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The need for approximations



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

Fermionic Many-Body Physics:
the exponential wall

General Hamiltonian:

H =
∑
α,β

Eαβψ†
αψβ +

∑
αβγδ

Iαβγδψ†
αψ†

βψγψδ + ...

Choose some basis α = 1...M

M = ∞ for condensed matter
M finite for chemistry

Interest: ground state and excitations
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Dimension of Hilbert space:  2M

H =
∑
α,β

Eαβψ†
αψβ +

∑
αβγδ

Iαβγδψ†
αψ†

βψγψδ + ...

Direct diagonalization: exponentially difficult.

Present limit-- M~30. 

 (and wont get much bigger)

Direct diagonalization  becomes 
impractical before size gets big enough,
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‘Optimized diagonalization’: 
density matrix renormalization group

1d (provably), d>1 (probably): 
polynomial time method for 
finding ground state (at least 
for gapped systems).

Some excited state properties 
in d=1 (but is comprehensive 
description of excitations not 
possible in polynomial time)

U. Schollwoeck, RMP77 259

F. Verstraete et al. Adv. 
Phys. 57,143 (2008) 
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‘Optimized diagonalization’: 
density matrix renormalization group

Method of choice for ground 
state properties of 1d  model 
system problems

Becoming important tool in 
quantum chemistry

d>1 remains a big challenge

??Excitations??

U. Schollwoeck, RMP77 259

F. Verstraete et al. Adv. 
Phys. 57,143 (2008) 
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Standard method for exploring exponentially 
large configuration space:

Stochastic (Monte-Carlo) integration

Definition of 
expectation value

Z=partition function

x=some configuration

w(x): ``weight”: contribution of 
x to partition function

<A >w=
1

Zw

∫
C

dx A(x)w(x)

Zw =
∫
C

dx w(x)
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Stochastic part:

To estimate

Select M points xi 
with probability 
p(xi)=w(xi)/Zw and 
compute

<A >w=
1

Zw

∫
C

dx A(x)w(x)

<A >MC=
1
M

M∑
i−1

A(xi)

for classical and unfrustrated boson 
problems: method of choice. 
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BUT still not enough for fermions
Sign problem: antisymmetry of fermion wave 
function means that different configurations come 
with different signs. w(x) not always positive

Solution:

Sample using ρ(x) = |w(x)| via

Zw =
∫
C

dx w(x) =
∫
C

dx sign(w(x))ρ(x)

≡Zρ < sign[w] >ρ
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so

<A >w=
1

Zw

∫
C

dx A(x)w(x)

=

∫
C dx A(x)sign(w(x))ρ(x)

Zρ < sign(w) >ρ

=
〈A sign(w)〉ρ
< sign(w) >ρ
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Problem: <sign> exponentially small 
(Assaad, 1991; Ceperly, 1996....)

=> <sign> is ratio of two 
partition functions

Zw: partition function of fermions
Zp: partition function of sign-free (``boson’’) particles 
with same Hamiltonian. 

No antisym.=>fewer nodes for boson  =>

Zρ = Exp [−βFbos]

Zw = Exp [−βFferm]

Fbos < Fferm

< sign[w] >ρ=
Zw

Zρ
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Thus

Free energy is extensive => <sign> 
vanishes exponentially as system size 
increases or temperature decreases

< sign[w] >ρ=
Zw

Zρ
= Exp

[
−

(
Fferm − Fbos

T

)]

Direct fermion QMC  becomes impractical 
before size gets big enough or T low enough
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Fermion calculations: exponential wall 
of computational complexity

Aim of dynamical mean field theory: 
Maximize the information obtainable 
before reaching the ‘exponential wall’.  
Side benefit: wall may be slightly 
‘farther away’

Straightforward approaches: reach ‘wall’ before 
reach interesting system sizes, temperatures
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Dynamical Mean Field Theory: 
indirect approach
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Dynamical Mean Field Theory

Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. 
Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

Thomas Maier, Mark Jarrell, Thomas Pruschke, and Matthias H. Hettler, 
Rev. Mod. Phys. 77, 1027 (2005)

K. Held, II. A. Nekrasov, G. Keller, V. Eyert, N. Bluemer, A. K. McMahan, 
R. T  Scalettar, T.h. Pruschke, V. I.  Anisimov, and D. Vollhardt, D.; Phys. 
Status Solidi 243, 2599-2631 (2006)

G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. 
A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

Review articles



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

Formalism: electron Green function

Define:

Define: electron Green function G(k, ω)

=
∫

dte−iωtT
〈
GS

∣∣∣{ψk(t), ψ†
k(0)

}∣∣∣GS
〉

Exact eigenstates |Ψm
N+1(k) >

of N+1 particle system
momentum k, energy Em

k

relative to N -particle ground state |GS >

ψ†
k creates electron in state

with wave function ∼ ei�k·�r
T is time ordering symbol
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Spectral representation

GR(k, ω) =
∫

dx

π

A(k, x)
ω − x − iδ

+
∑
m

< GS|ψ†
k|Ψm

N−1 >< Ψm
N−1|ψk|GS > δ(ω − Em

N−1)

=
∑
m

< GS|ψk|Ψm
N+1 >< Ψm

N+1|ψ†
k|GS > δ(ω − Em

N+1)

Spectral function 

Measures overlap of exact eigenstates with ‘single-
particle state created by ψ†

k

A(k, ω) = Im
[
GR(k, ω)

]
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Spectral representation II

Noninteracting system:      creates an exact eigenstate, 
say m=m1  

ψ†
k

Spectral function is a delta function

A(k, ω) = δ(ω − Ek)

ψ†
k|GS >= |Ψm

N+1(k) > δm,m1
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Spectral representation III

General interacting system: state created by           does 
not closely resemble any eigenstate; has overlap with all 

ψ†
k

Spectral function is a smooth function

<Ψm
N+1(k)|ψ†

k|GS >= f(m)
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Spectral representation IV

Fermi liquid: as k-> kF, the state created by           tends 
to have some overlap with one unique state, as well as 
with a continuum of others

ψ†
k

Spectral function tends to a delta function 
(quasiparticle peak) plus smooth (‘incoherent part’) 
background

Important concept: quasiparticle weight Zk

<Ψm
N+1(k)|ψ†

k|GS >= Zkδm,m1 + f(m)
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Angle-Resolved Photoemission
(ARPES) measures (occupied state part of) 

A (up to matrix element)

Fig. 3, Damascelli, Hussain and Shen RMP  75 473 (2003) 

Noninteracting Fermi liquid

Z: relative 
weight of 
near fermi 
surface peak

v*: peak 
dispersion 

Im Sigma: 
peak width
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Spectral representation V
Alternative mathematical formulation: self energy

Self energy               expresses difference between 
actual electron propagation and electron propagation 
in reference noninteracting system with dispersion 

G(k, ω) =
1

ω − εk − Σ(k, ω)

Σ(k, ω)

εk
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Spectral representation V
Self energy has real and imaginary parts. Spectral 
function

Real part expresses renormalization of dispersion, 
overlap with exact eigenstate.
Imaginary part expresses quasiparticle lifetime

A(k, ω) =
ImΣ(k, ω)

(ω − εk − ReΣ(k, ω))2 + ImΣ(k, ω)2
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Spectral representation VI

Fermi liquid: ImΣ(k, ω → 0) → 0

Z =
(

1 − ∂ReΣ(kF , ω)
∂ω

|ω→0

)−1

Expand spectral function near w=0,  fermi surface. Find

G(k, ω) =
Z

ω − v∗
k(|k| − kF)

With

v∗
F =

∂kεk + ∂kReΣ(k = kF, ω → 0)

1 − ∂ReΣ(kF,ω→0)
∂ω
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DMFT: indirect approach: express 
(some aspects of) solution of physical 

problem in terms of solution of auxiliary 
problem

Useful analogy: density functional theory
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Theorem (Hohenberg and Kohn):     functional     of electron 
density n(r):  minimized at physical density; value at 
minimum gives ground state energy.     

∃ Φ

Density Functional Theory

Φuniv depends only on electron
mass, interelectron interaction

Vion specifies material

Φ[{n(r)}] = Φuniv[{n(r)}] +
∫

(dr)Vion(r)n(r)

Difficulties with this formulation:

• dont know Φuniv

• cant do minimization



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

Key insight (Kohn-Sham)

*Re-express minimization in terms of solution of  
auxiliary problem: single-particle Schroedinger 
equation with potential VXC[{n(r)}] determined by 
density

*Recast problem of finding density functional as 
problem of approximating ‘exchange-correlation’ 
potential 

Result: broadly useful tool
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Dynamical Mean Field Theory
Many-body formalism: analogous to Hohenberg-Kohn 

H =
∑
α,β

Eαβψ†
αψβ +

∑
αβγδ

Iαβγδψ†
αψ†

βψγψδ + ...

G0: Green function of noninteracting reference problem 
(contains atomic positions)

F[{Σ}] = Funiv[{Σ}] − Trln[G−1
0 − Σ]

=>Luttinger-Ward functional

Funiv: determined (formally) from sum of
diagrams. Depends only on interactions Iαβγδ
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Example
Second order term
Hubbard model

1
2

ΦLW [{G}] defined as sum of all
vacuum to vacuum diagrams
(with symmetry factors)

δΦ
δG

= Σ

Funiv = ΦLW[{G}] − Tr [ΣG]



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

More formalities

δFuniv

δΣ
= G

Diagrammatic definition of Funiv =>

Thus stationarity condition
δF
δΣ

= 0 => G =
(
G−1

0 − Σ
)−1

F[{Σ}] = Funiv[{Σ}] − Trln[G−1
0 − Σ]

Difficulties with this formulation:
--dont know Funiv (exc. perturbatively)
--cant do extremization
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1992 Breakthrough
Kotliar and Georges found analogue of Kohn-Sham 
steps: useful approximation for F and way to carry 
out minimization via auxiliary problem

Key first step: infinite d limit 
Metzner and Vollhardt, PRL 62 324 (1987)  
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Analogy:

Density functional <=> ‘Luttinger Ward functional

Kohn-Sham equations <=> quantum impurity model

Particle density <=> electron Green function
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self energy is MxM matrix
[M(M+1)/2 indep fns of frequency]

[    ]Σ11 Σ12 Σ13

Σ21 Σ22

Σ33

Σ44
·· ·
·
·

· · ·
·

·
·
·

··
·

· · ·
· · ·· ·· ·
·

·
· ·
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Modern interpretation of Kotliar and 
Georges idea

Parametrize self energy  in terms of small  
number N of functions of frequency

Σαβ(ω) =
∑
ab

fαβ
ab Σab

DMFT(ω)

α = 1...M; a = 1...N << M

parametrization function f determines  ‘flavor’ of 
DMFT (DFT analogue: LDA, GGA, B3LYP, ....)

Also must truncate interaction
Iαβγδ “appropriately”
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Approximation to  self energy + 
truncated interactions imply 

approximation to Funiv

Approximated functional Fapproxuniv is functional 
of finite (small) number of  functions of 
frequency              , thus is the universal 
functional of some  0 (space) +1 (time) 
dimensional quantum field theory.  Derivative 
gives Green function of this model:

Σab(ω)

δFapprox
univ

δΣba(ω)
= Gab

QI(ω)
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Specifying the quantum impurity model

Need 

--Interactions. These are the ‘appropriate 
truncation’ of the interactions in the original model

--a noninteracting (‘bare’) Green function G0

Then can compute the Green function  and self energy

GQI =
(
G−1
0 − Σ

)−1
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Quantum impurity model is in 
principle nothing more than a 
machine for generating self 
energies (as Kohn-Sham 
eigenstates are artifice for 
generating electron density)

Useful to view auxiliary problem 
as ‘quantum impurity 
model’ (cluster of sites coupled to 
noninteracting bath) 

As with Kohn Sham eigenstates, it is 
tempting (and maybe reasonable) to 
ascribe physical signficance to it
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In Hamiltonian representation

Impurity 
Hamiltonian

Coupling to bath
+

∑
p,ab

(
Vp

abd†
acpb + H.c

)
. + Hbath[{c†pacpa}]

Important part of bath: ‘hybridization function’

Δab(z) =
∑
p

Vp
ac

(
1

z − εbath
p

)
Vp,†

cb

HQI =
∑
ab

d†
aE

ab
QIdb + Interactions

G−1
0 = ω − Eab

QI − Δab(ω)



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

Thus
F → Fapprox

univ [{Σab}] − Trln[G−1
0 −

∑
ab

fαβ
ab Σab]

and stationarity implies

δF
δΣba

= Gab
QI − Trαβfαβ

ab

[
G−1

0 −
∑
cd

fαβ
cd Σcd

]−1

= 0

(
G−1
0

)ab
= Σab +

⎛
⎝Trαβfαβ

ab

[
G−1

0 −
∑
cd

fαβ
cd Σcd

]−1
⎞
⎠

−1

ab

so G0 is fixed

or, using GQI =
(
G−1
0 − Σab

)−1
from ‘impurity solver”
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In practice

Guess hybridization function

Solve QI model; find self energy

Use extremum condition to update 
hybridization function

Continue until convergence is reached. 

This actually works
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Technical note

From your ‘impurity solver’ you need G at ‘all’ 
interesting frequencies. Solution ~uniformly 
accurate over whole relevant frequency range.

This is challenging
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advantages of method

*‘Moving part’ Trp [φa(p)Glattice(Σapprox)]

some sort of spatial average over electron spectral 
function--but still a function of frequency
*Computational task: solve quantum impurity 
model: not  necessarily easy, but do-able

=>releases many-body physics from twin tyrannies of
       --focus on coherent quasiparticles/expansion about 

well understood broken symmetry state
--emphasis on particle density and ground state 
properties
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In formal terms:

--Approximation to  full M x M self energy matrix in 
terms of N(N+1)/2 functions determined from 
solution of auxiliary problem specified by self-
consistency condition.

--Auxiliary problem: find (at all frequencies) Green 
functions of N-orbital quantum impurity model. 

Question (practical): for feasible N, can 
you get the physics information you want?

``Exponential wall’’ remains:
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Questions:

•What kinds of impurity models (?possible f?)

•What  can be solved
• Where is the exponential wall (how large can N 

be?)
• what kinds of interactions can be included
• other issues

•What else (besides electron self energy) can be 
calculated

•Quality of  approximation 

•What has been done?
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Technical challenge:  “impurity solver”

<=>find local (d-d) green functions of 

Two main methods:
--``exact’’ diagonalization
--(Continuous time) quantum Monte Carlo

HQI =
∑
ab

d†
aE

ab
QIdb + Interactions

+
∑
p,ab

(
Vp

abd†
acpb + H.c

)
. + Hbath[{c†pacpa}]

Both methods: exponential wall
New ideas needed
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Exact diagonalization

--represent continuous (or at least large) Hilbert 
space of bath states by small number of 
(variationally chosen) levels  with associated 
hybridization  hybridization parameters
--diagonalize problem exactly (Lanczos)
--virtues: can treat ‘arbitrary’ interactions. 
formulated directly in real frequency

Difficulty: M bath levels per impurity level => 
dimension 4(M+1)N

Present methods: (M+1)N<17 Minimizing M crucial
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determining the bath parameters:
more of an art than a science

Calculated quantities are a sum of poles

ImGED
0 (ω) =

∑
λ

g0
λδ(ω − ωλ)

G0(iωn) =
∫

dx
π

ImGED
0 (x)

iωn − x

Typically fit bath params by  minimizing 

∑
n

∣∣G0(iωn) − Glattice
0 (iωn)

∣∣2
|ωn|
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Minimization not always stable

Trying to fit a nonlinear function

Problems particularly severe when  G 
cannot be diagonalized at all frequencies

[
Δ̂(ω1), Δ̂(ω2)

]
�= 0

(Experience: best to fit diagonal components, then 
using this as guess, fit full matrix)
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How many bath states do you need.

Capone et al (PRB 76 254116 
(2007)): convergence with number of 
bath sites: M~8 or 9=> only model 
with N=1 practical

Koch et al  (arXiv:0804.3320): need 
approx 6 bath sites per edge site

Liebsch (arXiv:1109.0158) shows 
reasonable (at least qualitatively) 
results for N=4, M=2 or 3. 

Koch et al 1d Hubbard

Claim: need ~6/ edge site
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ED: Excitation spectrum discrete
but not totally sparse.

3 site DMFT, triangular lattice. 
4 bath sites per impurity

Care needed in interpreting spectra

Liebsch and Tong: 
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Open question

Quantum impurity models: interaction only a few 
sites=>  interesting sparsity structure

=>maybe method ``smarter’’ than Lanczos can reach 
larger systems. 

G. Chan/D. Zgid: ‘CI’ based 
solver N=4, 6 bath sites
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Workhorse of 1980s, 1990s (‘Hirsh-Fye’ QMC). 
difficulties: --only Hubbard (local density-density) 
interaction. Fixed time discretization.

Breakthrough: continuous-time quantum 
Monte Carlo (CT-QMC)

*Rubtsov 05 Interaction expansion(CT-INT)
*Werner/AJM 06 Hybridization expansion(CT-HYB)
*Gull/Parcollet08 Auxiliary field (CT-AUX))
*Rev Mod Phys  83 349 (2011).

Monte Carlo:
imaginary time
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Hirsch-Fye for Hubbard model

β0 τ

Fixed time discretization

τ4

At each τi and each site, discrete Hubbard-Stratonovich

Trotter decomposition: K̂ = e−ΔτĤ ≈ e−ΔτT̂e−ΔτUn↑n↓

Z =
∑
{si}

Exp [TrlnG({si})] Matrix: dimension β
Δτ × Nsites

Δτ ≤ U−1
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Notional scaling: 
Operations with matrices
cost:  ~cube of dimension

Issues:
--prefactor not small 
--extrapolation in        needed
(but see N. Bluemer thesis
http://komet337.physik.uni-mainz.de/
Bluemer/thesis.en.shtml)
--longer range interactions:
multiplicity of H-S fields, serious 
sign problem (Mikelsons)
--no good H-S for non-density 
ints

G(τ)

cost: ∼ (βUNsites)
3

Δτ

Sign problem 
for N>1
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• interaction representation with respect to Hb

• formal expansion in Hb

• sample series stochastically

Continuous time Monte Carlo:

H = Ha + Hb
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CT-QMC 2

Monte-Carlo: add or remove Hb vertex (if 
Hb has many terms, expand in each). 
Connect vertices with Ha. 

Tried in 1990s for continuum problems: worked poorly

Turns out: works VERY WELL for impurity problems
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Two principal `flavors’

Hb= hybridization (CT-HYB)

Hb=Interaction (CT-INT)
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All methods involve 
manipulating matrices; cost 
~cube of matrix size.

CT-QMC: much smaller 
matrix is needed  

Continuous time: 
‘many-body adaptive grid’

Puts time points where needed.
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• interaction representation with respect to Hloc, Hband

• formal expansion in V

• sample series stochastically: add/remove V; accept 
or reject by usual importance sampling

‘Hybridization expansion’ CT-HYB
(P. Werner and AJM, PRL 97}, 076405 (2006))

HQI = Hloc[{d
†
a, da} +

∑
p,a

(
Vpad†acpa + H.c

)
. + Hbath[{c†pacpa}]

Z = Tr

[
Tτe

∑
p,a

(V I
pad†

a(τ)cpa(τ)+H.c.)

]

=

∑
k

1

k!

∫ β

0

dτ1...dτkTr

[
Tτ V̂

I
(τ1)...V̂

I
(τk)

]



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

CT-HYB

*Requires diagonalization of Himpurity 

*Computation of 

=

∑
k

1

k!

∫ β

0

dτ1...dτkTr

[
Tτ V̂

I
(τ1)...V̂

I
(τk)

]

Requires manipulation of matrices of size of local 
Hilbert space

Restricted to ~5-7 orbitals   at present

*General interactions can be treated
But:



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

Also

Severe sign problem if 

HQI =
∑
ab

d†
aE

ab
QIdb + Interactions

+
∑
p,ab

(
Vp

abd†
acpb + H.c

)
. + Hbath[{c†pacpa}]

[
Δ̂, Ê

]
�= 0

=>reasonably high symmetry desirable



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

CT-INT: sample interaction perturbation 
diagram series stochastically

Vertex <=> particle
Propagator <=> interparticle interaction

Scaling ∼ (NsiteβU))3 Like Hirsch-fye but 
prefactor much better
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Empirical fact:
Coupling to bath=>

SIGN PROBLEM MUCH BETTER
2d Hubbard model, 36 sites 

<sign>

Filling

F. Assaad (QMC)
 E. Gull (DMFT)
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Technical remarks

Computations are trivially parallelizable:

 Basic computation performed on a single core.

Initialization/thermalization time is very low

=>pays to distribute computation over ~104 cores
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(sub)matrix updates

*Method deals with large matrices 
=>computational bottleneck is moving 
information from memory into cache 
=>Efficiency gain from arranging calculation to 
maximize # compute operations/memory call.

E. Gull et al PRB 83 075122 

16 sites, U/t=8
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Typical computational costs
(on 2-5 year old machines)

•Single-site 1 orbital:  minutes on a laptop
•Single-site, 2 orbital: 16 cores, 4 hours
•8 site Hubbard normal state (T=t/20): 64 cores, 8 
hours
•8 site Hubbard superconducting state (T=t/60) 128 
cores 8 hours
•8 site Hubbard, measurement for raman vertex (T=t/
20), 4096 cores 8 hours (BNL Blue Gene)

These times are ‘reasonable’
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=>can treat large systems

E. Gull and S. Fuchs

3D Hubbard, up to 100 
sites. T=0.5t
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 BUT

Most efficient version relies on Hubbard-
Stratonovich transformation (or something 
equivalent). Presently restricted to models 
with density-density (preferably on-site) 
interactions

H = εdd†d + UN̂2
d+

εpp†
p + Vpdd†p + H.c
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Summary: scaling

Naive scaling:

Hybridization algorithm ∼ β2 eNsite

Interaction (Hubbard) ∼ N3
siteU

3β3

Interaction (General Uijkl) ∼ (NsiteMint)
3 U3β3

Sign problem
[
Ê, Δ̂

]
�= 0 i.e. low symmetry or Nsite > 4

Or, clusters large enough to have loops
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What can be done in practice

realistic (exchange/pair-hopping) interactions:

At present can do 5 orbitals (dim 45 =1028)
(=> single site dmft of transition metals, or 
actinides with truncation)

Hubbard (on-site, density-density interactions)

Complete solution at interesting 
temperatures may be within reach. 
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Formulating the impurity model

!!Choice of f includes choice of basis in both physical 
and impurity space!! 

RMP 78 p. 875: formal dfn in terms of functional 
integral. But problem not fully understood.
=>room for new insights!

What choices of fαβ
ab are

• mathematically consistent

• physically reasonable

• easiest to compute with
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Example: Hubbard model

Hubbard model: periodic lattice of sites in d dimensions. 
One orbital per site. Position and momentum reps.

HHub = −
∑
ijσ

ti−jd
†
iσdjσ + U

∑
i

ni↑ni↓

Real space: Σ(i − j)

Momentum space: Σ(k)

HHub = −
∑
kσ

εkd
†
iσdjσ + U

∑
k1k2q

d†
k1↑d

†
k2↓dk1+q↑dk2−q↓
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Tile lattice with equal size cells, labelled by J.
Introduce label a for sites in a cell
Drop  terms in    which couple sites 
in different cells.

 Real space representation: ``CDMFT’’

Σ

G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, 
Phys. Rev. Lett. 87, 186401 (2001).

Σ(i − j, ω) = Σaibj(ω)

Note: translation invariance broken

If i, j ∈ J and ai,bj are cluster
sites corresponding to i, j

Σ(i − j, ω) = 0 otherwise

If N �= 1
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Easiest to express in supercell basis

Introduce spinor Ψ†
J = (d†

J1
, ...d†

JN
)

+
1
2

∑
I�=J

Ψ†
IσT̂(I − J)ΨJσ

HHub =
∑
J

Ψ†
JσÊΨJσ + U

∑
a=1..N

nJa↑nJa↓

Ĝ(I − J; ω) =
(
ω1̂ − ÊδIJ − T̂(I − J) − Σ̂(ω)δI,J

)−1

CDMFT function f i,j
ab → δIJ 1̂

SCE: ĜQI(ω) = Ĝ(0, ω)
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Extremum condition:

Here
∫ ′

(dk) means integral over reduced zone
of supercell with appropriate normalization
(

inverting and rearranging

(
ω1̂ − ÊQI − Δ̂(ω) − Σ̂

)−1

=
∫ ′

(dk)
[
ω1̂ − Ê − T̂(k) − Σ̂

]−1

−ÊQI + Δ̂ = −ω + Σ +

[∫ ′

(dk)
[
ω1̂ − Ê − T̂(k) − Σ̂

]−1
]−1
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Look at high frequency limit

so the SCE becomes:

So EQI=E (integral of T vanishes because T is non-local) 
behavior at lower w fixes hybridization function

something like this occurs in all implementations

∫ ′

(dk)
[
ω1̂ − Ê − T̂(k) − Σ̂

]−1

→ 1
ω

(
1 +

Ê + Σ̂ +
∫ ′

(dk)T(k)
ω

)

−ÊQI + Δ̂ = −ω + Σ + ω − Ê − Σ̂ −
∫ ′

(dk)T(k)
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Special to CDMFT: `Periodization’

=>2 points of view on broken translation invariance:

Σ(i − j, ω) = Σaibj(ω)
If i, j ∈ J and ai,bj are cluster
sites corresponding to i, j

•Accept it: calculate only quantities not directly 
influenced by broken  tranlational invariance 
(energy, local excitation spectra...)

•`Periodize’: use results to reconstruct periodic 
function
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Periodization

To estimate lattice quantity, Fourier transform 
cluster quantity  over cluster sites (but for all 
momenta in zone)

f(k̃) =
1
N

∑
ij=1...N

eik̃·(r̃i−r̃j)fcl(i, j)

Key question: what quantity to use?

Civelli et al PRL 95 106402: self energy Σ
Stanescu et al PRB 74 125110:
cumulant M = [ω + μ − Σ]−1
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Self energy interpolation

e.g 4-site cluster
K = (0, 0), (0, π), (π,0), (π, π)

Problem: zone diagonal Σ ((π
2 , π

2 )
made from (0, 0), (0, π), (π, 0), (π, π)

The physics of the points from which the 
interpolation is made may be very different from 
that of the point of interest. I prefer to avoid 
periodization

Methods yield: Σ(K, ω) at discrete momenta K
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Very new results:
Sakai et al arXiv:1112.3227



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

Longer ranged interactions

CDMFT: approx Luttinger Ward 
functional made of diagrams involving 
local (in supercell basis) Green function  

Φ[{G(I − J, ω)}] → NsitesΦ[{G(0, ω)]}

I J

This is fine on level of Green functions: but what if 
interaction connects different sites??

to do  approx, 
set I=J

Answer: truncate interactions
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Instructive example: Hn
N. Lin, C. Marianetti, A. J. Millis and D. Reichman PRL 106 096402

--what we did: on each atom, keep only 1s state 
(STO-6G basis)
–Compute matrix elements of H =

∑
i
−∇2

i

2m

+1
2

∑
i�=j

e2

|ri−rj| between these orbitals

Set of n hydrogen atoms

Atoms far apart: strong coupling problem
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CDMFT: isolate blocks in self energy

[    ]Σ11 Σ12 Σ13

Σ21 Σ22

Σ33

Σ44
·· ·
·
·

· · ·
·

·
·
·

··
·

· · ·
· · ·· ·· ·
·

·
· ·
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 treat  orbitals outside ‘active blocks’ via 
Hartree-Fock

Σab(ω) → Σab
HF + δab (Σa(ω) − Σaa

HF)

Similarly treat in-block interactions exactly; 
other interactions by Hartree-Fock

Iabcd → IHF + (Iaaaa − Iaaaa
HF )

Keep V12, V34 in DMFT; treat V23 by hartree-fock
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 treat  orbitals outside ‘active blocks’ via 
Hartree-Fock

Σab(ω) → Σab
HF + δab (Σa(ω) − Σaa

HF)

Similarly treat in-block interactions exactly; 
other interactions by Hartree-Fock

Iabcd → IHF + (Iaaaa − Iaaaa
HF )

Note ‘double-counting’ correction
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Results: energy
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Results: excitation
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Implication

Single-site DMFT not adequate

CDMFT approximation is somehow ‘smart’: 
errors produced by asymmetrical treatment of 
interactions get compensated....
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Momentum space representation: DCA
M. H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy
Phys. Rev. B 61, 12739 (2000)

tile Brillouin zone: choose N momenta Ka, draw 
an equal area patch around each one 

2 4 4* 8 161

Σp(ω) → Σapprox
p (ω) =

∑
a

φa(p)Σa(ω)

φa(p) = 1 if p is in the patch
containing Ka and is 0 otherwise
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Coarse-grain interaction in k space 

V(k1,k2,k3,k4) → V(K1,K2,K3,K4)

Evaluate interation at discrete k-points:

=> defines quantum impurity model

F → Fapprox
univ [{Σa}] − Trln[G−1

0 −
∑
a

φa(k)Σa(ω)]
Then

So:

Ga
QI = Apatch

∫
(dk)φa(k)

(
G−1

0 −
∑
a

φa(k)Σa(ω)

)−1
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Comments

•Patches need to have equal area
•Patches do not need to have any particular shape
•(as long as they tile the Brillouin zone)
•Patching does not have to respect point group 
symmetry
•Translational invariance respected (in fact, required) 
but self energy piecewise continuous
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Status of the approximation
Favorable cases: (moderate correlations, simple 
interactions) --direct comparison to numerically 
exact results available 

Kozik, Houcke, Gull, Pollett, 
Prokof’ev, Svistunov, Troyer 
EPL 90 10004 (2010) 
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3 dimensional Hubbard model
S. Fuchs, E. Gull, L. Pollett et al PRL 106 030401 (2011)

cluster sizes up to 100 sites high-ish T=t/2U=8t

Controlled 
extrapolation to 
thermodynamic limit 
now possible at high T

-3
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3 dimensional Hubbard model
S. Fuchs, E. Gull, L. Pollett et al PRL 106 030401 (2011)

DCA: cluster sizes up to 100 sites. U=8t

 Temp=0.4t

−

Controlled extrapolation to thermodynamic limit 
now possible 
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‘Optical emulator’: 
cold atomic gasses as analogue computers for model 

systems of condensed matter physics

T. Esslinger, Ann. Rev. CMP 129 (2010)

Very promising, but present experiments cannot 
reach low enough T; also validation needed

fermion density 
distribution
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3 dimensional Hubbard model
S. Fuchs, E. Gull, L. Pollett et al PRL 106 030401 (2011)

DCA: cluster sizes up to 100 sites. U=8t

 Temp=0.4t

−

Controlled extrapolation to thermodynamic limit 
now possible (at lower T than experiment)

DMFT: Optical emulator emulator
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Other formulations

Σαβ(ω) =
∑
ab

fαβ
ab Σab

DMFT(ω)

Considerations:

Causality: ImΣaa(ω + iδ) > 0;
want ImΣαα(ω + iδ) ≥ 0 also

Orthogonal function expansion
Σ(k, ω) = Σ0(ω) + Σ1(ω) cos(kx)+
rings: can find region whereImΣ(k, ω) < 0

�1.0 �0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Conditions on f not known

 see e.g. Phys. Rev. B68 195121/1-8 (2003)
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More subtle: pole structure in correlated insulator

In impurity model Σaa 1
ω−Ωa

In Mott insulator Σαα 1
ω−Ωα

fαα
aa must couple only one a to each α

0.0 0.2 0.4 0.6 0.8 1.0
�20

�10

0

10

20If not, states in the gap

see Phys. Rev. B75, 205118 (2007) 
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Applications of cluster DMFT

Main application so far: to high-Tc cuprates

(modelled by Hubbard model, for which you can 
reach large systems)

But it is likely the physics is more generally 
important.
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from Imada RMP

from Taguchi PRB59 7917 

from Kumagai PRB48 7636 

Kumagai says oxygen doping 
is less than 0.01. Taguchi says 
that oxygen doping in the 
Kumagai samples is 0.04

ReTiO3

Mott divergence not tied to n=1?
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Orbital order (?fluctuations?) important

Pavarini et al PRL 92 176403: importance of GdFeO3
(octahedral rotation) distortion

LaTiO3

YTiO3
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Orbital order (?fluctuations?) important

Pavarini et al PRL 92 176403: importance of GdFeO3
(octahedral rotation) distortion
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Short ranged correlations: other systems

High T phase: insulating 
behavior associated with 
short ranged order

Wavevector: (1/4,0,0)

CMR: `Colossal’ 
magneto- resistance 
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These + many other results:

=>motivation to go beyond single-site DMFT

This has only been systematically done for 2d 
Hubbard model (main application: high Tc)

Remainder of lectures: overview of published 
results, mainly aimed at high Tc. Illustrate 
strengths and limits of method. 
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Characteristic features of high-Tc 
superconductivity

1. Superconductivity created by adding 
carriers to nontrivial insulator 
2. Characteristic scaling with doping: optical 
conductivity strongly doping dependent; 
carrier mass much less so
3. `Pseudogap’ for hole doped materials
4.  Precursor: scattering rate anisotropy
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Phase diagram
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Probes of  carrier motion

Orenstein, Thomas, Millis et. al, 
Physical Review  B42, 6342-62 (1990).

YBCO

Optical conductivity: Photoemission: 

σ ∼ n

m

carrier velocity: weakly 
doping dependentn/m: strongly doping dep.
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Characterize by ‘spectral weight’

K(Ω) =
�dc

e2

∫ Ω

0

2dω

π
σ(ω)

Ω = 0.2eV :
K ∼ x

Ω = 0.8eV :
K ∼ x + 0.1

Comanac, De' Medici, Capone, Millis, 
Nat. Phys. 4 287-290 (2008)

Low freq conductivity ~x but 
quasiparticle velocity  is not
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`Pseudogap’
Suppression of density of states in zone corner

Angle-resolved photoemission sample w/ 90K Tc: 

S. Lee et al, Nature 450, p. 81 (2007)
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`Pseudogap’
Magnitude increases as 
doping decreases

Huefner et al Rep. Prog. Phys. 71 062501 (2008)

Onset temp. increases as 
doping decreases
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Precursor of pseudogap in momentum-
space dependent scattering rate

M. J. French et al., N. J. Phys. 

11 055057 (2009) 

Idea: from anisotropy of 
magnetoresistance, can tease out 
variation of electronic scattering 
rate around fermi surface.
Result: unconventional term (rate 
~T not T2) associated with (0,pi) 
turns on as doping is decreased.

Temperature

L. Taillefer Ann.  Rev. Condens.Matter Phys. 2010. 1:51–70
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Are these phenomena properties of a  
theoretical model?

Phase diagram

Pseudogap Scattering rate

Conductivity
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www.picsearch.com

Main theoretical 
idea: interesting 
phenomena related to 
Mott transition in 
Hubbard model:

H = −
∑
ij

ti−jc
†
iσcjσ + U

∑
i

ni↑ni↓

One (spin degenerate) orbital per lattice site. 
hopping t short ranged.

Important parameters: 
--relative interaction strength U/t
--electron density n

Hopping 
parameters from 
band theory

http://theor.jinr.ru/~kuzemsky/jhbio.html
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1,2,4,8,16 site cluster DMFT
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1-site:

2-site

Ferrero et al EPL89 57009

4-site

8-site

Clusters: trade off  
momentum resolution<=>computability
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Cluster notes
4-site

4-site: amenable to CT-HYB (‘expand in 
V’)=> much info available. Near half 
filling, fermi surface almost entirely in 
(0,Pi) sector

8-site
8-site: only CT-AUX. Systematic studies 
down to T=t/60  feasible. Direct (coarse-
grained) access to nodal and antinodal 
Fermi surface regions

16-site 16-site: only CT-AUX. Systematic studies 
down to T=t/10  feasible. At one 
parameter: t/40 (if sign)
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1,2,4,8,16 site cluster DMFT

Quantitative extrapolation to infinite cluster limit 
not possible with present ‘technology’. Focus on 
qualitative physics: quantities for which  all 
clusters give (qualitatively) the same answers.

Look at metal insulator transition
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=>Fundamental interest of 
(correlation-driven) Metal-Insulator transition

A(k, ω) =
ImΣ(k, ω)

(ω − εk − ReΣ(k, ω))2 + ImΣ(k, ω)2

ImΣ(k, ω) = 0; |ω| < Δ

and no solution to ω − εk − ReΣ(k, ω) = 0

for any k at  |ω| < Δ

Insulator: Gap in electronic spectrum =>

breakdown of fermi liquid at strong interactions

Real part of self energy must be very large at low 
freq.
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Intuitive idea: ‘Mott’ if insulating in absence of 
intersite correlations (i.e. from purely local physics)

Implementation: 1-site DMFT (no spatial correlations)

Bethe lattice.
bandwidth =4

density n=1

T=0 correlation-driven metal insulator transition at U=Uc2

Gives precise theoretical meaning to ‘Mott transition’.

Note! Insulator: ground state degeneracy
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Characterize Insulator

G−1(k, ω) = ω − εk − ReΣ(k, ω) = 0
Metal if “quasiparticle equation” 

is satisfied for some k  near w=0

Choose zero of energy to be chemical potential

To kill the metal: make “renormalized chemical 

potential”              larger than max ReΣ |εk|
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Consider particle-hole symmetric 
situation

ReΣ(ω) =
∫

dx
π

ImΣ(x)
ω − x Im Σ(ω) even → Re Σ(ω) odd

If gap, Im Σ(ω) = 0 at low energies

If Re Σ(ω) → 0 at ω = 0then quasiparticle
equation satisfied → states in gap

Self energy must have pole at w=0 (in p-h symm)
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Single site DMFT:  insulating state
pole in sigma splits the band

Σ(z) =
Δ2

z − ω0

ReΣ

∫
(dk)ImG

Xin Wang  Phys. Rev.B80, 045101 (2009)
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Characterize approach to insulator
as interaction is increased at half filling

X. Y. Zhang, M. J. Rozenberg, and G. Kotliar
Phys. Rev. Lett. 70, 1666 (1993

Side bands: localized 
(atomic-like) states

Central peak: 
coherent, strongly 
renormalized fermions
Central peak is fragile. 
As raise T it goes away.
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 interaction driven MIT via pole 
splitting
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P. Cornaglia data
U=0.85 Uc2

Self energy has two poles, which converge as U->Uc2



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

 interaction driven MIT via pole 
splitting
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 interaction driven MIT via pole 
splitting
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 interaction driven MIT via pole 
splitting
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 interaction driven MIT via pole 
splitting
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’mass’ renormalization
diverges as approach insulator
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 interaction driven MIT via pole 
splitting
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Subtle low frequency 
behavior: not just  
poles
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doping driven transition:
also coexistence regime;

2 pole structure
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Single-site DMFT neglects spatial 
correlations. How much of this structure 

is artifact of this neglect??

In 2d: almost all is artifact. 
In 3d: not yet known 
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2d: Larger clusters

Paramagnetic insulator stabilized at lower U
Insulator has lower entropy than metal

U(1)=12t=Uc2

 insulator

U(4)~5t

Hubbard model
2d square lattice n=1

T

4-DCA 1-DCA8-DCA

U(8)~6.5t U

U(16)~6t
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2d triangular lattice
Liebsch et al arXiv:0903.2063

t=0.04eV=>Uc~9t
single site: ~15t

=>apparently, substantial 
corrections to single-site 
behavior here also
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Recent results on 2D square lattice

Emanuel Gull, Olivier Parcollet, Philipp Werner, and 
Andrew J. Millis, Phys. Rev. B80, 245102 (2009).

Emanuel Gull, Michel Ferrero, Olivier Parcollet, 
Antoine Georges, Andrew J. Millis, Phys. Rev.  B82 
155101  (2010)
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New finding: 2d square lattice
correlation-driven metal-paramagnetic 

insulator transition is generically multi-stage

Uc--single-site
Mott 
insulator
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How do we see that this is true

Integral is peaked at y~1 =>T->0 
picks out fermi level density of states
Directly measured. 
No analytic continuation. No interpolation

βG(τ =
β

2
) = β

∫
dx

4π

Asector(x)
cosh x

2T

=
∫

dy

4π

Asector(2Ty)
coshy

look first at



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

n=1, vary U
sector-selective transition

t’=0; 8 sites

van Hove singularity in 
sector C=>T-
dependence
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16 sites t’=0

E. Gull
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change t’: transitions coalesce, seem to 
become 1st order
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Phase diagram: n=1
(second order nature of transition confirmed 

down to T=t/60)
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Doping driven transition:
U=7t, t’=-0.15t 

Ungapped until (perhaps) lowest doping(
π

2
,
π

2
)

(π,0) Gapped, n>0.9
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Transition not controlled by van Hove 
physics

van Hove point
Sector-selective 
point
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Momentum sector occupancy vs 
chemical potential

All sizes: n=1=>gap (different 
in different momenta)
=>paramagnetic (Mott) 
insulator, reasonable estimate 
of gap~1.4t

Δ = 1.8t Δ = 1.1t

Δ = 1.4t
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Density per sector vs chemical potential
U=7t, t’=-0.15t
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Blow-up

Sector-selective transition<=>pinning of 
sector density to half filling
=>Mott-like transition
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Blow-up: electron-doped side

Doping transition (weakly) first order
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t’=-0.3t

e-doping: transition strongly first order
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Closer look at the pseudo--or is it real-- 
gap: maximum entropy analytical 

continuation
x=0.05

Note: gap ‘fills in’ 
as T increases. 
Magnitude (peak 
to peak distance) 
not changed much
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Doping dependence

Gap decreases 
with increasing 
doping--but 
has filled in, 
not closed at 
x~0.11 
boundary of 
sector selective 
phase
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Doping driven transtion:
No sign of 2 
pole structure

N. Lin, E. Gull, AJM arXiv:1004.2999
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Zone diagonal sector

Possibly hint 
of gap at 
lowest 
dopings, but 
otherwise no 
gap
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Summary of gap size

Huefner et al Rep. Prog. Phys. 71 062501 (2008)

Calculation 
(t=300meV)Compilation of data
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Pseudogap and zone diagonal velocity

T=40K<Tc T=140K>Tc

Kanigel et al, Nat. Phys 2 447 2006

‘Normal state gap’ for 
states near 0,Pi
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Higher doping:
electron scattering rate divided by T

High doping: isotropic scattering
Intermediate doping: anisotropy 
in magnitude, T-dep
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4 site cluster is different

Single first order 
metal-insulator 
transition at half 
filling.

First order line extends 
out in doping.  Again 
only 1 transition (or 
crossover).

Sordi et al, PRL and PRB
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Standard 4-site cluster:
fermi surface almost entirely contained 

in one sector

Sector selective 
transition is 
suppressed
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Georges/Ferrero
alternative tiling

4 4*
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4* has the transition
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Standard 4-site cluster: captures much of 
physics despite lack of transition 

Liebsch and Tong, 09

Onset of anisotropic  scattering, 
suppression of DOS at x~0.15.  

Sordi 11
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Summary:
Present limits: 
--Hubbard models (local, density-density interaction).

--Constrained by sign problem. Generic points in 
phase diagram, surveys of parameters: 8 sites, T>60. 
16 sites: larger T.

--*Properly interpreted*, lots of information in small 
clusters

--Large cluster studies=> Hubbard model at moderate 
correlations--reasonable description of high Tc
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Extensions
Hubbard model:

--Multparticle response functions.

--superconductivity

--longer ranged interactions

--perturbative inclusion of other physics

Richer models??--probably need to 
go beyond CT-QMC
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Hamiltonian:

PerturbationUnperturbed H

2 particle response: Theory
Observable in presence of 
pertubation  P: 〈O〉 = Tr

[
Ô(t)G(t;P)

]

H[P] = T̂ + Î + PÔP

Expand G =
(
ω1̂ − T̂ − PÔP − Σ̂(P)

)−1

to linear order in P

Vertex function Γ = δΣ
δP
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Formally
Expand G =

(
ω1̂ − T̂ − PÔP − Σ̂(P)

)−1

to linear order in P

response function χ = χbubble + χvertex

χbubble = Tr
[
ÔGÔPG

]
χvertex = Tr

[
ÔG

δΣ
δP

G
]



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

Find (reducible) vertex from linearized 
DMFT equations

S = Sint + T
∑
ω

(
G−1
0

)
eq

(ω)c(ω)c†(ω)

+T2
∑
ωω′

(
G−1
0

)1
(ω′, ω)c(ω)c†(ω′)

Presence of perturbation=>impurity model changes 

Gαα(ω, ω′) =Geq(ω)βδωω′ + Geq(ω)βδωω′T
∑
ω1

Geq(ω1)
(
G−1

0

)1
(ω1ω1)

−T 2
∑

ω1ω2,γ

Γα,α,γ,γ(ω, ω′, ω1, ω2)
(
G−1

0

)1

γ,γ
(ω2, ω1)

=>first order change in GQI
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Must measure  reducible 4 point  
functions of the impurity model

(Need only reducible vertex; can do calc one external 
frequency at a time)

(Need ~100 Matsubara frequencies in each argument 
=>compute and store N2106 numbers)

Γα,α,γ,γ(ω + Ω, ω, ω1 − Ω, ω1) =
〈
cα(ω + Ω)c†α(ω′)cγ(ω1 − Ω)c†γ(ω1)

〉



  Department of Physics
Columbia UniversityCopyright A. J. Millis 2012 

Combining Eq for G1 and self consistency Eq.
gives linear equation for δΣ

δP in terms of
Γα,α,γ,γ(ω + Ω, ω, ω1 − Ω, ω1) and

P(ω, ω′) =
∫ ′

(dk)Geq
lattice(k, ω)ÔPGeq

lattice(k, ω′)
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Raman spectra
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Superconductivity: preliminary results
8 sites; U=7t

Phase diagram

Spectral function
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Non-local interactions
Naturally dimerized materials: CDMFT

NaV2O5 Mazurenko et al PRB 66 081104 (2002)
Ti2O3 Poteryaev  et al PRL 93 086401 (2004)

Ti2O3 Intersite interaction 
essential to metal-
insulator transition
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Not naturally dimerized: DCA
V(k1,k2,k3,k4) → V(K1,K2,K3,K4)

Hubbard: V indep of K

Longer ranged interactions=> more independent 
components of V.

Can include in QMC. Mikelsons (prvt comm) says: bad 
sign problem.  

Alternative: treat non-local ints perturbatively
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Summary: 

*`Cluster’ DMFT: family of approximations--
converge to exact result if cluster large enough

*Requirement: solve N orbital impurity model. 

*So far: can do this well only for Hubard model. 
--Convergence demonstrated
--2d model: pseudogap +sc ‘similar to’ high Tc 
--vertex functions: coming under control

*?Extensions--an important open problem

Text


