Spin-fluctuation theories of unconventional superconductivity

Andrey Chubukov

University of Wisconsin

Theory Winter School, Tallahassee, January 7 2013

Lecture I, summary

Weak coupling theory of unconventional (non-phonon) SC

Kohn-Luttinger mechanism for U(q) = U:

p-wave pairing for isotropic dispersion d-wave (d_x^2, y^2) pairing in the cuprates d+id $(d_x^2, y^2 + d_{xy})$ in doped graphene s+- in Fe-pnictides

If first-order (bare) interaction U(q) in these channels is repulsive, SC is still possible when fluctuations in the density-wave channel are comparable to SC fluctuations (SC vertex is pushed up due to interaction with SDW)

This is truly weak coupling theory: U/W <<1

W = bandwidth

SDW and SC fluctuations develop simultaneously at smaller energies, comparable to Tc (when U log W/Tc ~ 1)

Cuprates: magnetism emerges at a larger scale than superconductivity

Magnetic J ~100 meV (2 magnon Raman peak at 300 meV), superconducting Δ ~5-30 meV

Another scenario: assume that magnetism emerges already at scales comparable to the bandwidth, W

In this situation, one can introduce and explore the concept of spin-fluctuation-mediated pairing: effective interaction between fermions is mediated by already well formed spin fluctuations This is not a controlled theory: U/W ~1 (intermediate coupling)

The key assumption is that at U/W ~1 Mott physics does not yet develop, and the system remains a metal with a large Fermi surface

Problem I: how to re-write pairing interaction as the exchange of spin collective degrees of freedom?

No well-defined perturbation theory for Γ_0 when U ~ W

Use the same strategy as for the derivation of Landau function for a Fermi liquid for a special case when $\Pi(q)$ is peaked at q=0

Suppose that p and k are close, and $\Pi(k-p)$ is peaked at k=p

 $\Pi(0)$ is the largest, but for Γ^{Ω}

Collect subleading terms with $\Pi(k-p)$

care has to be taken about summation of spin indices

The series can be summed up, and the result is

$$\int_{a_{p}, JS}^{S} = - S_{aJ} S_{pS} \frac{4}{1 - 4\pi(k-p)} + S_{aS} S_{pJ} \frac{4}{1 - u^{2}\pi(k-p)}$$

$$= \frac{4}{2} \frac{S_{aS} S_{pJ}}{1 + 4\pi(k-p)} - \left(\frac{4}{2} \frac{\tilde{S}_{aS} \tilde{S}_{pJ}}{1 - 4\pi(k-p)}\right)$$

For repulsive interaction U, the dominant term is in the spin channel

$$(\Gamma_{x\beta,j\delta})_{spic} = -\frac{u}{2} \frac{\overline{\delta}_{x\delta}}{1 - u \Pi(k-p)}$$

 $(\Gamma_{x\beta,j\delta})_{spic} = -\frac{\mu}{2} \frac{\overline{\delta}_{x\delta}}{1 - \mu \Pi(k-p)}$

 $1-U \Pi(k-p) = \xi^{-2} + (k-p)^2$

(in units of interatomic spacing)

$$(\Gamma_{x\beta,j\delta})_{spic} = -\frac{4}{2} \frac{\overline{\delta}_{x\delta}}{\xi^{-2} + (k-p)^2}$$

= -U/2 χ (k-p) $\vec{\delta}_{\alpha\delta}$ $\vec{\delta}_{\beta\beta}$

The same logics is applied, without proof, to the derivation of effective pairing interaction

Near a ferromagnetic instability

Near an antiferromagnetic instability

The outcome of this analysis is the effective Hamiltonian for instantaneous fermion-fermion interaction in the spin channel

Near a ferromagnetic instability

$$H^{\text{eff}} = -g \left(c_{\alpha}^{+} \vec{\sigma}_{\alpha\delta} c_{\delta} \right) \left(c_{\gamma}^{+} \vec{\sigma}_{\gamma\beta} c_{\beta} \right) \chi (q)$$
$$\chi (q) = \frac{1}{q^{2} + \xi^{-2}}$$

Near an antiferromagnetic instability

$$H^{\text{eff}} = -g \left(c_{\alpha}^{+} \vec{\sigma}_{\alpha\delta} c_{\delta}\right) \left(c_{\gamma}^{+} \vec{\sigma}_{\gamma\beta} c_{\beta}\right) \chi \left(q+Q\right)$$
$$\chi \left(q+Q\right) = \frac{1}{q^{2} + \xi^{-2}}$$

THIS IS THE SPIN-FERMION MODEL

It can also be introduced phenomenologically, as a minimalistic low-energy model for the interaction between fermions and collective modes of fermions in the spin channel

Check consistency with Kohn-Luttinger physics

Antiferromagnetism for definitness

$$H^{\text{eff}} = -g \left(c_{\alpha}^{+} \vec{\sigma}_{\alpha\delta} c_{\delta}\right) \left(c_{\gamma}^{+} \vec{\sigma}_{\gamma\beta} c_{\beta}\right) \chi \left(q+Q\right)$$
$$\chi \left(q+Q\right) = \frac{1}{q^{2} + \xi^{-2}}$$

Effective interaction is repulsive, but is peaked at large momentum transfer

Check consistency with Kohn-Luttinger physics

Eqn. for a sc gap

$$\Delta(\mathbf{k}) = -\int d\mathbf{q} \frac{\Delta(\mathbf{q})}{\sqrt{\Delta^2(\mathbf{q}) + \mathbf{E}^2(\mathbf{q})}} \chi(\mathbf{k} - \mathbf{q})$$

KL analysis assumes weak coupling (static interaction, almost free fermions)

To properly solve for the pairing we need to know how fermions behave in the normal state

Energy scales: • coupling g

•
$$v_F \xi^{-1}$$

• bandwith W

Let's just assume for the next 30 min that $g \ll W$. Then high-energy and low-energy physics are decoupled, and we obtain a model with one energy scale g and one dimensional ratio $g/v_F \xi^{-1}$

 $\lambda = \frac{g}{v_F \xi^{-1}}$ is the relevant parameter of the problem

 $\lambda \ll 1$ truly weak coupling, KL pairing in a Fermi gas

 $\lambda >> 1$, the system is still a metal, but with strong correlations

Problem II: how to construct normal state theory for $\lambda >>1$

• fermions get dressed by the interaction with spin fluctuations

• spin fluctuations get dressed by the interaction with low-energy fermions

Bosonic and fermionic self-energies have to be computed self-consistently (c.f. Subir's talk)

Fermionic self-energy: mass renormalization & lifetime Bosonic self-energy: Landau damping

At one loop level:

 k, Ω, β

 $\sigma_{B\alpha}^{v}$

 $\sigma^{\mu}_{\alpha\beta}$

k+Q, Ω + ω , α

bosons (spin fluctuations) become Landau overdamped

$$\omega_{\rm sf} \propto g/\lambda^2 \left(=\frac{9}{64 \pi} \frac{g}{\lambda^2}\right)$$

gas

₹E

At $\xi^{-1} = 0$, Fermi liquid region disappears at a hot spot

Problem III: pairing at $\lambda >>1$

Pairing in the Fermi liquid regime is KL physics

Pairing in non-Fermi liquid regime is a new phenomenon

Pairing vertex Φ becomes frequency dependent $\Phi(\Omega)$

Gap equation has non-BCS form

$$\Phi(\Omega) = \frac{\pi}{2} T \sum_{\omega > \omega_{sf}} \frac{\Phi(\omega)}{|\omega|^{1/2} |\Omega - \omega|^{1/2}} \frac{1}{1 + (|\omega|/g)^{1/2}}$$

$$\Sigma(\omega) \propto \omega^{1/2} \int dq \chi(q, \omega) \propto \omega^{-1/2} \frac{1 + \omega/\Sigma(\omega), \text{ soft cutoff}}{1 + \omega/\Sigma(\omega), \text{ soft cutoff}}$$

For comparison, in a Fermi liquid

$$\Phi (\Omega) = \frac{\lambda}{1+\lambda} \pi T \sum_{\omega} \frac{\Phi(\omega)}{|\omega|} \frac{1}{(1+|\omega|/\omega_{\rm sf})^{1/2}}$$

Compare BCS and QC pairings

Quantum-critical pairing

BSC pairing

$$\Phi(\Omega) = \frac{\pi}{2} \operatorname{T}_{\omega > \omega_{\mathrm{sf}}} \frac{\Phi(\omega)}{|\omega|^{1/2} |\Omega - \omega|^{1/2}} \frac{1}{1 + (|\omega|/g)^{1/2}}$$

$$\Phi (\Omega) = \frac{\lambda}{1+\lambda} \pi T \sum_{\omega} \frac{\Phi(\omega)}{|\omega|} \frac{1}{(1+|\omega|/\omega_{\rm sf})^{1/2}}$$

- pairing problem in the QC case is universal (no overall coupling)
 - pairing kernel is $|\omega|^{-1}$, like in BCS theory, only a half of $|\omega|$ comes from self-energy, another from interaction

Is the quantum-critical problem like BCS?

Let's check: Pairing kernel
$$|\omega|^{-1}$$
 logarithms!
BCS: $\Phi(\Omega) = \overline{\lambda} T \sum_{r=1}^{\omega_{sf}} \frac{\Phi(\omega)}{|\omega|} + \Phi_0, \quad \overline{\lambda} = \frac{\lambda}{1+\lambda}$
sum up logarithms
 $\Phi = \Phi_0 (1 + \overline{\lambda} \log \frac{\omega_{sf}}{T} + \overline{\lambda}^2 \log^2 + ...) = \frac{\Phi_0}{\overline{\lambda} \log \frac{T}{T_c}}$ pairing instability
at any coupling
OC case: $\Phi(\Omega) = \frac{\pi T}{2} \sum_{r=1}^{\infty} \frac{\Phi(\omega)}{|\omega|^{1/2} |\Omega - \omega|^{1/2}} + \Phi_0$

sum up logarithms

$$\Phi(\Omega = 0, T) = \Phi_0 \left(1 + \frac{1}{2}\log\frac{g}{T} + \frac{1}{2}\left(\frac{1}{2}\log\frac{g}{T}\right)^2 + \dots\right) = \Phi_0 \left(\frac{g}{T}\right)^{1/2}$$

no divergence at a finite T Let's look a bit more carefully

$$\Phi(\Omega) = \varepsilon^{\frac{\pi}{2}} T \sum \frac{\Phi(\omega)}{|\omega|^{1/2} |\Omega - \omega|^{1/2}} \frac{1}{1 + (|\omega|/g)^{1/2}} + \Phi_0$$

At small ϵ perturbation theory should be valid

$$\Phi\left(\Omega=0,T\right) = \Phi_0\left(1+\frac{\varepsilon}{2}\log\frac{g}{T}+\frac{\varepsilon^2}{2}\left(\frac{1}{2}\log\frac{g}{T}\right)^2+\ldots\right) = \Phi_0\left(\frac{g}{T}\right)^{\varepsilon/2}$$

Focus on the regime T< Ω <g, from which we get logarithms

$$\Phi\left(\Omega\right) = \frac{\varepsilon}{4} \int \frac{\Phi(\omega)}{|\omega|^{1/2}} \left(\frac{1}{|\Omega - \omega|^{1/2}} + \frac{1}{|\Omega + \omega|^{1/2}} \right)$$

Solve in this regime, and then see whether we can satisfy boundary conditions at $\Omega = T$ and at $\Omega = g$

$$\Phi\left(\Omega\right) = \frac{\varepsilon}{4} \int \frac{\Phi(\omega)}{|\omega|^{1/2}} \left(\frac{1}{|\Omega - \omega|^{1/2}} + \frac{1}{|\Omega + \omega|^{1/2}} \right)$$

Solution is a power-law

$$\Phi\left(\Omega\right) = \Omega^{-(1/4-2\beta)}$$

At small ε we do indeed reproduce perturbation theory

$$\Phi(\Omega, T = 0) = \Phi_0 \left(1 + \frac{\varepsilon}{2} \log \frac{g}{\Omega} + \frac{\varepsilon^2}{2} \left(\frac{1}{2} \log \frac{g}{\Omega}\right)^2 + ...\right) = \Phi_0 \left(\frac{g}{\Omega}\right)^{\varepsilon/2}$$

$$\Phi(\Omega) = \Omega^{-(1/4 - 2\beta)}$$

$$\frac{\Psi(\beta)}{\varepsilon^{-1}}$$

$$\frac{\Psi(\beta)}{\varepsilon^{-1}}$$

Now recall that we need to satisfy boundary conditions: an upper one at g and a lower one at T

$$\Phi\left(\Omega\right) = \frac{\varepsilon}{4} \int_{T}^{g} \frac{\Phi(\omega)}{|\omega|^{1/2}} \left(\frac{1}{|\Omega - \omega|^{1/2}} + \frac{1}{|\Omega + \omega|^{1/2}}\right)$$

With

$$\Phi(\Omega) = \Omega^{-(1/4-2\beta)}$$
 one can satisfy one boundary
condition by varying T, but not both

No QC superconductivity?

No QC superconductivity?

Not so fast....

Perturbation theory does not work for $\varepsilon > \varepsilon_{max}$, and, in particular, it does not work for $\varepsilon = 1$

Set
$$\varepsilon = 1$$
 $\Phi(\Omega) = \frac{1}{4} \int \frac{\Phi(\omega)}{|\omega|^{1/2}} \left(\frac{1}{|\Omega - \omega|^{1/2}} + \frac{1}{|\Omega + \omega|^{1/2}} \right)$

Still search for a a power-law solution $\Phi(\Omega) = \Omega^{-(1/4-2\beta)}$ But now take β to be imaginary, i β $1 = \Psi(i\beta)$

$$\Phi(\Omega) = C\left(\frac{1}{\Omega}\right)^{1/4} \cos\left(2\beta \log(\Omega) + \phi_0\right)$$

A free parameter: phase! Now back to boundary conditions

$$\Phi\left(\Omega\right) = \frac{1}{4} \int_{T}^{g} \frac{\Phi(\omega)}{|\omega|^{1/2}} \left(\frac{1}{|\Omega - \omega|^{1/2}} + \frac{1}{|\Omega + \omega|^{1/2}} \right)$$

One boundary: fix the phase another: set T=Tc

Now we get Tc at which the linearized gap equation has a solution!

The result: a finite Tc right at the quantum-critical point

The result: a finite Tc right at the quantum-critical point

Dome of a pairing instability above QCP

This problem is quite generic and goes beyond the cuprates

$$\Phi(\Omega) = \frac{1-\gamma}{2} \int_{0}^{g} d\omega \frac{\Phi(\omega)}{|\omega|^{1-\gamma}} \left(\frac{1}{|\Omega - \omega|^{\gamma}} + \frac{1}{|\Omega + \omega|^{\gamma}} \right)$$

Abanov et al, Moon, She, Zaanen

$\gamma = 1/2$ And	tiferromagnetic QCP	Abanov et	al, Metlitski, Sachdev
$\gamma = 1/3$ FM ferm	QCP, nematic, composite nions, $\Omega^{2/3}$ problem	Bonesteel, N Haslinger et	IcDonald, Nayak, al, Millis et al, Bedel et al
$\gamma = +0 \ (\log \omega)$	3D QCP, Color supercond	uctivity	Son, Schmalian, A.C, Metlitski, Sachdev
$\gamma = 1$	Z=1 pairing problem	Schm	alian, A.C
$\gamma = +0 \rightarrow \gamma = 1$	pairing in the presence of	f SDW	Moon, Sachdev
$\gamma \approx 0.7$	fermions with Dirac cone	dispersion	Metzner et al
$\gamma = 2$	Pairing by near-gapless p	ohonons llen, Dynes, C	arbotte, Marsiglio, Scalapino,
	$T_{c}^{ad} = 0.1827 \text{ g}$	ombescot, Ma	ksimov, Bulaevskii, Dolgov,

It turns out that for all γ , the coupling $(1 - \gamma)/2$ is larger than the threshold

The actual problem near antiferromagnetic QCP in a metal is more complex, because fermions away from hot spots have Fermi liquid self-energy at the lowest frequencies

g =1.7 eV, Tc ~ 120K

Re: Subir's talk

Superconducting and bond-density-wave order are almost degenerate at T ~ Tc Metlitski, Sachdev Efetov, Meier, Pepin

Tc ~ 0.006g is the temperature at which the "modulus" of the combined SC+ CDW order parameter develops.

Moon Sachdev Metlitski, Sachdev Efetov, Meier, Pepin Accuracy: corrections are O(1), the leading ones can be accounted for in the 1/N expansion

Leading vertex corrections are log divergent

To order O(1/N):

$$\chi(\mathbf{q},\omega) \propto \frac{1}{(\mathbf{q}^2 + |\omega|)^{\eta}}$$

$$\eta = 1 - \frac{1}{2N}$$

The only change is

$$\gamma \to \frac{1}{2} - \frac{1}{2N}$$

Now, we assumed before that g is smaller than W ~ v_F/a What if the coupling is comparable to bandwidth

$$T_c = g \Psi_{\xi}$$

The larger is g, the larger is
$$T_c$$

In general, we have two parameters,

$$u = \frac{g}{W} = \frac{g a}{v_F}$$
 and $\lambda = u \xi$

$$T_c = \frac{V_F}{a} F_{\xi}$$
 (u) $(\Rightarrow g \Psi_{\xi} \text{ when u is small})$

 $u < 1, \lambda = u \xi > 1$

Angle along the Fermi surface

Strong coupling, u >1

At strong coupling, Tc scales with the magnetic exchange J

Strong coupling, u >1

Angle along the Fermi surface

Almost $\cos k_x - \cos k_y$ d-wave gap (as if the pairing is between nearest neighbors) Strong coupling, u >1

On one hand, the whole Fermi surface is involved in the pairing

On the other, the fact that Tc does not grow with u, restricts relevant fermionic states: $\varepsilon_k \approx v_F (k - k_F) \sim J \ll v_F/a$

$$|\mathbf{k} - \mathbf{k}_{\rm F}| \sim \frac{(3-4) \, \mathrm{J}}{\mathrm{v}_{\rm F}} \sim 0.1 \frac{\pi}{\mathrm{a}} << \frac{\pi}{\mathrm{a}}$$

d-wave pairing at strong coupling still involves fermions in the near vicinity of the Fermi surface

Intermediate u = O(1)

Robustness of T_{c,max}

FLEX (similar, but not identical to our calculations)

Monthoux, Scalapino Monthoux, Pines, Eremin, Manske, Bennemann, Schmalian, Dahm, Tewordt

$$T_c \sim (0.01 - 0.015) \frac{V_F}{a} \sim 100 - 150 \text{ K} \text{ for u} \sim 0.25$$

CDA, cluster DMFT

Majer, Jarrell, ... Haule, Kotliar, Capone ... Tremblay, Senechal,

$$T_{c} \sim 0.01 \frac{v_{F}}{a}$$
 for u ~ 0.25, T^{*} ~ 0.015 $\frac{v_{F}}{a}$ for u = 0.75

FLEX with experimental inputs

Scalapino, Dahn, Hinkov, Hanke, Keimer, Fink, Borisenko, Kordyuk, Zabolotny, Buechner

$$T_{c} \sim 170 \text{ K}$$

The superconducting phase

Spin dynamics changes because of d-wave pairing -- the resonance peak appears

• no low-energy decay below 2Δ due to fermionic gap

Collective spin fluctuation mode at the energy well below 2Δ

By itself, the resonance is NOT a fingerprint of spin-mediated pairing, nor it is a glue to a superconductivity

> A fingerprint is the observation how the resonance peak affects the electronic behavior, if the spin-fermion interaction is the dominant one

The resonance mode also affects optical conductivity

Conclusions

Spin-fermion model: the minimal model which describes the interaction fermions, mediated by spin collective degrees of freedom

Some phenomenology is unavoidable (or RPA)

Once we selected the model, how to get $\Sigma(\omega)$ and the pairing are legitimate theoretical issues (and not only for the cuprates).

Universal pairing scale

$$T_{c, max} \sim 0.02 \frac{V_F}{a}$$

The gap

$$\Delta(k) \approx \Delta \left(\cos k_x - \cos k_y\right)$$

Low-energy collective mode

$$\Omega_{\rm res} \sim \Delta / \lambda < \Delta$$

