Measuring entanglement in synthetic quantum systems

K. Rajibul Islam

Institute for Quantum Computing and Department of Physics and Astronomy

University of Waterloo

research.iqc.uwaterloo.ca/qiti/

Theory Winter School, Tallahassee, Florida Jan 8-12, 2018 Entanglement in Many-body Systems

- Resource for quantum information
 processing
- Novel states of matter:

Order beyond simple broken symmetry

Example - Topological order, spin liquid, fractional quantum Hall - characterized by quantum entanglement !

- Quantum criticality
- Quantum dynamics ...

 Challenge: Entanglement not detected in traditional CM experiments

Outline

- Recap preparing entangled states with ion qubits/spins
- State tomography
- Witness operators
- Replica method measuring second Renyi entropy

Preparing entangled states with ions

- 1. Initialize the qubits to a (product) state
- Evolve the state under single qubit unitary rotations and laser-induced phonon mediated spin-spin interactions [digital 'circuit' of logic gates or analog Hamiltonian evolution]
- **3. Measurement** unitary rotation of measurement basis + Spin dependent fluorescence

State Tomography

Reconstruct the entire density matrix

 $|\phi \downarrow + \rangle = 1/\sqrt{2} (|00\rangle + |11\rangle)$

Individual qubit addressing required to measure ZZ,XX,YY,ZX, ...

No. of qubits, N = 2, # measurements = 1800 (~ $3 \uparrow N$), total time taken = 40 sec Roos, C. F. et al, *PRL* **92**, 220404 (2004)

State Tomography

Reconstruct the entire density matrix

 $|W_N\rangle = (|D \cdots DDS\rangle + |D \cdots DSD\rangle + |D \cdots DSDD\rangle$

 $+\cdots+|SD\cdots D\rangle)/\sqrt{N}$

Witness operators

Make your most educated guess!

 $\langle W \rangle < 0 \Rightarrow$ has entanglement of the particular kind!

Quantum Simulation : Platforms

Trapped ions Nature Physics 8, 277–284 (2012)

Neutral atoms in optical lattices Nature Physics 8, 267–276 (2012)

Photonic networks Nature Physics 8, 285–291 (2012)

500 μm -

Superconducting circuits Nature Physics 8, 292–299 (2012)

NV defects in diamonds Physics Today 67(10), 38(2014)

Entanglement

Itinerant many-body systems

Markus Greiner

Alex Ruichao Ma → Simon lab, Chicago

Eric Tai

Philipp Preiss →Jochim Lab, Heidelberg

Matthew Rispoli

Theory:

Andrew Daley Hannes Pichler Peter Zoller Dieter Jaksch ...

Alex Lukin

GORDON AND BETTY MOORE FOUNDATION

Quantum gas microscope

Bakr et al., Nature 462, 74 (2009), Bakr et al., Science.1192368 (June 2010)
Previous work on single site addressability in lattices:
Detecting single atoms in large spacing lattices (D. Weiss) and 1D standing waves (D. Meschede), Electron Microscope (H. Ott), Absorption imaging (J. Steinhauer), single trap (P. Grangier, Weinfurter/Weber), few site resolution (C. Chin), See also: Sherson et al., Nature

Single site parity Imaging

Quantum gas microscope

... and the whole apparatus

Projecting arbitrary potential landscapes

Thesis : P. Zupancic (LMU/Harvard, 2014)

Arbitrary beam shaping .

- Weitenberg et al., **Nature** 471, 319-324 (2011) Zupancic, P., Master's Thesis, LMU Munich/ Harvard 2013
- Cizmar, T et al., Nature Photonics 4, 6 (2010)

High-order Laguerre Modes

Laguerre-Gauss profile

A bottom-up system for neutral atoms

(Single shot image)

Single-Particle Bloch oscillations

• P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, M. Greiner Science 347, 1229 (2015)

Single-Particle Bloch oscillations

• Temporal period
$$T_B = rac{2\pi}{F}$$
 , spatial width $L_B = rac{4J}{F}$

- Delocalized over ~ 14 sites = $10\mu m$.
- Revival probability 96(3)%

• P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, M. Greiner Science 347, 1229 (2015)

Entanglement in Many-body Systems

Many-body system: Bipartite entanglement

Entanglement Entropy

Reduced density matrix:Product stateEntangled state $\rho_A = tr_B \{ \rho \} = |\Psi_A \rangle \otimes \langle \Psi_A |$ \Rightarrow Pure state \Rightarrow Mixed state

Quantum purity = $Tr(\rho \downarrow A \uparrow 2)$ =1 <1

 $SI2 (\rho IA) = -\log Tr(\rho IA 2) = 0$ > 0

Renyi Entanglement Entropy $S_n(\rho_\alpha) = \frac{1}{1-n} \log \operatorname{Tr}\{\rho_\alpha^n\}$

Entanglement Entropy

Many-body Hong-Ou-Mandel interferometry

Alves and Jaksch, PRL 93, 110501 (2004) Mintert et al., PRL 95, 260502 (2005) Daley et al., PRL 109, 020505 (2012)

Hong-Ou-Mandel interference

No coincidence detection for **identical** photons

Hong C. K., Ou Z. Y., and Mandel L. Phys. Rev. Lett. 59 2044 (1987)

Beam splitter operation: Rabi flopping in a double well

Two bosons on a beam splitter

Hong-Ou-Mandel interference

Quantum interference of bosonic many body systems

How "identical" are the **particles**?

vs. How "identical" are the **states**?

If $|\Psi\rangle_1 = |\Psi\rangle_2$, deterministic number parity after beam splitter

Alves and Jaksch, PRL **93** (2004) Daley et al., PRL **109** (2012)

Also see Linke et al, arXiv1712.08581 for experiments on two copies of a trapped ion system simulating Fermi-Hubbard model.

Quantum interference of bosonic many body systems

Making two copies of a many-body state

Measuring many-body entanglement

Mott Insulator

Measuring many-body entanglement

Mott Insulator

Ref: Alves C M, Jaksch D, PRL 93, 110501 (2004), Daley A J et al, PRL 109, 020505 (2012)

Mutual Information I_{AB}

Non equilibrium: Quench dynamics

Probing thermalization of a pure state

Non equilibrium: Quench dynamics

Approximate scaling laws on six sites

Local canonical (thermal) statistics ~ local statistics from entanglement

Calabrese...Cardy, J.Stat.Mech.0504:P04010; **Deutsch...Sharma, PRE 87, 042135 (2013)**; Santos...Rigol, PRE 86, 010102 (2013); Eisert...Plenio, 82, 277 (2010)

Thank You!