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Why	does	the	DMRG	work???	
ωα

α	

good!	

bad!	

In	other	words:	what	makes	the	
density	matrix	eigenvalues	
behave	so	nicely?	



Entanglement	
We	say	that	a	two	quantum	systems	A	and	B		are	“entangled”	when	we	cannot	
describe	the	wave	funcCon	as	a	product	state	of	a	wave	funcCon	for	system	A,	
and	a	wave	funcCon	for	a	system	B	
	
For	instance,	let	us	assume	we	have	two	spins,	and	write	a	state	such	as:	

|ψ〉 =|↑↓〉 + |↓↑〉 + |↑↑〉 + |↓↓〉 
 

We	can	readily	see	that	this	is	equivalent	to:	

|ψ〉 =(|↑〉+|↓〉)⊗(|↑〉+|↓〉)=|↑〉x ⊗ |↓〉x 
->	The	two	spins	are	not	entangled!	The	two	subsystems	carry	informaDon	

independently	
Instead,	this	state:	 |ψ〉 =|↑↓〉 + |↓↑〉 

 
is	“maximally	entangled”.	The	state	of	subsystem	A	has	ALL	the	

informaDon	about	the	state	of	subsystem	B	



The	Schmidt	decomposiCon	
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We	assume	the	basis	for	the	leI	subsystem	has	dimension	dimA,	and	the	
right,	dimB.	That	means	that	we	have	dimA	x	dimB	coefficients.		
We	go	back	to	the	original	DMRG	premise:	Can	we	simplify	this	state	by	
changing	to	a	new	basis?	(what	do	we	mean	with	“simplifying”,	anyway?)	



The	Schmidt	decomposiCon	
We	have	seen	that	through	a	SVD	decomposiCon,	we	can	rewire	the	state	as:	
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Where		
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NoCce	that	if	the	Schmidt	rank	r=1,	then	the	wave-funcCon	reduces	to	a	product	
state,	and	we	have	“disentangled”	the	two	subsystems.	

AIer	the	Schmidt	decomposiCon,	the	reduced	density	matrices	for	the	two	
subsystems	read:	
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The	Schmidt	decomposiCon,	
entanglement	and	DMRG	

It	is	clear	that	the	efficiency	of	DMRG	will	be	determined	by	
the	spectrum	of	the	density	matrices	(the	“entanglement	
spectrum”),	which	are	related	to	the	Schmidt	coefficients:	
•  If	the	coefficients	decay	very	fast	(exponenCally,	for	
instance),	then	we	introduce	very	liXle	error	by	discarding	
the	smaller	ones.	

•  Few	coefficients	mean	less	entanglement.	In	the	extreme	
case	of	a	single	non-zero	coefficient,	the	wave	funcCon	is	a	
product	state	and	it	completely	disentangled.	

•  NRG	minimizes	the	energy…DMRG	concentrates	
entanglement	in	a	few	states.	The	trick	is	to	disentangle	the	
quantum	many	body	state!		



QuanCfying	entanglement	
In	general,	we	write	the	state	of	a	biparCte	system	as:	
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We	saw	previously	that	we	can	pick	and	orthonormal	basis	for	“leI”	and	
“right”	systems	such	that	

∑=
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We	define	the	“von	Neumann	entanglement	entropy”	as:	

22 log α
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Or,	in	terms	of	the	reduced	density	matrix:	
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Entanglement	entropy	
Let	us	go	back	to	the	state:	

|ψ〉 =|↑↓〉 + |↓↑〉 
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We	obtain	the	reduced	density	matrix	for	the	first	spin,	by	tracing	over	the	
second	spin	(and	aIer	normalizing):	

We	say	that	the	state	is	“maximally	entangled”	when	the	reduced	density	
matrix	is	proporDonal	to	the	idenDty.		

2log
2
1log

2
1

2
1log

2
1

=−−=S



Entanglement	entropy	
•  If	the	state	is	a	product	state:	

{ } 0,...0,0,1 =→=→= SwRL αααψ

•  If	the	state	maximally	entangled,	all	the	wα	are	equal 

{ } DSDDDw log,...1,1,1 =→=→ α

where	D	is		

{ }RL HHD dim,dimmin=



Area	law:	IntuiCve	picture	
Consider	a	valence	bond	solid	in	2D	

singlet	

2logcut) bonds of(#2log LS ≈×=

The	entanglement	entropy	is	proporConal	to	the	area	of	the	boundary	separaCng	
both	regions.	This	is	the	prototypical	behavior	in	gapped	systems.	NoCce	that	this	
implies	that	the	entropy	in	1D	is	independent	of	the	size	of	the	parCCon	



CriCcal	systems	in	1D	
c	is	the	“central	charge”	of	the	system,	a	
measure	of	the	number	of	gapless	modes	



Entropy	and	DMRG	
The	number	of	states	that	we	need	to	keep	is	related	to	the	entanglement	entropy:	

Sm exp≈

•  Gapped	system	in	1D:	m=const.	
•  CriCcal	system	in	1D:	m=Lα	
•  Gapped	system	in	2D:	m=exp(L)	
•  In	2D	in	general,	most	systems	obey	the	area	law	(not	free	fermions,	or	

fermionic	systems	with	a	1D	Fermi	surface,	for	instance)…		
•  Periodic	boundary	condiCons	in	1D:	twice	the	area	->	m2	



The	wave-funcDon	transformaDon	
Before the transformation, the superblock state is written as: 
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After the transformation, we add a site to the left block, and we “spit out” 
one from the right block 
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After some algebra, and assuming                           , one readily obtains: 
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The	DMRG	transformaCon	
When	we	add	a	site	to	the	block	we	obtain	the	wave	funcCon	for	the	
larger	block	as:	
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Let’s	change	the	notaCon…	
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We	can	repeat	this	transformaCon	for	each	l,	and	recursively	we	find	
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NoCce	the	single	index.	The	matrix	corresponding	
to	the	open	end	is	actually	a	vector!	



Some	properCes	the	A	matrices	
Recall	that	the	matrices	A	in	our	case	come	from	the	rotaCon	matrices	U	

A=	 2m	

			m	

AtA=	 X	 =1	

This	is	not	necessarily	the	case	for	arbitrary	MPS’s,	and	normalizaCon	is	
usually	a	big	issue!	



LeI	canonical	representaCon	



The	DMRG	wave-funcCon	in	more	
detail…	
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We	can	repeat	the	previous	recursion	from	leI	to	right…	

At	a	given	point	we	may	have	

Without	loss	of	generality,	we	can	rewrite	it:	
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MPS	wave-funcCon	for	open	boundary	condiCons	



DiagrammaDc	representaDon	of	MPS	

The	matrices	can	be	represented	diagrammaCcally	as	

≡αβ][sA α β
s 

α
s 

≡α][sA

The	dimension	D	of	the	leI	and	right	indices	is	called	the	
“bond	dimension”		

And	the	contracCons,	as:	

1α 2α 3α

s1    s2 



MPS	for	open	boundary	condiCons	
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MPS	for	periodic	boundary	condiCons	
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ProperCes	of	Matrix	Product	States	

Inner	product:	
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Gauge	TransformaCon	

α β γ α γ
	=	 X	 X-1	

There	are	more	than	one	way	to	write	the	same	MPS.	
This	gives	you	a	tool	to	othonormalize	the	MPS	basis	



Operators	

α
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The	operator	acts	on	the	
spin	index	only	

' elementsh matrix wit a is sOsO



s1    s2     s3                                                          sN 

 

Pairwise	unitary	tranformaDons	
The two-site time-evolution operator will act as: 
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Matrix	product	basis	
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dmrg	basis	we	get:	
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The	DMRG	w.f.	in	diagrams	
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(It’s	a	just	liXle	more	complicated	if	we	add	the	two	sites	in	the	center)	



The	AKLT	State	
( ) 1  with  
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We	replace	the	spins	S=1	by	a	pair	of	spins	S=1/2	that	are	completely	
symmetrized	
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…	and	the	spins	on	different	sites	are	forming	a	singlet	
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The	AKLT	as	a	MPS	

The	local	projecCon	operators	onto	the	physical	S=1	states	are	
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The	mapping	on	the	spin	S=1	chain	then	reads	
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ProjecCng	the	singlet	wave-funcCon	we	obtain	

The	singlet	wave	funcCon	with	singlet	on	all	bonds	is	
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VariaConal	MPS	
We	can	postulate	a	variaConal	principle,	starCng	from	the	assumpCon	that	the	
MPS	is	a	good	way	to	represent	a	state.	Each	matrix	A	has	DxD	elements	and	
we	can	consider	each	of	them	as	a	variaConal	parameter.	Thus,	we	have	to	
minimize	the	energy	with	respect	to	these	coefficients,	leading	to	the	following	
opCmizaCon	problem:	
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DMRG	does	something	very	close	to	this…	


