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Block decimation 
|!" = !ij!ij|i"| j"

Dim=2N 

Dimension of the block grows exponentially 



Block decimation 
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Block decimation 

Dim=2N         Dim=m 

constant 

|!" = !ij!ij|i"| j"

We need to find the transformation 

that minimizes the distance 

S=||!'" -|!"|2 
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#ja#j|#"| j"

Solution: The optimal states are the 
eigenvectors of the reduced density matrix 

$ii' = !j! ij!i'j    Tr $ = 1 
 
with the m largest eigenvalues %#



We start from a small superblock with 4 sites/blocks, each with a 
dimension mi , small enough to be easily diagonalized 
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We add one site at a time, until we reach the desired system size 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
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1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

We sweep from left to right We sweep from right to left 
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!Until we converge 
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When we add a site to the left block we represent the new basis states as: 
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Before the transformation, the superblock state is written as: 

!
+++

++++++ """=
321 ,,,

321321
llll ss

llllllll ssss
#$

#$%#$%

l!

1+ls

After the transformation, we add a site to the left block, and we “spit out” 
one from the right block 
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After some algebra, and assuming                           , one readily obtains: 
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Solving	the	t-d	Schrödinger	Equa>on	
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Let us assume we know the eigenstates of H 

In reality, we work in some arbitrary basis 
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Mixture of excited states with 
oscillating terms with 
different frequencies 

Typically we avoid high freq. oscillations by adding a phase )( 0EHititH ee −−− →



Time	evolu>on	and	DMRG:	First	aNempts	

●  Cazalilla and Marston, PRL 88, 256403 (2002). Use the infinite system 
method to find the ground state, and evolved in time using this fixed 
basis without sweeps. This is not quasiexact. However, they found that 
works well for transport in chains for short to moderate time intervals. 

This is quasiexact as τ→0 if you add sweeping. 

The problem with this idea is that you keep track of all the history of the 
time-evolution, requiring large number of states m. It becomes highly 
inefficient. 

t=0 t= τ t=2τ t=3τ t=4τ 

●  Luo, Xiang and Wang, PRL 91, 049901 (2003) showed how to target 
correctly for real-time dynamics. They target 

ψ(t=0), ψ(t= τ) , ψ(t=2τ) , ψ(t=3τ)…  

t=0 t= τ t=2τ t=3τ t=4τ 



Adap%ve	Time-dependent	DMRG:		

S.R.White and AEF, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp. (2004); AEF and S.R.White, 
PRB (2005), Rapid Comm. Based on TEBD ideas by G. Vidal, PRL (94). 

... 

t=0 Hilbert 
space 

In a truncated basis:

t= τ 
t=2 τ 

t=3 τ t=4 τ t=5τ 

We need to 
“follow” the state 
in the Hilbert 
space adapting 
the basis at 
every step 
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H=          H1   +    H2   +    H3   +    H4   +   H5    +   H6 

We would feel tempted to do something like: 

...43214321 ...)( HiHiHiHiHHHHiHi eeeeee !!!!!! """"+++"" #=

But it turns out that                                                   because 2121 )( HiHiHHi eee !!! ""+" # [ ] 0, 21 !HH

This actually would give you an error of the order of &2, similar to a 1st 
order S-T expansion# 
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Suzuki-TroNer	expansions	

I.P Omelyan et al., Comp. Phys. Commmun. 146, 188 (2002) and references therein. 

We want to write 

∏
=

+++++ =
P

p

BhbAhahOhChChChBA pp eee
1

)()( 54
4

3
3

2
2

with [ ];,)},{(2 BAbaC ppα=

[ ][ ] [ ][ ]ABBbaBAAbaC pppp ,,}),({,,}),({3 γβ +=

We want to choose the a’s and b’s such that they kill the first K coefficients 
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Suzuki-TroNer	expansions	
First order: 
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Second order: 
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We kill the second order term by choosing a=1/2; b=1 

2/2/)()( 3 AhBhAhhOhBA eeee =++



Suzuki-TroNer	expansions	

Fourth order: 

BhbbbAhaaaBhbAhaBhbAhaBhbAhahOhBA eeeeeeeee )1()1()()( 321321322211
5 −−−−−−++ =

One solution (the most convenient expression) has the form (Forest-Ruth 
formula) 
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1st order Suzuki-Trotter decomposition:

So the time-evolution operator is a product of individual link terms.
Each link term only involves two-sites interactions => small matrix, easy to calculate! 

... 

Evolu>on	using	Suzuki-TroNer	

BA HiHiHi eee τττ −−− ≈

...531 HiHiHiHi eeee B ττττ −−−− = No error 
introduced! 



The	two-site	evolu>on	operator	
Example:	Heisenberg	model	(spins) 

	
 
The two-site basis is given by the states  

|σσ’〉 ={|↑↑〉;|↑↓〉;|↓↑〉; |↓↓〉} 
We can easily calculate the Hamiltonian matrix: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

4/10
4/12/1

2/14/1
04/1

H

Exercise: Exponentiate (by hand) the matrix by following these steps: 
1.  Diagonalize the matrix and calculate eigenvalues and eigenvectors 
2.  Calculate the exponential of H in the diagonal basis 
3.  Rotate back to the original basis 
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We want to apply the evolution operator between the two central sites: 
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As we've seen before, the link evolution operator can be written as 

And the wave function after the transformation: 



0!"#$%&'()&8+,-./0(1 
S.R.White and A.E. Feiguin, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp. 

(2004) 
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0!"#$%&'()&8+,-./0(1& 
S.R.White and A.E. Feiguin, PRL (2004), Daley et al, J. Stat. Mech.: Theor. Exp. 

(2004) 
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Each link term only involves two-sites interactions: small 
matrix, easy to calculate! Much faster than Lanczos!



Time-step	targe>ng	method	

● We target one time step accurately, then we move to the next step.

● We keep track of intermediate points between t and t+τ

t=0 t=τ t=2τ t=3τ t=4τ 

The time-evolution can be implemented in various ways: 

1) Krylov basis: Calculate Lanczos (tri-diagonal) matrix, and exponentiate. (time consuming)
2) Runge-Kutta. (non-unitary!) 

AEF and S. R.White, PRB (05). See also P. Schmitteckert, PRB 70, 121302(2004) 

What if we don’t have a “nice” Hamiltonian, and S-T cannot be applied 





Sources	of	error	
●  Suzuki-TroNer	error:	Can	be	controlled	by	using	higher	
order	expansions,	or	smaller	>me-steps	

●  Trunca>on	error:	In	principle	it	can	be	controlled	by	
keeping	more	DMRG	states	as	the	entanglement	grows.	
Caveat:	only	works	for	“well-behaved”	problems,	since	
typically	the	entanglement	grows	uncontrollably.	

●  Runge-KuNa/Krylov:	the	error	is	dominated	by	the	
trunca>on	error.		

				Recipe:	instead	of	fixing	the	number	of	states	for	the	
simula>on,	we	fix	the	trunca>on	error,	and	we	let	the	
algorithm	determine	the	op>mal	number	of	states…	un>l	
the	basis	grows	too	large	and	the	simula>on	breaks	
down.	Hopefully	this	will	enable	us	to	go	to	large	>mes…	



S=1	Heisenberg	chain	(L=32;	t=8)	

1st order S-T 

4th order S-T 

time targeting +RK 



For smaller time-
step we need 
more iterations→ 
accumulation of 
error 



Fixed	error,	variable	number	of	states	



Comparing	S-T	and	>me	step	targe>ng	
●  S-T is fast and efficient for one-dimensional 

geometries with nearest neighbor interactions
●  S-T error depends strongly on the Trotter error but it 

can be reduced by using higher order expansions.
●  Time step targeting (Krylov,RK) can be applied to 

ladders and systems with long range interactions
●  It has no Trotter error, you can use a larger time-

step, but it is more time consuming and you need 
more DMRG states.

●  In RK simulations it is a good practice to do an 
intermediate sweep without evolving in time to 
improve the basis.

●  Time evolution using RK is non-unitary (dangerous!). 
Krylov expansion is the right choice.



Applica>ons	

1.  Transport in nano-structures 
2.  Spectral properties, optical conductivity… 
3.  Systems driven out of equilibrium, 

quenches. 
4.  Time-dependent Hamiltonians. 
5.  Decoherence: Free induction decay, 

Hahn echo, Rabi oscillations, pulse 
sequences… 

… 



Spin	transport	
Example:	half	polarized	spin	S=1/2	chain	



Spin	transport	
Example:	half	polarized	spin	S=1/2	chain	



The	enemy:	Entanglement	growth	
We have seen that the truncation error, or the number of state that we need 
to keep to control it, depends fundamentally on the entanglement 

)(tSS =

We need to understand this behavior if we want to learn how to fight it! 
 
Possible scenarios: 
•  Global quench 
•  Local quench 
•  Periodic quench 
•  Adiabatic quench 
• …  

)(tV

t
All of a sudden, we are no longer in the ground-state, but some high energy 
state. Important questions: thermalization vs. integrability  



E-growth:	global	quench	

Calabrese and Cardy, JStatM (05) 



Global	quench:	qualita>ve	picture	

time B B 

2vt<l 

Calabrese and Cardy, JStatM (05) 

2vt 2vt 

t=0 

t 

We assume that entangled pairs of quasi-particles are 
created at t=0, and they propagate with maximum velocity 

ctSS +=⇒ 0

Region A (lengh l) 



Global	quench:	qualita>ve	picture	

time 
Region A (lengh l) 

B B 

2vt>l 

Calabrese and Cardy, JStatM (05) 

t=0 

t 

The number of entangled pairs saturates 



time 

Calabrese and Cardy, JStatM (07) 

t=0 

t 

The perturbation propagates from the center, splitting the 
system into two pieces, inside and outside of the light-cone 

Local	quench:	qualita>ve	picture 
l’=vt 

Region A  Region B 

)log(')'log(' 00 vtcSlcSS +=+=⇒



Computa>onal	cost	
Global quench: 

)exp()exp( ctSmctS =≈→≈

Local quench: 
const.)exp()log( tSmvtS =≈→≈

const.const. ≈→≈ mS
Adiabatic quench: 



Transport	and	systems	out	of	equilibrium	

References:	PRB	78,	195317	(2008);	PRA	78,	013620	(2008)	;	PRL	100,	166403	(2008)	;	
PRB	73,	195304	(2006);	New.	J.	of	Phys	(2010)	 		
Thanks	to:	F.	Heidrich-Meisner,	K.	Al-Hassanieh,	C.	Busser,	G.	Mar>ns,	E.	
Dagofo,	L.	Da	Silva,	E.	Anda 		



Example:	transport	in	1d	
Spinless fermions with 

interactions. 

 

 

Typical behavior: 

1)  Short time transient 

2)  Plateau (we measure!) 

3)  Reflection at the 
boundaries. Current 
changes sign. 

AEF, P. Fendley, MPA Fisher, C. Nayak, PRL08 



Weak	link	/	poten>al	barrier	

kF -kF 

E



Resonant	level	/	double	barrier	



Quantum	dots		
Quantum dot attached to two leads: 

 single-level Anderson model 

qd	

U > 0 
t t’ 

Vg 

U 



Non-interac>ng	limit	(U=0)	

F. Heidrich-Meisner, AEF, E. Dagotto, PRB (09) 



tDMRG	Results	for	1	dot	
Kondo	Effect	and	magne>c	field	

Suppression of Kondo effect: Coulomb Blockade peaks are formed 



Accessing	the	Kondo	regime	
Wilson leads: 1)(   2/ >ΛΛ= −l

lt

1=Λ 1>Λ



Accessing	the	Kondo	regime	
Wilson leads: 1)(   2/ >ΛΛ= −l

lt



Entropy	growth	with	Wilson	leads	



DMRG	vs.	Bethe	Ansatz	

F. Heidric-Meisner et al, EPJB (09), N. Andrei, PRL (80), Gerland et al. PRL (00) 



I-V characteristics 
Particle-hole symmetric point (Vg=-U/2) 

F. Heidrich-Meisner, AEF, E. Dagotto, PRB 2009. 



I-V	characteris>cs	
Finite	magne>c	field	

Eckel, F. Heidrich-Meisner, Jakobs, Thorwart, Pletyukhov, Egger, NJP (10) 



Large	bias	–	out	of	equilibrium	

F. Heidrich-Meisner, AEF, E. Dagotto, PRB (09) 



Dependence	on	the	ini>al	state	



Computa>onal	cost	and	entropy	growth	



Computa>onal	cost	and	ini>al	condi>ons	

Entanglement entropy grows linearly in time, once the steady state is reached.  



Time-dependent correlation 
functions – Spectral properties 

References:	AEF and SR White (05) 	 		



Calcula>ng	spectral	func>ons	



Time	dependent	correla>on	func>ons	
S=1 Heisenberg chain 



Fourier transform to k and ω 

Time 



S=1/2 Heisenberg chain 

L=80; m=200; τ=0.1 

Cu(C4H4N2)(NO3)2 
tDMRG 



S=1/2	Heisenberg	ladder	2xL	(L=32)	



Spin-charge separation 
(seen in photoemission – ARPES) 

photon 
Photo-
electron 

holon spinon 

The excitations don’t carry the same quantum numbers as the original electron 
→ zero quasi-particle weight 



Spin incoherent behavior 

q 

ω Holon band 

Spinon band T∼J 

See G. Fiete, RMP (07) 



ARPES at T=0; J=0.5 

PES 

IPES 

holon spinon 

“Shadow” 
bands 

kF -kF 



Op>cal	conduc>vity:	Peierls-Hubbard	model	



Finite-temperature DMRG 

#):).)@7)9%)AEF and S. R. White, PRB, Rapid (05) 
) ))



Liouville	representa>on	

∑=
jk

jk kjaA
Consider	an	operator	

Another	way	to	define	the	operator	is	by	working	in	Liouville	space:	we	
recast	it	in	the	form	

∑=
jk

jk jkaA
Were	

kjjk ≡

If	the	dimension	of	the	Hilbert	space	is	d,	we	need	dxd	entries	to	define	A	



Liouville	representa>on	(cont.)	

[ ]ρρ ,Hi
dt
d

−=
If	the	operator	is	the	density	
matrix	then	we	can	write	the	
equa>on	of	mo>on	as	

It	can	be	rearranged	as		

[ ] ∑∑ −=−−=
mn

mnmnjk
m

mkjmmkjm
jk LiHHi

dt
d

ρρρ
ρ

,

Were	
jmknknjmmnjk HHL δδ *

, −=

The	Liouvillian	L	is	a	superoperator	with	d2xd2	entries	

ρ
ρ

iL
dt

d
−=

analogous	to	the	
Schroedinger	equa>on	



From	Liouville	to	Thermo	Field	
representa>on	

We	need	dxd	entries	to	define	an	operator,	so	we	can	define	an	“ancillary”	
space,	which	is	a	duplicate	of	our	Hilbert	space	

H →H⊗H’	
For	each	state															in	H,	we	define	a	“>lde”	state										living	in	the	
ancillary	space	(“thermo-field	double”). 

x~x

Now,	we	can	define	a	“quantum”	state	

∑=
jk

jkA kja ~
ψ

This	state	encodes	the	operator	A,	and	the	dxd	amplitudes	
contain	all	the	informa>on.	

Takahashi and Umezawa, Collect Phenom. 2, 55 (1975) 



Thermo	Field	representa>on	

( ) ( ) )0()(        ~ ~
==→−−= −− tetHHi

dt
d HHit

ρρρ
ρ ψψψ

ψ

If	the	operator	is	the	density	matrix,	once	again	we	see	

with		
+= HH~ ac>ng	on	the	ancillary	states	

[ ]∑ −−=
m

mkjmmkjm
jk HHi

dt
d

ρρ
ρIt	is	easy	to	verify	that:	

But	we	work	with	quantum	states	and	Hamiltonians,	instead	of	
operators	and	superoperators.	All	the	machinery	of	many-body,	
Green’s	func>on,	numerics,	can	be	seamlessly	generalized	to	
solve	the	non	equilibrium	problem!	

∑=
jk

jk kj ~
ρψ ρ



Finite	temperature	

AEF and S. R. White, PRB, Rapid (05), Verstraete PRL 2004, Zwolak PRL 2004 

Problem: we want to calculate a thermal average: 

as an average using a wave function instead of density 
matrices: 

 with 
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Finite	temperature	
Let’s	consider	a	two-level	system	

1~10~11~00~0 11100100 ρρρρψ ρ +++=

11011000 11100100 ρρρρρ +++=

or	

At	infinite	temperature	

11
2
100

2
1

+=ρ

1~1
2
10~0

2
1)0( +==βψ ρ

We	can	perform	a	“par>cle-hole”	transforma>on	an	rewrite	it	as:	

( ) ⎟
⎠
⎞⎜

⎝
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~~
2
10~11~0

2
1)0(βψ ρ

Note:	The	sign	does	not	maNer,	we	can	also	use	the	singlet	as	the	maximally	entangled	
state	



Evolu>on	in	imaginary	>me	
Now, let’s prove that the thermal state is equivalent to evolving the maximally 
entangled state in imaginary time.  
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Since this expression does not depend on the choice of basis, we can 
assume that the configurations n are actually eigenstates of H 
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T-dependent 
entanglement 

•!The ancillas and the real sites do not interact! 
•!The global state is modified by the action of the Hamiltonian 
on the real sites, that are entangled with the ancillas.  
•!The mixed state can be written as a pure state in an enlarged 
Hilbert space (ladder-like or bi-layer-like in 2D). 
•!The thermal state is the “square root” of the density matrix. 

KH-+6>-@&/@&/18,/@8.=&>1)&
The thermal state is equivalent to evolving the maximally mixed 
state in imaginary time.  
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Purifica>on	
We have found that the initial state is: 

It is easy to see that it can be written as: 

∑∏ ===
s

ll
l

l ss ~,  with  )0( 0
 sites

0 ψψβψ

The	maximally	entangled	state	between	system	and	ancillas	is	
a	product	state	(totally	disentangled)	of	spin-ancilla	pairs!!		

At  T=0, the system “decouples” from the ancilla: they become totally 
disentangled, meaning 

ancillasg.s.)( ⊗=∞=βψ

∑==
n

nn ~)0(βψ



Example:	single	spin	

|I0〉= |↑,↓〉-|↓,↑〉 

We trace over ancilla: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
01

ρ

The density matrix corresponds to the physical spin 
at infinite temperature! 

↑: “physical” spin 

↓: “ancilla” 

Takahashi and Umezawa, Collect Phenom. 2, 55 (1975), Verstraete PRL 2004, Zwolak PRL 2004 

We introduce and auxiliary spin (ancilla) 



|I〉 =∑|n,ñ〉 

|I〉=|↑↑,↑↑〉+|↓↓,↓↓〉+|↑↓,↑↓〉+|↓↑,↓↑〉 
each term can be re-written as a product of local “site-ancilla” states: 

|I〉=|↑,↑〉|↑,↑〉+|↓,↓〉|↓,↓〉+|↑,↑〉|↓,↓〉+|↓,↓〉|↑,↑〉 
after a “spin-reversal” (flip) transformation on the ancilla we get 

|I〉=|I0〉|I0〉 with |I0〉= |↑,↓〉+|↓,↑〉  
→ only one product state! 
and we can work in the subspace with total Sz=0!!! 

Maximally	mixed	state	for	β=0	(T=∞)	

with |n〉= |s1 s2 s3…sN 〉  2N states!!! 

CM: thermofield representation, QI: mixed state purification 

(auxiliary field ñ is called ancilla state) 

Exercise: prove that the maximally mixed state |I〉 =∑|n,ñ〉 
does not depend on the choice of basis or representation 



The initial state in DMRG language looks like: 

In this basis, left and right block have only one state! 
As we evolve in time, the size of the basis will grow. 

Ini>al	state	

|I〉 =∑|n,ñ〉 
We have found that the initial state: 

Can be written as: 

∑∏ ==
s

ii
i

i
ssIII ~,  with  0

 sites
0

The maximally entangled state between system and ancillas is a 
product state (totally disentangled) of spin-ancilla pairs!!  



Thermodynamics	of	the	spin-1/2	chain		



Frustrated	Heisenberg	chain	

* TM-DMRG results from Wang and Xiang, PRB 97; Maisinger and Schollwoeck, PRL 98. 



Frustrated	Heisenberg	chain	

* TM-DMRG results from Wang and Xiang, PRB 97; Maisinger and Schollwoeck, PRL 98. 



The	maximally	mixed	state	in	the	canonical	
ensemble	

We need to generate a state:  |I〉 =∑|n,ñ〉 
Where the n states are configurations with fixed total Sz, or fixed 
number of particles N 

The previous example was in the grand canonical, all spin projections 
contribute: 

|I〉=|↑↑,↑↑〉+|↓↓,↓↓〉+|↑↓,↑↓〉+|↓↑,↓↑〉 
The maximally mixed state in the canonical with Sz =0 would look: 

|I〉=|↑↓,↑↓〉+|↓↑,↓↑〉 



The	maximally	mixed	state	in	the	canonical	
ensemble	(contd.)	

Let us focus on the physical spins. Let us generate the symmetric 
superposition of all the spin configurations with Sz =0 :  

|S〉=|↑↓〉+|↓↑〉 

It is a and eigenstate of the operator S2 with S =1 

In general, we can prove that the symmetric superposition of all spin 
configurations is an eigenstate of S2 with maximum spin S. 

Therefore, if we want to generate this state, we calculate the ground state 
of the Hamiltonian in desired Sz subspace 

∑ ⋅−=−=
ji

ji SSSH
,

2
!!

For fixed with Sz  this becomes (except for a constant) 

∑
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The	maximally	mixed	state	in	the	canonical	
ensemble	(contd.)	

Now, we need to add the ancilla, so we use:  

( )( ) ( )( )∑
≠

−++−+−−+ +−=
ji

jjiijjii SSSSSSSSH ~~~~

Recipe:  

1)  We prepare the state at infinite temperature as the ground state 
of an artificial Hamiltonian acting on an enlarged Hilbert space 
coupling physical spins and ancillas. 

2)  We evolve the state in imaginary time, using the time-dependent 
DMRG 

AEF, G. Fiete, PRB (2010) 



'()&18B/18++=&1/B)4&9080)&/@&0()&78@-@/78+&
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For fermions: 

fermion-
ancilla pair 



ARPES at finite T 
t-J chain; L=32, N=24, J=0.05 

AEF and G. Fiete, PRB (2010) 
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