping is deterministic  
(independent of the number of parity jumps!) 

/2 /2( ) t te eW t κ κα α− −−±=

Maxwell Demon takes this into account ‘in software.’ 
(We don’t yet have 4-photon pumping/damping working.) 



Courtesy of Mitra Farmand 

QUANTUM ERROR CORRECTION 
Keeping your Cat Alive 
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2016: First true Error Correction Engine that works 

Analog 
Outputs 

Analog 
Inputs 

•  Commercial FPGA with custom software 
developed at Yale 

•  Single system performs all measurement, 
control, & feedback (latency ~200 
nanoseconds) 

•  ~15% of the latency is the time it takes signals 
to move at the speed of light from the quantum 
computer to the controller and back! 

A	prototype	quantum	
computer	being	prepared	

for	cooling	close	to		
absolute	zero.	

MAXWELL’S DEMON 



Implementing a Full QEC System: Debugger View 

(This is all real, raw data.)   Ofek, et al., Nature 536, 441–445 (2016). 36 



15 sτ µ≈

Process Fidelity: Uncorrected Transmon 
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290 sτ µ≈

15 sτ µ≈

System’s Best Component 
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0 1eg n nψ ψ ψ= = + =



290 sτ µ≈

130 sτ µ≈

15 sτ µ≈

2α =

Process Fidelity: Cats without QEC 
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+ =



290 sτ µ≈
320 sτ µ≈

130 sτ µ≈

15 sτ µ≈

2α =

Process Fidelity: Cats with QEC 

QEC – NO POST-SELECTION. 
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290 sτ µ≈
560 sτ µ≈

320 sτ µ≈

130 sτ µ≈

15 sτ µ≈

2α =

Only High-Confidence Trajectories 
Still keep 
 ~80% of 
data 

Exclude results with 
heralded errors 
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We are on the way! 

“Age	of	Coherence”	

“Age	of	Entanglement”	

“Age	of	Measurement”	

“Age	of	Quantum	Feedback”	

“Age	of	Qu.	Error	Correction.”	

M.	Devoret	and	RS,	Science	(2013)	

Achieved	goal	of	reaching	“break-even”	point	for	error	correction.	
Now	need	to	surpass	by	10x	or	more.	
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Experiment: 
 

‘Extending the lifetime of a quantum bit with  
error correction in superconducting circuits,’  

 
Ofek, et al., Nature 536, 441–445 (2016).  

  
 

Theory: 
 

‘cat codes’ 
Leghtas, Mirrahimi, et al., PRL 111, 120501(2013). 

 
‘kitten codes’ 

M. Michael et al., Phys. Rev. X 6, 031006 (2016). 
‘New class of error correction codes for a bosonic mode’ 
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Thanks for listening! 

QuantumInstitute.yale.edu 
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Extra slides 
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Storing information in quantum states sounds great…,  
 

but how on earth do you build a quantum computer? 



Hydrogen atom Superconducting  
circuit oscillator 

L C 

ATOM vs CIRCUIT 

(Not to scale!) 

1 electron 1210  el~ ectrons

710  mm− 0.1 - 1 mm

‘Artificial atom’ 
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200 nm 

AlOx tunnel barrier 

Aluminum/AlOx/Aluminum 

T = 0.01 K 

How to Build a Qubit with an Artificial Atom… 

Superconducting 
integrated circuits  
are a promising  
technology for 
scalable quantum  
computing 

Josephson junction: 
 
The “transistor of  
quantum computing” 
 
Provides anharmonic  
energy level structure 
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~1	mm	

Transmon Qubit 

Josephson 
tunnel 

junction 

Superconductivity gaps out single-particle excitations 

Quantized energy level spectrum is simpler than hydrogen 

Quality factor                 comparable to that of hydrogen 1s-2p  1Q Tω=

01 ~ 5 10GHzω −

E
ne

rg
y 

0 g=

1 e=
01ω
12ω

01 12ω ω≠

49 

Antenna pads  
are capacitor  

plates 

1210  mobile electrons

Enormous transition dipole moment 
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Michel 
Devoret 

Rob 
Schoelkopf  

The first electronic quantum processor (2009) 

Lithographically produced 
integrated circuit with 
semiconductors replaced 
by superconductors. 

DiCarlo et al., Nature 460, 240 (2009) 

Executed Deutsch-Josza and Grover search algorithms 
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Surface/Toric Code 
(readout wires not shown) 

Cat Code Photonic Qubit 
hardware shortcut 

(readout wire shown) 

Scale then correct Correct then scale 

•  Precision:  
o  Universal control 

(all possible gates) 
o  Measurement via  

single wire 
o  Easy process  

tomography 
o  Long-lived cavities 
o  Fault-tolerant QEC  

•  Reduced part count  
•  Flexible encoding 

•  Large, complex:  
o  Non-universal (Clifford 

gates only) 
o  Measurement via 

many wires 
o  Difficult process 

tomography 
•  Large part count  
•  Fixed encoding 
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All previous attempts to overcome the factor of N 
and reach the ‘break even’ point of QEC have failed. 

We need a simpler and better idea... 
 

‘Error correct and then scale up!’ 

With major technological advances a 49-transmon 
‘surface code’ might conceivably break even at 
                . 
[O’Brien et al. arXiv:1703.04136] 
2 40 sT µ=

However to date, good repeatable (QND) (weight 4) 
error syndrome measurements have not been 
demonstrated 
[Takita et al., Phys. Rev. Lett. 117, 210505 (2016)] 

‘Scale up and then error correct’ seems almost hopeless.  



“Hardware-Efficienct Bosonic Encoding” 

 

earlier ideas: Gottesman, Kitaev & Preskill, PRA 64, 012310 (2001) 
                      Chuang, Leung, Yamamoto, PRA 56, 1114 (1997) 

High-Q 
(memory) 

Ancilla  
Readout 

Leghtas, Mirrahimi, et al., PRL 111, 120501(2013). 

Replace ‘Logical’ qubit with this: 

N
  ‘

P
hy

si
ca

l’ 
qu

bi
ts

 

•  Cavity has longer lifetime (~ms) 
•  Large Hilbert space 
•  Single dominant error channel       

      photon loss:                 
•  Single readout channel 

n̂κΓ =

53 



Photonic Code States 
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Can we find novel (multi-photon) code words 
that can store quantum information even if 

some photons are lost? 

High-Q 
(memory) 

Ancilla  
qubit Readout Ancilla transmon coupled to 

resonator gives us universal 
control to make ‘any’ code 
word states we want. 


