Skyrmions in Chiral Magnets

Achim Rosch, Institute for Theoretical Physics, Cologne, Germany

- magnets & topology
- Berry phases
- experimental realization of emergent electric and magnetic fields
- electric manipulation of magnetic structures
- spintronics and `skyrmionics`

lecture 1: skyrmions in chiral magnets

- effective field theory for chiral magnets
- Berry phases and emergent electromagnetic fields
- experiments
- selected examples

lecture 2:

skyrmions & magnetic monopoles

- skyrmion as a particle: effective mass, screening, dynamics
- changing topology: emergent magnetic monopoles

theory @ Cologne, Germany Markus Garst, Stefan Buhrandt, Karin Everschor, Robert Bamler, Christoph Schütte, Johannes Waizner, Jan Müller, A. R.

theory @ Tokyo, Japan Naoto Nagaosa and coworkers

theory @ FZ Jülich (ab initio) Frank Freimuth, Yuriy Mokrousov

experiments @ TU Munich, Germany Ch. Pfleiderer, P. Böni, A. Bauer, A. Chacon, T. Schulz, R. Ritz, M. Halder, M. Wagner, C. Franz, F. Jonietz, M. Janoschek, S. Mühlbauer, ...

experiments @ TU Dresden, Germany P. Milde, D. Köhler, L. Eng + Jan Seidel, University of New South Wales, Sydney

chiral magnets: e.g. MnSi cubic but no inversion symmetry

left handed

right handed

chiral magnets: e.g. MnSi cubic but no inversion symmetry

magnetic structures like to twist (Dzyaloshinsky-Moriya interactions)

$$\int \vec{M} \cdot (\nabla \times \vec{M})$$

left handed

often:	forbidden by inversion
	symmetry
here:	allowed (crystal symmetry +
	by relativistic effects)
	n ₂ Q
	n 1

generic phase diagram of cubic magnets without inversion symmetry, here: MnSi

generic phase diagram of cubic magnets without inversion symmetry, here: MnSi

generic phase diagram of cubic magnets without inversion symmetry, here: MnSi

- lattice of magnetic whirls (skyrmion lattice, 2009)
- whirl-lines $\| {f B} \|$ hexagonal lattice $\perp {f B}$
- length scale in MnSi: 200 Å

Mühlbauer, A.R. et al., Science (2009)

hedgehog spin configuration

skyrmion

lattice of skyrmion lines in 3d

comparison skyrmion vs. vortex

skyrmion:

- trivial at spatial infinity
- mapping of 2d real space to order parameter space $\Pi_2(S_2) = \mathbb{Z}$

$$\int \frac{dxdy}{4\pi} \,\hat{n} \cdot (\partial_x \hat{n} \times \partial_y \hat{n}) = -1$$

- smooth everywhere
- topologically quantized only as long as order parameter finite
- protected by **finite** energy barrier

vortex:

- winding far away from vortex core
- mapping of points at infinity (1d) to order parameter space, e.g. superconductor or xy magnet:

$$\Pi_1(S_1) = \mathbb{Z} \qquad \oint_{r=\infty} d\mathbf{r} \ \frac{d\phi}{d\mathbf{r}} = 2\pi n$$

- singular vortex core
- protected by infinite energy barrier

skyrmions in chiral magnets

Skyrme (1962):

quantized topological defects in non-linear σ -model (d=3) for pions are baryons, i.e. spin-1/2 **fermions**

skyrmions in chiral magnets:

- Bogdanov, Yablonskii (1989): skyrmions energetically metastable in cubic magnets without inversion symmetry,
- skyrmions in quantum Hall systems close to v=1 (Sondhi et al. 1993), lattices (Brey, Fertig, Cote, McDonald 1995, Timm Girvin, Fertig 1998, Green 2000)
 Destrat et al 2002, Gervais *et al.* 2005, Galais *et al.* 2008
- magnetic bubble domains: textures from dipolar interactions
- 2009: experimental discovery in MnSi Mühlbauer, A.R. et al. , Science (2009)

discovery of skyrmion lattice in MnSi

- original idea: manipulate helices by electric currents
- surprise: previously unidentified "A-phase" in MnSi sensitive to currents
- neutron scattering: measures Fourier components $|\Phi_{\vec{q}}|^2$ of magnetic structure

in plane perpendicular to B:

skyrmions in chiral magnets, Iallanassee 1/14

80

36.3

16.5

7.5

3.41

1.55

0.32

0.15

0.07

0.03

0.70 d

Counts

mon

Mühlbauer, Binz, Jonietz, Pfleiderer, Rosch, Neubauer, Georgii, Böni, Science (2009)

skyrmions in chiral magnets, Tallahassee 1/14

theory of skyrmion formation in cubic chiral magnets:

controlled by weakness of relativistic spin-orbit $\lambda_{
m SO} \sim lpha \ll 1$ (Bak, Jensen 1980, Nakanishi et al. 1980)

 $\int \vec{M} \cdot (\nabla \times \vec{M})$

$$F = F_{FM}(\vec{\Phi}^2) + \vec{q}^2 |\vec{\Phi}_{\vec{q}}|^2 + \mathbf{k_h} \vec{\mathbf{q}} \cdot (\vec{\Phi}_{\vec{\mathbf{q}}} \times \vec{\Phi}_{\vec{\mathbf{q}}}^*) + \dots$$

$O(\lambda_{SO}^0)$: locally (itinerant) ferromagnet

below transition temperature: ferromagnetic order

energy cost to twist with wave vector *q*: but: **energy gain linear in** *q*

ferromagnetic state unstable

11111

 \vec{a}^2

theory of skyrmion formation in cubic chiral magnets:

controlled by weakness of relativistic spin-orbit $\lambda_{SO} \sim \alpha \ll 1$ (Bak, Jensen 1980, Nakanishi et al. 1980)

$$F = F_{FM}(\vec{\Phi}^2) + \vec{q}^2 |\vec{\Phi}_{\vec{q}}|^2 + \mathbf{k_h} \vec{\mathbf{q}} \cdot (\vec{\Phi}_{\vec{\mathbf{q}}} \times \vec{\Phi}_{\vec{\mathbf{q}}}^*) + \dots$$

- $O(\lambda_{SO}^0)$: locally (itinerant) ferromagnet $O(\lambda_{SO}^2)$: ferromagnet instable to twists
- e.g., helical state long pitch of $O(1/\lambda_{SO})$

 $\int \vec{M} \cdot (\nabla \times \vec{M})$

nominally same order of magnitude: dipol-dipol interactions, in practice: almost no effect

terms breaking rotational symmetries, e.g. preferential direction of helix small due to cubic symmetry $O(\lambda_{\rm SO}^4)$:

Why spin-crystal stabilized by finite field?

- preformed helices with ordering vector Q
- Interactions in presence of finite magnetization M

 $\Phi^4 = \sum_{q_1, q_2, q_3} (\vec{\mathbf{M}} \vec{\Phi}_{\vec{q}_1}) (\vec{\Phi}_{\vec{q}_2} \vec{\Phi}_{\vec{q}_3}) \delta(\vec{q}_1 + \vec{q}_2 + \vec{q}_3) + \dots$

- energy gain if 3 q vectors add to zero
- relative phase defines magnetic structure calculation: skyrmion state is best
- Is this energy gain sufficient ?

theory of skyrmion formation

• easy to prove:

within Ginzburg-Landau mean-field theory:

helix parallel to B (conical state)
only true mean-field ground state

• but: spin crystal very close in energy

corrections to mean field? Thermal fluctuations

$$\begin{split} \Phi &= \Phi_0 + \delta \Phi \\ S &\approx \beta F_0 + \frac{\beta}{2} \delta \Phi \left. \frac{\partial^2 F}{\partial \Phi \partial \Phi} \right|_{\Phi = \Phi_0} \\ e^{-\beta F} &= \int D[\Phi] e^{-S} \end{split}$$

skyrmions in chiral magnets, Tallahassee 1/14

theory of skyrmion formation

fluctuation driven 1st order transition but spin crystal lattice stabilized in regime (grey area) where fluctuations still "small"

theory of skyrmion formation:

$$F = F_{FM}(\vec{\Phi}^2) + \vec{q}^2 |\vec{\Phi}_{\vec{q}}|^2 + \mathbf{k_h} \vec{\mathbf{q}} \cdot (\vec{\Phi}_{\vec{\mathbf{q}}} \times \vec{\Phi}_{\vec{\mathbf{q}}}^*) + \dots$$

mean field theory: skyrmion lattice never stable in cubic bulk system

in 3d: magnetic whirls stabilitzed by thermal fluctuations Mühlbauer, A.R. et al., Science (2009) in 2d films: stable (already within mean-field theory) down to T=0 Nagaosa et al. 2010

theory of skyrmion formation

theory: **generic** phase for all cubic magnets without inversion symmetry (for weak spin-orbit) confirmed by classical Monte Carlo calculations experiment: **always** observed (B20 compounds)

Monte Carlo: S. Buhrandt, L. Fritz

- Iow T up to room-temperature
- from 10 to 1000 nm

also possible: nano-skyrmions in monolayer magnetic films (e.g. Fe on Ir) Heinze, Wiesendanger et al. 2011

skyrmions in chiral magnets , Tallahassee 1/14

theory of skyrmion formation:

universality of low-energy theory of ferromagnet

+ smallness of relativistic effects

+ some luck (structure of non-perturbative effects)

quantitative description on level of a few % based on only few measured parameters of

- phase diagram, thermodynamics
- fluctuation induced 1st order transitions
- details of structure of skyrmion lattice
- magnetic excitation spectra (neutron scattering, FM resonance,...)

not understood:

- novel Berry phase effects
- exotic high-pressure phase in MnSi
- disorder & nonequilibrium effects, metastability,...

not covered by these lectures

skyrmions in chiral magnets, Tallahassee 1/14

neutron scattering (here MnSi) Pfleiderer, Böni, et al., 2009-2012

Lorentz transmission electron microscopy (here: Fe_{0.5}Co_{0.5}Si film) Tokura group, 2010

magnetic force microscopy (here: surface of Fe_{0.5}Co_{0.5}Si) Milde, Köhler, Seidel, Eng 2013

С

0.04 -

- 00.0 d^x (Å⁻¹)

-0.04

20

6

(111

•

Counts /

Std.

1.8 m

coupling of skyrmions to electric currents?

emergent electrodynamics

Berry phases

slowly changing quantum system: $H(t) = H(\vec{\lambda}(t))$

system remains in ground state $\widetilde{H}(\vec{\lambda})|\vec{\lambda}\rangle = E_{\lambda}|\vec{\lambda}\rangle$

example: magnetic field produces Aharonov-Bohm phase

$$\oint \frac{e}{\hbar} A(r) dr_i = 2\pi \frac{\Phi}{\Phi_0}$$

skyrmions in chiral magnets, Tallahassee 1/14

Berry phase of a spin S

consider:
$$H(t) = -\vec{B}(t)\vec{S}$$

spin direction follows field orientation ${f n}$

$$|\Psi(t)\rangle = e^{i\phi(t)}|\mathbf{\hat{n}}(t)\rangle \quad \phi = i\int \langle \mathbf{\hat{n}}|\frac{d}{d\hat{n}_i}|\mathbf{\hat{n}}\rangle d\mathbf{\hat{n}}_i$$

geometric phase of spin = spin size * area on unit-sphere enclosed by spin

$$B = \hbar s \int dt \vec{A}(\hat{n}) \partial_t \hat{n}$$

monopole vector field counts area on surface

path-integral of spin:
$$\int D[\hat{n}] e^{i S_B/\hbar}$$

surface on sphere: defined modulo 4 π

./

spin has to be half integer

coupling of electrons to skyrmions by Berry phases

geometric phase of spin = spin size * area on unitsphere enclosed by spin

electron spin follows magnetic texture

Berry phase proportional to winding number

Berry phase as Aharonov Bohm phase

emergent electrodynamics

Volovik 87

microscopic derivation

electron spins follows adiabatically direction of background magnetization \hat{n}

choose local spin quantization action parallel to $\,\hat{n}$ by unitary transformation $U(\hat{n})$

rewrite action in new spinless fermion:

$$\mathbf{d}^{\dagger} = U^{\dagger}(\hat{n})c^{\dagger}U(\hat{n})$$

note: U not unique, U(1) Gauge degree of freedom

to do: gradient expansion of $\int c^{\dagger}_{\sigma k} (\partial_{\tau} + \epsilon_k) c_{\sigma k}$

skyrmions in chiral magnets, Tallahassee 1/14

$$\Rightarrow S_B = \int \mathbf{j}_{\mu}^e \mathbf{A}_e^{\mu} d^3 r dt$$
$$\mathbf{A}_e^{\mu} = U^{\dagger} \partial^{\mu} U$$

comoving quasiparticles couple to new emergent electrodynamics

Volovik 87

generalized Berry phases in phase space

- 7-dimensional phase space: $x^{\mu} = (t, \mathbf{R}, \mathbf{k})$
- electronic eigenstates in band *m* for constant direction of magnetization $\hat{\mathbf{n}} : |\hat{\mathbf{n}}, \mathbf{k}, m\rangle$ (includes spin-orbit coupling effects in band structure)
- for slowly varying $\hat{\mathbf{n}}$ use eigenstates $|\mathbf{x}, m\rangle = |\hat{\mathbf{n}}(\mathbf{R}, t), \mathbf{k}, m\rangle$ and express $\Psi_{\alpha}^{\dagger}(\mathbf{R}) = \sum_{n, \mathbf{k}} \langle \mathbf{R}, \alpha | \hat{\mathbf{n}}(\mathbf{R}, t), \mathbf{k}, m \rangle d_{\mathbf{x}, m}^{\dagger}$
- Berry potential in phase space

generalized Berry phases in phase space

$$\begin{pmatrix} \partial_{t}\mathbf{R} \\ \partial_{t}\mathbf{p} \end{pmatrix} = \begin{pmatrix} \partial_{\mathbf{p}}H \\ -\partial_{\mathbf{R}}H \end{pmatrix} + \begin{pmatrix} -\Omega^{tp} \\ \Omega^{tR} \end{pmatrix} + \begin{pmatrix} -\Omega^{pR}\partial_{t}\mathbf{R} & - & \Omega^{pp}\partial_{t}\mathbf{p} \\ \Omega^{Rp}\partial_{t}\mathbf{p} & + & \Omega^{RR}\partial_{t}\mathbf{R} \end{pmatrix}$$

$$\begin{pmatrix} \text{time position momentum} \\ 0 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 0 & \cdot \\ \cdot & \cdot & \cdot & 0 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

$$\text{time position momentum}$$

$$\text{time position momentum}$$

$$\begin{pmatrix} 0 & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & 0 \\ \cdot & 0 & 0 \\ \cdot & 0 & 0 \\ \cdot &$$

Berry curvature in 7 dimensions: 21 independent components

Xiao, Shi, Niu (2005)

skyrmions in chiral magnets , Tallahassee 1/14

$$\begin{pmatrix} \partial_{t}\mathbf{R} \\ \partial_{t}\mathbf{p} \end{pmatrix} = \begin{pmatrix} \partial_{\mathbf{p}}H \\ -\partial_{\mathbf{R}}H \end{pmatrix} + \begin{pmatrix} -\Omega^{tp} \\ \Omega^{tR} \end{pmatrix} + \begin{pmatrix} -\Omega^{pR} \partial_{t}\mathbf{R} \\ \Omega^{Rp} \partial_{t}\mathbf{p} \end{pmatrix} + \begin{pmatrix} \Omega^{PR} \partial_{t}\mathbf{R} \\ + \Omega^{PR} \partial_{t}\mathbf{R} \end{pmatrix}$$

$$\text{time position momentum} \\ \begin{pmatrix} 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & 0 & \cdot \\ \cdot & 0 & \cdot \\$$

skyrmions in chiral magnets , Tallahassee 1/14

$$\begin{pmatrix} \partial_{t}\mathbf{R} \\ \partial_{t}\mathbf{p} \end{pmatrix} = \begin{pmatrix} \partial_{\mathbf{p}}H \\ -\partial_{\mathbf{R}}H \end{pmatrix} + \begin{pmatrix} -\Omega^{tp} \\ \Omega^{tR} \end{pmatrix} + \begin{pmatrix} -\Omega^{pR} \partial_{t}\mathbf{R} & - & \Omega^{pp} \partial_{t}\mathbf{p} \\ \Omega^{Rp} \partial_{t}\mathbf{p} & + & \Omega^{RR} \partial_{t}\mathbf{R} \end{pmatrix}$$

$$\begin{array}{c} \text{time} \quad \text{position} \quad \text{momentum} \\ 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 0 & \cdot \\ \cdot & 0$$

$$\begin{pmatrix} \partial_{t}\mathbf{R} \\ \partial_{t}\mathbf{p} \end{pmatrix} = \begin{pmatrix} \partial_{\mathbf{p}}H \\ -\partial_{\mathbf{R}}H \end{pmatrix} + \begin{pmatrix} -\Omega^{tp} \\ \Omega^{tR} \end{pmatrix} + \begin{pmatrix} -\Omega^{pR} \partial_{t}\mathbf{R} & - & \Omega^{pp} \partial_{t}\mathbf{p} \\ \Omega^{Rp} \partial_{t}\mathbf{p} & + & \Omega^{RR} \partial_{t}\mathbf{R} \end{pmatrix}$$

$$\begin{array}{c} \text{time position momentum} \\ 0 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & \cdot \\ \cdot & 0 & \cdot & 0 \\ \end{array} \right)$$

$$dp_{y} \boxed{\qquad} \text{momentum curvature:} \\ \text{anomalous velocity} \\ \text{momentum curvature:} \\ \text{anomalous Hall effect in magnets} \\ \text{topology of band structure} \\ \text{(topological insulators)} \end{array}$$

$$\begin{pmatrix} \partial_{t}\mathbf{R} \\ \partial_{t}\mathbf{p} \end{pmatrix} = \begin{pmatrix} \partial_{\mathbf{p}}H \\ -\partial_{\mathbf{R}}H \end{pmatrix} + \begin{pmatrix} -\Omega^{tp} \\ \Omega^{tR} \end{pmatrix} + \begin{pmatrix} -\Omega^{pR} \partial_{t}\mathbf{R} \\ \Omega^{Rp} \partial_{t}\mathbf{p} \end{pmatrix} - & \Omega^{pp} \partial_{t}\mathbf{p} \\ + & \Omega^{RR} \partial_{t}\mathbf{R} \end{pmatrix}$$

$$\text{time position momentum} \\ \begin{pmatrix} 0 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & \cdot & 0 & \cdot & 0 \\ \cdot & 0 & \cdot$$

Xiao, Shi, Niu (2005)

modified Poisson brackets (or commutators) $\mathbf{x} = (\mathbf{R}, \mathbf{p})$

$$\{x_i, x_j\} = \left(\begin{pmatrix} \Omega^{RR} & \Omega^{Rp} \\ \Omega^{pR} & \Omega^{pp} \end{pmatrix} - \begin{pmatrix} 0 & \mathbf{1} \\ -\mathbf{1} & 0 \end{pmatrix} \right)^{-1}_{ij}$$

modified density of $\frac{1}{(2\pi\hbar)^3} \to \frac{1}{(2\pi\hbar)^3} \left(1 - \sum \Omega^{Rp}_{ii} + \mathcal{O}(\Omega^2) \right)$

& shifts of energies

$$\overline{(2\pi\hbar)^3} \to \overline{(2\pi\hbar)^3} \left(1 - \sum_{i=x,y,z} \Omega_{ii}^r + O(\Omega^2) \right)$$
$$\delta\epsilon_n(\mathbf{x}) = -\mathrm{Im} \left[\frac{\partial \langle \mathbf{x}, n |}{\partial R_i} (\epsilon_n^{(0)}(\mathbf{x}) - H(\mathbf{x})) \frac{\partial |\mathbf{x}, n \rangle}{\partial k_i} \right]$$

1. Dzyloshinskii Moriya interaction = Berry curvature effect

- 2. Charge of skyrmion
- (**3.4***e* per skyrmion in MnSi ignoring screening)
- 3. Corrections to Hall effect, emergent magnetic fields of unknown size

from now on: only Berry phases in space & time

emergent electro-magnetic fields

skyrmions in chiral magnets , Tallahassee 1/14

emergent electrodynamics & topological quantization

- effective electric charge: spin parallel/antiparallel to local magnetization
- $\mathbf{q}_{\downarrow/\uparrow}^{\mathbf{e}}=\mp\frac{1}{2}$

• emergent magnetic & electric fields:

Berry phase for loops
$$d\mathbf{r}_y$$
 $\mathbf{B}_{\mathbf{i}}^{\mathbf{e}} = \frac{\hbar}{2} \epsilon_{ijk} \hat{n} \cdot (\partial_j \hat{n} \times \partial_k \hat{n})$
in space

interpretation: Berry phase written as Aharonov Bohm phase

$$2\pi \frac{\int \mathbf{B}^{\mathbf{e}}_{z} dr_{x} dr_{y}}{\Phi_{\mathbf{0}}} = \frac{\text{area on unit sphere}}{2}$$

emergent electrodynamics & topological quantization

- effective electric charge: spin parallel/antiparallel to local magnetization
- $\mathbf{q}_{\downarrow/\uparrow}^{\mathbf{e}}=\mp\frac{1}{2}$

• emergent magnetic & electric fields:

• topological quantization:

winding number -1 (

measure skyrmion-winding number by topological Hall effect

one flux quantum of emergent magnetic flux per unit cell:

in MnSi ${\bf B^e}\sim -12\,T$

Ritz et al. (2013) A. Neubauer, et al. PRL (2009)

possible: 100 x larger fields

MnSi under pressure (7kbar) for various temperatures

emergent Faraday's law of induction

$\mathbf{E}^{\mathbf{e}} = -\mathbf{v}_{\mathbf{d}} \times \mathbf{B}^{\mathbf{e}}$

measuring skyrmion motion & emergent Faraday law

moving skyrmions \Rightarrow emergent electric field $\mathbf{E}^{\mathbf{e}} = -\mathbf{v_d} \times \mathbf{B}^{\mathbf{e}}$

extra "real" electric field compensates emergent field

$$\Delta E_{\perp} \approx -\tilde{P} \, \mathbf{E}_{\mathbf{y}}^{\mathbf{e}}$$

conversion factor: effective spin polarization \tilde{P} =

$$= \frac{\langle\!\langle j, \mathbf{j}^{\mathbf{e}} \rangle\!\rangle}{\langle\!\langle j, j \rangle\!\rangle}$$

skyrmions start to move above ultrasmall critical current density ~ 10⁶ Am⁻²

critical current **5-6 orders of magnitude smaller** than in typical spin-torque experiments

velocity: comparable to drift velocity of electrons

$$v_{
m drift} \sim rac{j}{en} \sim 0.16 \, rac{
m mm}{s} \, rac{j}{10^6 A m^2/s}$$

Jonietz, Pfleiderer, A.R., *et al.* (2010) Schulz, Pfleiderer, A.R., *et al.* (2012)

coupling currents to magnetism

counter force to **emergent Lorentz force** alternative point of view: Skyrmion lattice = **rotating spinsupercurrents** $j_i \sim M \times \nabla_i M$

in presence of charge current: extra **dissipative spin current**

Interplay: Magnus force

skyrmions in chiral magnets , Tallahassee 1/14

coupling currents to magnetism

counter force to **emergent Lorentz force** alternative point of view: Skyrmion lattice = **rotating spinsupercurrents** $j_i \sim M \times \nabla_i M$

in presence of charge current: extra **dissipative spin current**

Interplay: Magnus force

Roberto Carlos 1997

Why ultrasmall critical current densities?

skyrmions in chiral magnets , Tallahassee 1/14

Why ultrasmall critical current densities?

- very efficient Berry-phase coupling (gyromagnetic coupling by adiabatic spin transfer torques
- very weak pinning due to very smooth magnetic structure (single point defect: potential << k_B T)

 "collective pinning": partial cancellation of pinning forces due to rigidity of skyrmion lattice

validity of description by emergent electromagnetic fields

 adiabatic limit: time to cross skyrmion >> 1 / band-splitting

valid as spin orbit interactions are weak skyrmion radius $\mathbf{R}_{\mathbf{S}}$ large, $\mathbf{R}_{\mathbf{S}} \sim 1/\lambda_{\mathbf{SO}}$

- spin-flip scattering small
- validity of real-space picture: Umklapp scattering from skyrmion lattice can be ignored if no-spin-flip scattering rate > size of minigaps

$$\ell_{
m no~spin-flip} < {f R_s} < \ell_{
m spin-flip}$$

ab initio calculation of Berry phase effects:

Real-Space and Reciprocal-Space Berry Phases in the Hall Effect of Mn_{1-x}Fe_xSi

C. Franz,¹ F. Freimuth,² A. Bauer,¹ R. Ritz,¹ C. Schnarr,¹ C. Duvinage,¹ T. Adams,¹ S. Blügel,² A. Rosch,³ Y. Mokrousov,² and C. Pfleiderer¹ (PRL, 2014)

skyrmions in chiral magnets, Tallahassee 1/14

Conclusions Part I

- skyrmion lattices: universal phase in cubic chiral magnets
- driven by weak spin-orbit interactions
- magnetic crystal indepent of atomic structul
- extremely easy to manipulate by ultrasmal currents
- best described by emergent electric and magnetic field
- super-efficient Berry phase coupling
 + weak pinning

Coupling magnetism to current:spintronics

racetrack memory (Parkins)

selected recent developments with magnetic skyrmions:

- skyrmions in nano wires (Tokura group, Nanoletter 2013)
- driving skyrmions near room temperature (Tokura group, Nat. Comm. 2012)
- elements for a future "skyrmionics" (Fert group Nature Nanot. 2013, Nagaosa group, Nature Comm. 2013, …)
- multiferroic skyrmions & electrical manipulation (Tokura group, Science 2012, Nature Comm. 2013)
- skyrmion molecules driven by currents in a bilayer manganite (Tokura group, Nature Comm. 2014)
- skyrmion lattice rotates when observed by electron microscope (Nagaosa/Tokura groups, Nature Mat. 2014)
- writing and reading single nanoskyrmions with magnetic scanning tunneling microscope (Wiesendanger group, Science 2013, Nature Physics 2011)

Fert group. 2013

Nagaosa group. 2013

Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect

M. Mochizuki^{1,2*}, X. Z. Yu³, S. Seki^{2,3,4}, N. Kanazawa⁵, W. Koshibae³, J. Zang⁶, M. Mostovoy⁷, Y. Tokura^{3,4,5} and N. Nagaosa^{3,4,5}

skyrmion lattice rotates when viewed with electron microscope origin: magnon-heat currents

Writing and Deleting Single Magnetic Skyrmions

Niklas Romming, Christian Hanneken, Matthias Menzel, Jessica E. Bickel,* Boris Wolter, Kirsten von Bergmann,† André Kubetzka,† Roland Wiesendanger

- nanoskyrmions on FePd layers on Ir 111 surface (use spin-orbit interactions at surfaces)
- imaging by magnetic STM
- Write and delete skyrmions by the shot-noise of electrons tunneling into the sample

Interesting?

topological quantization & Berry phases

experimentally detected emergent electromagnetic fields

coupling of magnetism and currents

. . . .

open questions: classical and quantum dynamics phase-space Berry phase effects effects of disorder & pinning exotic liquid states

skyrmions in chiral magnets , Tallahassee 1/14

Applications ?

topological stability memory devices

efficient coupling to currents, Berry-phase detection

first ideas/experiments on skyrmions in nanostructures

logic devices ?

"Skyrmionics in sight" (editorial Nature Nanotechnology)

skyrmions in chiral magnets , Tallahassee 1/14