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networks studied here nevertheless exhibit non-Abelian statis-
tics and transform under exchange exactly like vortices in a
� � � � superconductor.
After establishing wire networks as a feasible topological

quantum computation platform, we propose a number of con-
crete experimental setups. These range from minimal setups
(involving only one wire and two gates) that can be initially
used to probe the non-trivial fusion rules of the Majorana
fermions, to scalable circuits that allow for efficient exchange
of arbitrary numbers of Majorana fermions. Following Fu and
Kane7, we propose that the ‘fractional Josephson effect’ first
discussed by Kitaev17 can be used to probe the final ground
state obtained after exchange. While this scheme has yet to be
made universal, we believe that the relative ease with which
one-dimensional wires can be driven into a topological su-
perconducting state, combined with the physically transparent
manner in which the manipulations are performed, render the
setups discussed here extremely promising topological quan-
tum computation platforms.
Let us begin by discussing the physics of a single wire.

Valuable intuition can be garnered by reviewing Kitaev’s toy
model for a topological superconducting chain with � sites17:
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where � � is a spinless fermion operator and � , � � � , and
� ∆� � � φ respectively denote the chemical potential, tunneling
strength, and pairing potential. The bulk- and end-state struc-
ture becomes particularly transparent in the special case17
� � � , � � � ∆� . Here it is useful to express
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with γα� � � γ �
α� � Majorana fermion operators satisfying

� γα� � � γα′ � � ′ � � � δαα′δ � � ′ . These expressions expose the
defining characteristics of Majorana fermions—they are their
own antiparticle and constitute ‘half’ of an ordinary fermion.
In this limit the Hamiltonian can be written as
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It follows that γ � � � and γ � � � � � ‘pair up’ to form an ordinary
fermion 
 � � � γ� � � � � � � γ� � � � � � which costs energy � � to
occupy, reflecting the bulk gap of the wire. Conspicuously ab-
sent from � , however, are γ � � � and γ � � � , which represent the
zero-energy end-Majorana modes noted above. These can be
combined into an ordinary fermion 
 � � � � � γ � � � � � γ� � � � � �
which costs no energy to occupy. Thus there are two degen-
erate ground states � � 〉 and � � 〉 � 
 �� � � � � 〉, where 
 � � � � � 〉 � � ,
which serve as topologically protected qubit states. Figure
1(a) illustrates this physics pictorially.
Away from this special limit the Majorana end states no

longer retain this simple form, but survive provided the bulk
gap remains finite17. This occurs if � � � � � � , corresponding to
the case where pairing occurs in a partially filled band. When
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FIG. 1: (a) Pictorial representation of the ground state of Eq. (1) in
the limit � � � , � � � ∆� . Each spinless fermion in the chain is
decomposed in terms of two Majorana fermions γ � � � and γ � � � . Ma-
joranas γ � � � and γ � � � � � pair up to form an ordinary, finite energy
fermion, leaving two zero-energy end Majoranas γ � � � and γ � � � as
shown17. (b) A spin-orbit-coupled semiconducting wire deposited
on an � -wave superconductor can be driven into a topological super-
conducting state exhibiting such end Majorana modes by applying an
external magnetic field13,14. (c) Band structure of the semiconducting
wire when � � � (dashed lines) and � !� � (solid lines). When �

lies in the band gap generated by the field, pairing inherited from the
proximate superconductor drives the wire into the topological state.

� � � � � � , the bulk gap closes signaling a phase transition,
and for larger � � � a topologically trivial superconducting state
without end-Majoranas emerges. Here pairing occurs in either
a fully occupied or vacant band.
Realizing Kitaev’s topological superconducting state exper-

imentally requires a system which is effectively spinless—i.e.,
exhibits a single set of Fermi points—and undergoes � -wave
pairing at the Fermi energy. Both criteria can be satisfied
in a spin-orbit coupled semiconducting wire deposited on an
� -wave superconductor by applying a magnetic field13,14 as
shown in Fig. 1(b). The simplest Hamiltonian describing such
a wire reads
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Here ψα� is the operator corresponding to electrons with spin
α, effective mass � , and chemical potential � . (We sup-
press the spin indices in the first line.) In the third term,
λ denotes the spin-orbit interaction strength, which could
reflect Dresselhaus19 and/or Rashba20 coupling, and σ �
� σ � � σ � � σ � � is a vector of Pauli matrices. This coupling fa-
vors aligning spins along the axis designated by the unit vector
� � ; we assume for concreteness that � � lies in the � � � � � plane.
The fourth term represents the Zeeman coupling due to the
external magnetic field � � � � , which we take to point along
the 	 axis. (We simply require � � � � � � , so assumptions
about the direction of both � � and the magnetic field can be re-
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Condensed matter physicists mainly seek Majorana fermion zero-
modes (which are not really particles!)
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on an � -wave superconductor can be driven into a topological super-
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external magnetic field13,14. (c) Band structure of the semiconducting
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lies in the band gap generated by the field, pairing inherited from the
proximate superconductor drives the wire into the topological state.

� � � � � � , the bulk gap closes signaling a phase transition,
and for larger � � � a topologically trivial superconducting state
without end-Majoranas emerges. Here pairing occurs in either
a fully occupied or vacant band.
Realizing Kitaev’s topological superconducting state exper-

imentally requires a system which is effectively spinless—i.e.,
exhibits a single set of Fermi points—and undergoes � -wave
pairing at the Fermi energy. Both criteria can be satisfied
in a spin-orbit coupled semiconducting wire deposited on an
� -wave superconductor by applying a magnetic field13,14 as
shown in Fig. 1(b). The simplest Hamiltonian describing such
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Here ψα� is the operator corresponding to electrons with spin
α, effective mass � , and chemical potential � . (We sup-
press the spin indices in the first line.) In the third term,
λ denotes the spin-orbit interaction strength, which could
reflect Dresselhaus19 and/or Rashba20 coupling, and σ �
� σ � � σ � � σ � � is a vector of Pauli matrices. This coupling fa-
vors aligning spins along the axis designated by the unit vector
� � ; we assume for concreteness that � � lies in the � � � � � plane.
The fourth term represents the Zeeman coupling due to the
external magnetic field � � � � , which we take to point along
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� � � � � � , the bulk gap closes signaling a phase transition,
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without end-Majoranas emerges. Here pairing occurs in either
a fully occupied or vacant band.
Realizing Kitaev’s topological superconducting state exper-

imentally requires a system which is effectively spinless—i.e.,
exhibits a single set of Fermi points—and undergoes � -wave
pairing at the Fermi energy. Both criteria can be satisfied
in a spin-orbit coupled semiconducting wire deposited on an
� -wave superconductor by applying a magnetic field13,14 as
shown in Fig. 1(b). The simplest Hamiltonian describing such
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Here ψα� is the operator corresponding to electrons with spin
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press the spin indices in the first line.) In the third term,
λ denotes the spin-orbit interaction strength, which could
reflect Dresselhaus19 and/or Rashba20 coupling, and σ �
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vors aligning spins along the axis designated by the unit vector
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external magnetic field � � � � , which we take to point along
the 	 axis. (We simply require � � � � � � , so assumptions
about the direction of both � � and the magnetic field can be re-

2

networks studied here nevertheless exhibit non-Abelian statis-
tics and transform under exchange exactly like vortices in a
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After establishing wire networks as a feasible topological

quantum computation platform, we propose a number of con-
crete experimental setups. These range from minimal setups
(involving only one wire and two gates) that can be initially
used to probe the non-trivial fusion rules of the Majorana
fermions, to scalable circuits that allow for efficient exchange
of arbitrary numbers of Majorana fermions. Following Fu and
Kane7, we propose that the ‘fractional Josephson effect’ first
discussed by Kitaev17 can be used to probe the final ground
state obtained after exchange. While this scheme has yet to be
made universal, we believe that the relative ease with which
one-dimensional wires can be driven into a topological su-
perconducting state, combined with the physically transparent
manner in which the manipulations are performed, render the
setups discussed here extremely promising topological quan-
tum computation platforms.
Let us begin by discussing the physics of a single wire.

Valuable intuition can be garnered by reviewing Kitaev’s toy
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Here ψα� is the operator corresponding to electrons with spin
α, effective mass � , and chemical potential � . (We sup-
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decomposed in terms of two Majorana fermions γ � � � and γ � � � . Ma-
joranas γ � � � and γ � � � � � pair up to form an ordinary, finite energy
fermion, leaving two zero-energy end Majoranas γ � � � and γ � � � as
shown17. (b) A spin-orbit-coupled semiconducting wire deposited
on an � -wave superconductor can be driven into a topological super-
conducting state exhibiting such end Majorana modes by applying an
external magnetic field13,14. (c) Band structure of the semiconducting
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lies in the band gap generated by the field, pairing inherited from the
proximate superconductor drives the wire into the topological state.

� � � � � � , the bulk gap closes signaling a phase transition,
and for larger � � � a topologically trivial superconducting state
without end-Majoranas emerges. Here pairing occurs in either
a fully occupied or vacant band.
Realizing Kitaev’s topological superconducting state exper-

imentally requires a system which is effectively spinless—i.e.,
exhibits a single set of Fermi points—and undergoes � -wave
pairing at the Fermi energy. Both criteria can be satisfied
in a spin-orbit coupled semiconducting wire deposited on an
� -wave superconductor by applying a magnetic field13,14 as
shown in Fig. 1(b). The simplest Hamiltonian describing such
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Here ψα� is the operator corresponding to electrons with spin
α, effective mass � , and chemical potential � . (We sup-
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reflect Dresselhaus19 and/or Rashba20 coupling, and σ �
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planar geometry:

Topological
spinless p+ip SC

Vacuum

Topological
spinless p+ip SC

Hedge =

Z
du�edge(�iv@u)�edge

Gapless chiral Majorana edge
modes = half of an integer
quantum Hall edge state

B

�1

�2
�3

�4

Vortices bind
Majorana zero-
modes...

fA = γ1 + iγ2

fB = γ3 + iγ4

...and exhibit non-
Abelian statistics!



Summary of toy models

γ1 γ2

1D spinless p-wave SC in
topological phase

End Majorana
fermion zero-modes

�1

�2
�3

�4

2D spinless p+ip SC in
topological phase

Majorana fermion
zero-modes bind to
vortices...

...and edge supports
gapless chiral

Majorana mode



Homework Set 1

1. For the Kitaev chain, find an expression for the topological invariant distinguishing the trivial
and non-trivial phases of the model.  Does it take on integer values, or is it a Z2 index?

3. For a 2D spinless p+ip superconductor, derive the chiral Majorana edge Hamiltonian.  Does
the Majorana operator satisfy periodic or antiperiodic boundary conditions?  How does your
answer change if the bulk has vortices?

Hedge =

Z
du�edge(�iv@u)�edge

4. Using your answer to 3, argue that h/2e vortices bind Majorana zero-modes as claimed.
 (Hint: think about the vortex core as a small puncture in the system.)  Are there other
finite-energy modes bound to the vortex?  If so what are their energies?

2. Find the Hamiltonian describing low-energy physics at the phase transition between
topological and trivial phases of the Kitaev chain.  Compare to the edge Hamiltonian for a p+ip
superconductor.



Outline

Some general remarks on Majorana fermions in condensed
matter

Toy models capturing Majoranas (continued)

Quick reminder of “Kitaev chain”

2D topological superconductivity

Select plausible experimental realizations

•

•
-

-

•
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“Spinless” 1D, 2D p-wave superconductivity is hard to find.

1. We live in
3D



The basic challenges
“Spinless” 1D, 2D p-wave superconductivity is hard to find.

1. We live in
3D

(“Intrinsic” 1D and 2D
superconductors also do not
exhibit LRO at finite T, unlike toy
models where this is assumed.)



The basic challenges

1. We live in
3D

2. Electrons carry spin
E
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“Spinless” 1D, 2D p-wave superconductivity is hard to find.



The basic challenges

1. We live in
3D

2. Electrons carry spin

3. Vast majority of superconductors
form spin-singlet Cooper pairs

E

3. Vast majority of superconductors
 Cooper pairs -e -ee -

k

¹

“Spinless” 1D, 2D p-wave superconductivity is hard to find.
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Two ways forward

1. Search for new compounds w/exotic superconductivity

2. “Engineer” topological superconductivity from
available materials

Matthias’s 6th rule: Stay away from theorists!

Theorists can be useful, particularly if methods
involve weakly interacting electrons

(Approach originally pioneered by Fu & Kane.)



Exhibits property X

Exhibits property Y

General strategy for “engineering” topological superconducors
(and other exotic phases)

Suppose you want a
system with properties
X and Y which seem
incompatible...



Very useful concept,
likely with lots of

untapped potential!

Hybrid device can
exhibit both X and Y!

Suppose you want a
system with properties
X and Y which seem
incompatible...

General strategy for “engineering” topological superconducors
(and other exotic phases)



Hybrid device can
exhibit both X and Y!

Suppose you want a
system with properties
X and Y which seem
incompatible...

General strategy for “engineering” topological superconducors
(and other exotic phases)

Here, one subsystem will support 1D
or 2D modes with strong spin-
orbit coupling...

...the other will be a 3D
s-wave superconductor
(with LRO).



Experimental Routes to 1D
topological superconductivity



I. Gapless as long as time-reversal,
U(1) particle conservation are present

1D topological superconductivity via edge states

Fu & Kane 2009

E

2D
Topological
Insulator k

¹

II. By construction 1D & “spinless”

III. Easy to make superconducting



E

2D
Topological
Insulator k

¹

E

k

¹

Typical
wire:

1D topological superconductivity via edge states

I. Gapless as long as time-reversal,
U(1) particle conservation are present

Fu & Kane 2009

II. By construction 1D & “spinless”

III. Easy to make superconducting



s-wave superconductor

Fu & Kane 2009

E

2D
Topological

Insulator k

¹

1D topological superconductivity via edge states



s-wave superconductor

Fu & Kane 2009

E

2D
Topological

Insulator k

¹

Hedge =

∫

dx[−¹ (ψ
y
R
ψR + ψ

y
L
ψL) − i¹hv(ψ

y
R
∂xψR − ψ

y
L
∂xψL)]

+H
hybridization

Can then “integrate out”
gapped superconductor
degrees of freedom

1D topological superconductivity via edge states



s-wave superconductor

Fu & Kane 2009

E

2D
Topological

Insulator k

¹

Hedge =

∫

dx[−¹ (ψ
y
R
ψR + ψ

y
L
ψL) − i¹hv(ψ

y
R
∂xψR − ψ

y
L
∂xψL)]

+

Z
dx�( R L +H.c.)

Describes a 1D topological
superconductor (on a ring)!

1D topological superconductivity via edge states



Generating Majoranas at the edge I

Fu & Kane 2009

FM insulator

γ1 γ2

Majoranas arise, but are
immobile.  Look for a
modified setup that
allows more control.

2D
Topological

Insulator

s-wave superconductor



E

k
¹

B

Gapped due
to B-field

Alicea & Lindner

Generating Majoranas at the edge II

2D
Topological
Insulator



E

k

¹

B

Gapless despite
the B-field

Alicea & Lindner

Generating Majoranas at the edge II

2D
Topological
Insulator
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B

Gapped due
to B-field

Alicea & Lindner

Generating Majoranas at the edge II

2D
Topological

Insulator

s-wave superconductor



E

k

¹

B

Gapped due to
superconductivity

Alicea & Lindner

Generating Majoranas at the edge II

2D
Topological

Insulator

s-wave superconductor



B

E

k

¹

Gapped due to
superconductivity

Gate

γ1 γ2

E

k
¹

kkGapped due
to B-field

¹

Alicea & Lindner

Generating Majoranas at the edge II

2D
Topological

Insulator

s-wave superconductor



Majorana fermions in 1D wires

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

1D spin-orbit-coupled
wire (e.g. InSb)

H =

∫

dxψ
y

[

−

∂
2
x

2m
− ¹ − i¹hv∂xσ

y

]

ψ

E

kxk

E

kx

H =

∫

dxψ
y

[

−

∂
2
x

2m
− ¹ − i¹hv∂xσ

y

]

ψ



Majorana fermions in 1D wires

(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

1D spin-orbit-coupled
wire (e.g. InSb)

H =

∫

dxψ
y

[

−

∂
2
x

2m
− ¹ − i¹hv∂xσ

y

]

ψ

E

kxk

E

kx

σσ
y

]

ψ

“Rashba spin-orbit
coupling”

f
(E⇥P) · �



(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

E

kx

1D spin-orbit-coupled
wire (e.g. InSb)

BB

Majorana fermions in 1D wires

H =

∫

dxψ
y

[

−

∂
2
x

2m
− ¹ − i¹hv∂xσ

y
−

g¹ BB

2

σ
z

]

ψ

mostly mostly



(Lutchyn, Sau, Das Sarma 2010; Oreg, Refael, von Oppen 2010)

1D spin-orbit-coupled
wire (e.g. InSb)

s-wave
superconductor

γ1 γ2

Generates a1D ‘spinless’ p-wave
superconducting state with
Majorana zero-modes!

Majorana fermions in 1D wires

BB

H =

∫

dxψ
y

[

−

∂
2
x

2m
− ¹ − i¹hv∂xσ

y
−

g¹ BB

2

σ
z

]

ψ

+(∆ψ↑ψ↓ + h: c: )

E

kx

mostly mostly



Homework Set 2

1. Show that integrating out the parent superconductor’s degree of freedom indeed generates
pairing terms for the edge modes/wire.  Do other parameters in the Hamiltonian also get
renormalized due to the hybridization?

2. Rewrite the wire Hamiltonian in terms of operators that add excitations to the upper/lower
bands.  Project out the upper band and compare the resulting effective Hamiltonian with the toy
model for a spinless p+ip superconductor.

E

kx

H =

∫

dxψ
y

[

−

∂
2
x

2m
− ¹ − i¹hv∂xσ

y
−

g¹ BB

2

σ
z

]

ψ

+(∆ψ↑ψ↓ + h: c: )

Project out this
band

3. Find the parameter range (i.e., magnetic field, pairing energy, and chemical potential) over
which the topological phase occurs in 1D wires.



1D wire vs. 2D topological insulator setups

1D spin-orbit-
coupled wire

s-wave
superconductor

γ1 γ2

BB

BB
Gate

γ1 γ2

2D
Topological

Insulator

s-wave superconductor

-Not much tuning required

-Built-in resilience against disorder
(Anderson’s theorem)

-Few materials (but situation is
improving)

-Semiconductor technology well advanced

-Required ingredients demonstrated long
ago

-Need to fine-tune chemical potential within
(small) Zeeman gap

-Disorder poses more serious issue



Other promising realizations

3D topological insulator
nanowires

Cook and Franz, Phys. Rev. B 84, 201105(R) (2011)

Magnetic-atom chains
on a superconductor

Beenakker et al., Phys. Rev. B 84, 195442 (2011); Yazdani et al.,
Phys. Rev. B 88, 020407(R) (2013)



Experimental Routes to 2D
topological superconductivity



Willet, Eisenstein, et al. (1987)
Moore & Read (1991)
Bonderson, Kitaev, Shtengel (2006)
Stern & Halperin (2006)
W. Kang et al. (2011)

An “intrinsic” realization

! = 1/2

kx!!

ky!!

kF!!

electron
Composite
fermion + 2
flux quanta

Composite fermions form
a “spinless” metal

! = 5/2

Composite Fermi sea is
unstable towards p+ip

pairing!



Majorana fermions in a 3D topological insulator

(Fu, Kane, & Mele 2006; Moore & Balents
2006; Roy 2006; Fu & Kane 2008)

3D topological insulators: inert
bulk but odd # of Dirac
cones on the surface

3D
Topological

Insulator

H =

∫

d
2
rψ

y
(−iv"σ ¢ ∇− ¹ )ψ

Surface looks “spinless”! (i.e.,
only one Fermi surface rather
than two)



Majorana fermions in a 3D topological insulator

s-wave SC

H =

∫

d
2
r[ψ

y
(−iv"σ ¢ ∇− ¹ )ψ + (∆ψ↑ψ↓ + h: c: )]

Surface inherits spin-
singlet pairing...

(Fu, Kane, & Mele 2006; Moore & Balents
2006; Roy 2006; Fu & Kane 2008)

3D
Topological

Insulator



Majorana fermions in a 3D topological insulator

s-wave SC

H =

∫

d
2
r[ψ

y
(−iv"σ ¢ ∇− ¹ )ψ + (∆ψ↑ψ↓ + h: c: )]

Surface inherits spin-
singlet pairing...

...but spin is not conserved, so this is
NOT a simple s-wave superconductor

(Fu, Kane, & Mele 2006; Moore & Balents
2006; Roy 2006; Fu & Kane 2008)

3D
Topological

Insulator



Majorana fermions in a 3D topological insulator

s-wave SC

H =

∫

d
2
k

{

[ε+(k)ψ
y
+ψ+ + ε−(k)ψ

y
−ψ−] Pairing is p+ip in

this basis!  

(Fu, Kane, & Mele 2006; Moore & Balents
2006; Roy 2006; Fu & Kane 2008)

ψ+(k)

ψ−(k)

3D
Topological

Insulator

Interface realizes 2D topological SC
supporting Majorana zero-modes at vortices!

+∆

[ (

kx − iky

2k

)

[ψ−(k)ψ−(−k) − ψ+(k)ψ+(−k)] + h: c:

]}

−



Majorana fermions in semiconductor devices

(Sau, Lutchyn, Tewari, & Das Sarma 2009)

s-wave SC

2DEG with Rashba
spin-orbit coupling

FM insulator



Majorana fermions in semiconductor devices

(Sau, Lutchyn, Tewari, & Das Sarma 2009)

H =

∫

d
2
rψ

y

[

−

∇
2

2m
− ¹ − iα(σ

x
∂y − σ

y
∂x)

]

ψ

E

kx

Rashba spin-orbit
coupling in 2D

f

2DEG with Rashba
spin-orbit coupling



Majorana fermions in semiconductor devices

(Sau, Lutchyn, Tewari, & Das Sarma 2009)

FM insulator

H =

∫

d
2
rψ

y

[

−

∇
2

2m
− ¹ − iα(σ

x
∂y − σ

y
∂x) + Vzσ

z

]

ψ

2DEG looks “spinless” if
chemical potential is herechemical potential is here

E

kx

2DEG with Rashba
spin-orbit coupling



Majorana fermions in semiconductor devices

(Sau, Lutchyn, Tewari, & Das Sarma 2009)

FM insulator

H =

∫

d
2
rψ

y

[

−

∇
2

2m
− ¹ − iα(σ

x
∂y − σ

y
∂x) + Vzσ

z

]

ψ

s-wave SC

+

∫

d
2
r(∆ψ↑ψ↓ + h: c: )

E

kx

]

Realizes 2D topological SC supporting
Majorana zero-modes (when chemical
potential is tuned)

2DEG with Rashba
spin-orbit coupling



Summary so far

γ1 γ2

1D spinless p-wave SC

�1

�2 �3

�4

2D spinless p+ip SC

Key
advance!

2D
Topological

Insulator

s-wave superconductor

1D wireγ1 γ2

s-wave
superconductor

s-wave SC

3D
Topological

Insulator

s-wave SC

2DEG with Rashba
spin-orbit coupling

FM insulator

Common theme:
spin-orbit coupling
+ proximity effects

among other
promising

realizations!



Next time: Majorana detection
schemes, experimental status, and

applications




