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Abstract
The thickness dependence of the critical current density Jc(d) in films due to
the two-dimensional–three-dimensional (2D–3D) pinning crossover at low
magnetic fields is addressed, taking into account the spatial correlation of
pinning centres, the combined effect of bulk and surface pinning, and the
effect of thermal fluctuations. The whole Jc(d) curve for both the 3D and 2D
pinning regimes, and the crossover thickness dc are calculated using a
dynamic approach for a random pinning potential characterized by the
Gaussian correlation functions. It is shown that the spatial correlation of
pinning centres can significantly increase dc as compared to uncorrelated
point pins, and the competition between pinning and thermal fluctuations
gives rise to a nonmonotonic dependence of Jc(d). The account of multiscale
spatial correlations in a uniform pinning nanostructure can result in
behaviour of Jc(d) similar to that observed on YBa2Cu3O7−δ . The ultimate
limit of Jc is discussed.

1. Introduction

Critical current densities Jc of superconducting films are typ-
ically much greater than those of bulk superconductors [1–7].
This difference is usually due to denser and stronger pinning
defects [8, 9] or artificially introduced nanoprecipitate struc-
tures, and the weaker effect of current-blocking obstacles such
as grain boundaries, microcracks, etc [10]. It has often (al-
though not always) been observed that Jc(d) first increases as
the film thickness d decreases, followed by a decrease of Jc

for smaller d. Understanding the mechanisms behind the size
dependence of Jc is particularly important for high-Tc multi-
filamentary conductors and YBa2Cu3O7 (YBCO)-coated con-
ductors in which a significant increase of Jc(d) as d decreases
has been observed [11–16]. This behaviour of Jc(d) has been
attributed to microstructural changes induced by the sample ge-
ometry, in particular, ‘dead’ layers with reduced Tc and Jc or
additional pinning due to mismatch dislocations near the buffer
layer [2, 11, 12], thickness-dependent grain size structure or
porosity [7]. Jc values in films often reach 10–20% of the de-
pairing current density Jd = cφ0/12

√
3π2λ2ξ if d is smaller

than the London penetration depth λ, as was observed on NbN
multilayers [1], NbTi films [17], or YBCO multilayers [18].
Here ξ is the coherence length, φ0 is the flux quantum, and c is
the speed of light.

Besides the thickness-dependent nanostructure, the Jc(d)

dependence can also be due to the fact that the pinning of
vortices perpendicular to the film surface depends on the vortex
length d if it gets smaller than the bulk pinning correlation
length Lc along the field direction H. Here Lc is determined
by the balance of random pinning forces and elastic stresses in
the vortex structure [19]. For d < 2Lc, a transition from the
3D thickness-independent pinning to the 2D pinning for which
Jc(d) increases as d decreases occurs [20–23]. This transition
was observed on NbN multilayers [1], Nb3Ge, Mo3Si [20, 21]
and Mox Ge1−x [23] films. The 2D pinning may account for
the thickness dependence of Jc even for a uniform pinning
nanostructure.

The question to what extent the pinning size effects control
the behaviour of Jc(d) observed in YBCO films still remains
open. For uncorrelated point defects (like oxygen vacancies),
the single-vortex collective pinning theory [19] gives Lc ∼
ξc

√
Jd/Jc at low fields. Therefore, the 2D pinning occurs for

d < dc = 2Lc, where [21]

dc � 2ξc

√
Jd/Jc. (1)

Taking the c-axis coherence length, ξc ≈ 1 nm, Jc ∼
1 MA cm−2 and Jd � 40 MA cm−2 for a 1 μm YBCO film at
77 K, we get dc ≈ 10 nm, much smaller than d ∼ 1 μm below
which YBCO films exhibit a significant increase in Jc(d). Yet,
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the result of the collective pinning theory [21], Jc ∝ d−1/2,
actually describes the observed behaviour of Jc(d) in many
YBCO films well [11–14]. This inconsistency may indicate
that either the pinning size effects are irrelevant or the theory of
the 2D–3D pinning should be generalized to take into account
multiscale pinning nanostructures of YBCO films. Indeed,
the collective pinning theory was originally formulated for the
simplest case of point uncorrelated pins. As shown below, dc

can increase to submicron values if the positions of pinning
centres are correlated within a domain of size ∼ r⊥ much
greater than the vortex core radius [24]. In this paper we
consider the thickness dependence of Jc(d) in films at low
fields for which Jc is determined by single-vortex pinning.

2. 2D–3D pinning crossover

2.1. Surface pinning

The thickness dependence of Jc(d) is often attributed to strong
pinning by surface defects [25, 26]. For example, variation of
the film thickness d(x, y) causes variation of the vortex self-
energy εd(x, y), resulting in Jc = cε|∇d|/φ0d for a straight
vortex trapped in a minimum of d(x, y), where ε is the vortex
line tension. These models imply that the vortex remains
straight as current exerts the Lorentz force to the entire vortex
length. However, in this case a vortex pinned at the ends forms
an arc with a local curvature radius R determined by the force
balance, ε/R = Jφ0/c. For extremely strong surface pinning,
the vortex ends are fixed, and Jc is determined by the condition
that the end segments of the vortex line are parallel to the film
surface. In this case the vortex gets depinned by reconnecting
with its surface image, and [22]

Jc = cφ0

8π2�λ2d
ln

d

ξc
. (2)

For a YBCO film with d = 1 μm at T = 77 K, (λ = 0.3 μm,
the anisotropy parameter � = λc/λ = 7, ξc = 1 nm),
equation (2) gives Jc � 0.3 MA cm−2, much smaller than
typical values 1–3 MA cm−2. The anisotropy of λ reduces Jc,
so the models of straight vortices significantly overestimate Jc.
Thus, the observed high values of Jc in YBCO films cannot be
explained by only surface pinning without taking into account
strong bulk pinning.

2.2. Bulk pinning in films

The pinning size effects in film are particularly transparent at
low fields for which displacements of neighbouring vortices are
uncorrelated, and Jc(d) can be evaluated using the collective
pinning approach [19, 20]. The 2D pinning only causes overall
displacements of vortices which remain nearly straight and
perpendicular to the film surface. If the film thickness is
much greater than the mean pin spacing li , the vortex interacts
with N = r 2

p d/ l3
i 	 1 pins, adjusting its position so that

the net pinning force vanishes. Current displaces the vortex
from a local potential well, so the balance of the total pinning
force fp

√
N from uncorrelated pins in the volume r 2

p d and the

Lorentz force φ0d J/c yields φ0 Jcd/c = fp

√
N , whence

Jc = c

φ0

√
γ

d
. (3)

Here γ (T , B) = u2
pni , ni = l−1/3 is the volume pin density, Fp

is an elementary pinning force, rp is the pin interaction radius
and up = fprp is the elementary pinning energy. Notice that
the 1/

√
d dependence of Jc(d) at low fields turns into the 1/d

dependence at higher fields [21, 22].
The crossover between the 2D pinning of a rigid vortex to

the 3D pinning of a deformable vortex can be evaluated using
the collective pinning theory [19]:

Jc ∼ c

φ0

√
γ

Lc
, ε(Lc)

(
u

Lc

)2

∼ φ0

c
u Jc. (4)

The first relation is similar to equation (3) for a vortex segment
of length Lc, and the second one reflects the balance of the
pinning energy and a bending elastic energy of the vortex
segment displaced by u from its equilibrium position. Here
the dispersive line tension ε(q) for the wavevector q � π/Lc

along the vortex is given by [19]

ε(q) = ε0

2�2
ln

λ2
c

ξ 2(1 + q2λ2)
+ ε0

2λ2q2
ln(1 + q2λ2), (5)

where � = λc/λ = ξ/ξc is the anisotropy parameter, and
ε0 = (φ0/4πλ)2 is the scale of the vortex line energy. The
strong decrease of ε(q) from ∼ ε0/2 for qλ 
 1 to ∼ ε0/�2

for qλ 	 � reflects the essential elastic nonlocality of the
vortex line in anisotropic superconductors.

Using the second equation (4) and equation (5), we arrive
at the following relation between Lc and Jc0:
(

πλ

�Lc

)2

ln
λ2

c

ξ 2[1 + (πλ/Lc)2] + ln

[
1 +

(
πλ

Lc

)2]

= C
λ2

ξu

Jc0

Jd
, (6)

where Jd = 4cε0/3
√

3φ0ξ is the Ginzburg–Landau depairing
current density in the ab plane. The numerical coefficient
C ∼ 1 cannot be obtained from the qualitative estimate (4),
but will be evaluated below from the dynamic theory.

For high Jc caused by uncorrelated point pins (rp ∼
ξ, u ∼ ξ ), the right-hand side of equation (6) is much
greater than 1 (for instance, Jcκ

2/Jd ∼ 102 if κ � 102 and
Jc/Jd ∼ 10−2). Then the first term in the left-hand side
dominates, and dc is given by equation (1). However, for
strong pinning centres, the vortex displacements u can be much
greater than ξ [28–30], so the term Jcκλ/u Jd in equation (6)
can become of the order of unity. In this case Lc may be
comparable to λ. This conclusion is illustrated by figure 1
which shows Lc as a function of Jc defined by equation (6) for
� = 5 and κ = 100. Taking, for example, Jc = 1 MA cm−2,
Jd = 36 MA cm−2, κ = 102, λ = 0.3 μm at 77 K, we obtain
that dc = 2Lc � 1 μm corresponds to Lc/πλ � 0.5, which, in
turn, requires Jcκλ/u Jd � 3, that is, u � λ. For Lc > λ and
� 	 1, the first term in the left-hand side of equation (6) is
negligible, so the anisotropy becomes unimportant. Therefore,
dc = 2Lc can significantly exceed the estimate (1) because
(1) strong and/or correlated pinning defects cause large vortex
displacements u 	 ξ , and (2) elastic nonlocality of the vortex
line compensates the reduction of dc due to strong anisotropy
for � 	 1.

The above consideration corresponds to a strong single
vortex pinning, for which pinning forces prevail over inter-
vortex interactions. This condition can be written in the form
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Figure 1. Pinning correlation length Lc defined by equation (6).

Jcφ0/c > Krp, where the spring constant K = φ0 H/8πλ2

results from the magnetic cage potential acting on a vortex
from the surrounding amorphous vortex structure. Hence, the
single vortex pinning occurs at low fields H < Hs, where

Hs � 8πλ2 Jc/crp. (7)

It is also assumed that H exceeds the field of full flux
penetration Hp = 4d Jc/c, so transport current flow is uniform,
vortices are aligned with the applied field perpendicular to the
film surface, and the influence of self-field effects and the
geometrical barrier [31–33] is negligible. Taking λ(77 K) =
0.4 μm, Jc = 4 MA cm−2, we obtain Hp = 64 Oe and
Hs = 3.2 T for pins with the interaction radius rp = 5 nm. In
the following we consider how spatial correlation of pinning
centres affects the thickness dependence of Jc(d) in films for
Hp < H < Hs.

3. Dynamic Jc in a film

The collective pinning theory was generalized by Kes and
Tsui [20] to calculate Jc in films. In this approach strains
in the pinned vortex lattice are inhomogeneous over the film
thickness, so only asymptotic behaviours of Jc(d) in the 2D
(d 
 dc) and 3D (d 	 dc) limits have been obtained [21, 22].
In this work we use the dynamic approach [34] which has
been widely applied for the analysis of vortex dynamics and
pinning in high-Tc superconductors (HTSs) [19]. Namely, we
consider a current-driven vortex and then calculate a dynamic
Jc at which the pinning correction δv(J ) to the vortex velocity
becomes comparable to flux flow velocity vF = Jφ0/ηc,
where η is the vortex viscosity. The dynamic Jc defined by
the condition δv(Jc) � vF(Jc) has the same dependence on
parameters as the static Jc obtained from the collective pinning
force balance [19]. However, in the dynamic approach a closed
form equation for Jc(d) can be obtained, which comprises both
the 2D and 3D pinning limits, including the crossover region
d ∼ dc. Another advantage of the dynamic approach is that
it can incorporate any form of the correlation function of the
pinning potential F(r1, r2) = 〈U (r1)U (r2)〉 to address the
effect of the finite correlation lengths and surface pinning.

3.1. Pinning correlation functions

The dynamic Jc can be calculated from the following equation
of motion for a single vortex in a random pinning potential
U (ρ, z):

ηρ̇ =
∫ ∞

−∞
G(z − z′)ρ(z′)dz′ − ∇U (ρ, z) + [J × ẑ]φ0

c
(8)

where ρ(z, t) = (x, y) is a local coordinate of the vortex line,
the dot denotes the time derivative, and the Fourier transform
of the kernel G(z − z′), which describes the nonlocal bending
rigidity of a vortex, is given by [19]

G(q) = q2ε0

2�2
ln

λ2

ξ 2
c (1 + q2λ2)

+ ε0

2λ2
ln(1 + q2λ2). (9)

The statistical properties of U (r, z) are defined by the averages
〈U 〉 = 0, and by the correlation functions

〈U (r1)U (r2)〉 = Fb(|ρ1 − ρ2|, z1 − z2)

+ Fs(|ρ1 − ρ2|)p(z1)p(z2). (10)

Here 〈U (r1)U (r2)〉 contains the bulk part Fb and the part Fs

localized near the surfaces, where r = (ρ, z), the coordinate
ρ lies in the film plane, and the z-axis is perpendicular to
the film surface. Equation (10) describes the situation in
which the surface pinning is different from the bulk one.
The pinning potential in the xy plane is assumed statistically
uniform and isotropic, and p(z) describes the decay of the
surface component on the length ∼l . In this work the Gaussian
correlators are used:

Fb(ρ, z) = Fb0 exp

(
−ρ2

r 2⊥
− z2

r 2‖

)
, (11)

Fs(ρ) = Fs0 exp(−ρ2/r 2
s ), p(z) = e−z/ l, (12)

where Fb0 and Fs0 quantify the strength of bulk and surface
pinning, respectively, r⊥ and r‖ are bulk correlation radii of
the pinning potential in the xy plane and along the z-axis,
and rs is the correlation radius of the surface pinning potential
localized in the layer of thickness l at the film surface. Here r⊥,
r‖, rs and l are generally controlled by different mechanisms.
For example, in HTSs the difference in r‖ and r⊥ reflects
the crystal anisotropy, while rs may quantify the scale of the
surface roughness. The separation of 〈U (r1)U (r2)〉 into the
bulk and surface components is justified if r‖ and r⊥ are much
smaller than the film thickness. The case l 
 d describes
pinning defects localized at the surface (for example, interface
dislocations [11, 12]), while the case l > d corresponds
to correlated defects, such as threading dislocations [35] or
radiation columnar defects [36] or linear artificial pinning
centres (nanorods) [37, 38] perpendicular to the film surface,
but randomly distributed in the film plane.

To illustrate the length scales of the pinning correlation
functions, we consider an array of identical pins, each
interacting with a vortex via the potential u(r). Then the global
pinning potential is

U (r) =
∫

u(r − R)[n(R) − ni ] d3R, (13)

where n(R) = ∑
n δ(R − Rn) is a local density of pins,

ni = 〈n〉, and δn(r) = n(r) − ni is the density fluctuation.
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Using equation (13), the correlation function F(r − r′) =
〈U (r)U (r′)〉 for a macroscopically uniform distribution of
pinning centres can be written in the form

F(r − r′) =
∫

d3k
(2π)3

|u(k)|2S(k)eik(r−r′), (14)

where u(k) is the Fourier transform of u(r), and S(k) is the
Fourier transform of the pin density correlation function

S(k) =
∫

d3r e−ikr〈δn(r)δn(0)〉, (15)

normalized by the condition
∫

S(r)d3r = ni . Here we take the
Gaussian structural factor,

S(r) = ni

π3/2l2
⊥l‖

exp

(
−ρ2

l2
⊥

− z2

l2
‖

)
, (16)

where ρ2 = x2+ y2, and l⊥ and l‖ define the spatial extent over
which positions of pinning centres are statistically correlated
(for example due to elastic interaction of precipitates). Because
of the HTS anisotropy, l⊥ in the ab plane may differ from l‖
along the c-axis.

Now we consider different forms of the elementary
pinning potential u(r), starting from a short-range core
interaction approximated by [19]

u(ρ, z) = up

r0
√

π
exp

(
−ρ2 + z2

r 2
0

)
, (17)

where r0 is the size of a precipitate or a region of reduced
Tc, and up = ∫ ∞

−∞ u(0, z)dz is the total pinning energy.
Substituting equations (16) and (17) into (14) yields (11), in
which Fb0 = ni u2

p

√
πr 4

0/r 2⊥r‖, and

r⊥ = (2r 2
0 + l2

⊥)1/2, r‖ = (l2
‖ + 2r 2

0 )1/2. (18)

Another example is the attraction force density f (ρ, z) per
unit vortex length produced by a small insulating precipitate
or by a pore of radius r0 
 λ spaced by ρ < λ from
the vortex. Pinning by nanopores in YBCO films has been
recently discussed by several groups [7, 39]. The force f (ρ, z)
calculated in appendix A has the form

f (ρ, z) � ε0r 3
0

(ρ2 + r 2
0 )1/2(ρ2 + z2 + r 2

0 )3/2
. (19)

Equation (19) gives the total pinning force, fp(ρ) =∫ ∞
−∞ f (ρ, z)dz = 2ε0r 3

0 /(ρ2 + r 2
0 )3/2, and the pinning energy,

up = ∫ ∞
0 fp(ρ)dρ = 2ε0r0. Here r0 in the denominator

qualitatively provides a smooth transition to the vortex–pore
interaction at short distances [40]. Thus, both the long-range
magnetic pinning interaction described by equation (19) and
the short-range core pinning modelled by equation (17) can
produce very high pinning energies up � 2r0ε0 equal to the
gain in the condensation core energy of a vortex segment in the
pore.

If the pin interaction radius is comparable to the radius
l⊥ of the domain where the positions of pins are correlated,
F(r − r′) depends on the particular forms of both u(r) and
S(r). For the magnetic force (19), as well as long-range

interactions between vortices and grain boundaries [41] or
columnar defects [42], the pinning correlation function F(r −
r′) is far from being Gaussian even for the Gaussian structural
factor S(r). However, for l⊥ 	 r0, the behaviour of F(r −
r′) is mostly determined by S(r), while the shape of u(r)

only affects the amplitude Fb0. So the convenient Gaussian
approximations (11) and (12) are used here for the calculation
of Jc(d), although, unlike short-range pins, the amplitudes Fc0

and Fs0 for the long-range pinning interaction cannot be readily
expressed in terms of the pinning energies up.

3.2. Thickness dependence of Jc

Calculation of the dynamic Jc for the Gaussian pinning
correlation functions (11) and (12) presented in appendix B,
results in the following equation for Jc(d)

J 2
c � 8c2

φ2
0

∞∑

n=0

[√
πr‖ Fb0

dr 2⊥
e−k2

nr2‖ /4 Q

(
cr⊥Gn

φ0 Jc

)

+ 2l2 Fs0[1 − (−1)n e−d/ l]2

(1 + δn0)(1 + l2k2
n)

2d2r 2
s

Q

(
crsGn

φ0 Jc

)]
, (20)

where G(kn) is defined by equation (9), and

Q(s) =
∫ ∞

0
e−t2−st (2t − t3) dt. (21)

Here Q(s) ≈ 2/(4 + 1.1s + s2) to an accuracy �6%. The two
terms in the brackets in equation (20) represent contributions
from bulk and surface pinning, respectively. The case l 
 d
corresponds to the localized surface pinning, and the case
l 	 d models pining by linear defects.

For small d, the vortex bending modes with n �= 0 can be
neglected, and the sum in equation (20) is dominated by the
term with n = 0. This case corresponds to the 2D pinning for
which equation (20) yields for l 
 d

Jc = c

φ0

(
γb

d
+ γsl

d2

)1/2

(22)

where γb = 4
√

πr‖Fb0/r 2
⊥, and γs = 4Fs0l/r 2

s . If surface
pinning is negligible, equation (22) reduces to the collective
pinning estimate (3) with γb = 4πu2

pni(r0/r⊥)4 for the short-
range pins described by equation (17). As follows from
equation (22), the squared critical current Ic = Jcdw is a linear
function of the film thickness:

I 2
c = (γbd + γsl) (cw/φ0)

2. (23)

This form is convenient for separating bulk and surface pinning
contributions from the observed Ic(d), and to reveal the effect
of a ‘dead layer’ for which γs < 0. Equation (23) is also
useful for distinguishing the 2D collective pinning from the
3D pinning in a film with an extra surface pinning. In the latter
case, Jc(d) = Jc0(1 + ds/d), so Ic(d) is a linear function of
d, where w is the film width and Jc0 is the bulk critical current
density.

Equation (20) describes the dimensional crossover from
the 2D to 3D pinning produced by the vortex bending
modes with n > 0. We consider this transition in more
detail, neglecting surface pinning (γs = 0). The 2D mode
with n = 0 dominates if the functions Q(cr⊥Gn/φ0 Jc) in
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Figure 2. Jc(d) calculated from equation (20) with no surface
pinning for different values of the dimensionless pinning parameter
g = 32r‖λ3 Fb0/

√
πr4

⊥ε2
0 = 1, 3 and 5, and r‖ = 0.1λ. All Jc values

are normalized to Jc0 for the 3D pinning at g = 1.

equation (22) rapidly decrease with n, so the critical thickness
dc is determined by the condition cr⊥G1/φ0 Jc � 1. This
condition does reduce to equation (6) with u = r⊥ and C =
8/3

√
3. Therefore, the dynamic approach not only reproduces

the results of collective pinning analysis, but also shows that
the relevant vortex displacement u in equation (6) equals the
correlation radius r⊥, which can be much greater than ξ . Thus,
dc can be much greater than the estimate (1) for uncorrelated
point pins, as discussed above. In the 3D regime, d 	 dc, the
summation of the slowly varying Q functions in equation (3)
can be replaced by integration, which reproduces the well-
known results of the collective pinning theory for Jc in the limit
of uncorrelated pins, F(r − r1) → γ δ(r − r1) [19].

Shown in figure 2 is the full dependence of Jc(d)

calculated from equation (20). A convenient interpolation of
Jc(d) without surface pinning is given by

Jc(d) = Jc0

√

1 + dc

d
(24)

where the 3D pinning Jc0 corresponds to d 	 dc.
Equation (24) approximates the Jc(d) curve in figure 2 to an
accuracy �3–4%. For the values of the parameters given in
the caption of figure 2, the crossover thickness dc � 0.5πλ

is about 0.6 μm for YBCO at 77 K. Here dc can be extracted
from experimental data by plotting I 2

c /d ∝ d + dc. Notice
that increasing the pinning strength parameter g defined in the
caption of figure 2 mostly increases the magnitude of Jc(d),
but has little effect on dc.

4. Effect of thermal fluctuations

Pinning size effects also affect the thermally activated vortex
dynamics, which determines the E–J characteristics and the
irreversibility field in HTSs. Thermal fluctuations are most
pronounced in thin films for which they can significantly
change the thickness dependence of Jc(d) for the 2D collective

pinning. We illustrate here the mechanisms by which
fluctuations affect Jc(d) in a simple but exactly solvable model.
In the flux creep region, J < Jc, the small electric field
E is mostly determined by rare thermally activated jumps
of vortices between pinning wells in the direction of the
Lorentz force. Since vortices in thin films basically behave
like particles, one can qualitatively consider an effective 1D
dynamics of a vortex in a ‘washboard’ potential

dη ẋ = dφ0 J/c − P sin kx + ζ. (25)

Here P = d Jcφ0/c is the maximum pinning force, � = 2π/k
is a spacing between potential wells, ζ is the white noise
thermal force, and the pinning size effects manifest themselves
in the dependence of P(d), say P ∝ d(1+dc/d)1/2 for the 2D–
3D pinning crossover in equation (24) and P ∝ (d + ds)

1/2 for
the 2D pinning, where ds = lγs/γb. Equation (25) is analogous
to the equation for an overdamped point Josephson junction,
for which E(J ) can be calculated exactly [43]. Equation (25)
has also been used to describe the thermally activated dynamics
of vortices [44, 45]. The E–J characteristics in this model has
the form

ε = θ(1 − e−πβt/θ )/t
∫ π

0
e−βtα/θ I0

[
f (t) sin α

θ

]
dα, (26)

where ε = E/ρF J0, β = J/Jc0, t = d/dc, and f (t) =
P(d)/P(dc) are the dimensionless electric field, current
density, film thickness and pinning force, respectively, ρF =
ρn H/Hc2 is the flux flow resistivity, I0(x) is a modified Bessel
function, and the dimensionless temperature θ quantifies the
strength of thermal fluctuations:

θ = πkBcT/Jc0φ0dc�. (27)

For Jc0 = 1 MA cm−2, dc = 0.5 μm, � = 50 nm and
T = 77 K, equation (27) yields θ � 6.7 × 10−3.

For a given electric field criterion εc = Ec/ρF Jc0, the
implicit equation (26) determines the thickness dependence
of Jc with the account of thermally activated vortex hopping.
Shown in figure 3 is the evolution of Jc(t) calculated from
the equation εc = ε[Jc(t)] for f (t) = √

t (1 + t) given by
equation (24) and εc = 10−6 for Ec = 1 μV cm−1, B/Bc2 =
0.01, and ρn = 0.1 m� cm−1. The Jc(d) curves are plotted for
different values of the parameter θ , which increases as either T
or B increases, and Jc0(T , B) in equation (27) decreases.

As follows from figure 3, the interplay of pinning and
thermal fluctuations can produce a maximum in Jc(t), which
disappears for larger θ . For small θ , thermal fluctuations do
not affect the 2D thickness dependence Jc ∝ d−1/2, except for
very small d. This effect is rather transparent: as the vortex
length in thinner films decreases, the 2D pinning becomes
stronger, but vortex fluctuations which average out the pinning
potential also become stronger, eventually causing the drop of
Jc(d). The behaviour of Jc(d) for small d depends on what
pinning mechanism dominates. For weak surface pinning, the
amplitude of vortex fluctuations uθ = (kBT/Pk)1/2 increases
as d decreases, so Jc(d) in figure 3 vanishes as d → 0. If,
however, surface pinning dominates, both the spring constant
Pk and the transport Jc(d) remain finite even for d → 0, and
the peak in Jc(d) can disappear.
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Figure 3. Evolution of the thickness dependence of Jc(d) described
by equation (26) for different values of (1) θ = 0.0065, (2) 0.01,
(3) 0.015, and (4) 0.025.

5. Discussion

This work shows that a significant thickness dependence of Jc

due to the 2D–3D collective pinning crossover can occur below
dc that is much greater than what follows from equation (1) if
the positions of the pinning centres are correlated. Such short-
range order may, for example, result from elastic interaction
of pinning centres during the film growth. In fact, there
is no a priori reason that pinning centres are completely
uncorrelated down to the scale ∼ ξ , as is usually assumed
in the collective pinning theory [19]. However, although the
thickness dependence (24) is rather universal and describes
the observed dependences of Jc(d) in some YBCO films
well [11–14], the particular value of dc may vary from sample
to sample. As follows from figure 2, the higher Jc0 is, the less
pronounced the thickness dependence of Jc is.

Thermal fluctuations can modify the behaviour of Jc(d),
as illustrated by figure 3. For small values of the parameter
θ (at low H and T ), the dependence Jc(d) predicted by the
2D collective pinning model remains practically unchanged
except for very small d, where a maximum in Jc(d) develops.
As T and/or H increases, the Jc(d) curves flatten out; the
maximum in Jc(d) shifts toward larger d, and eventually
disappears. A qualitatively similar trend was observed on
YBCO films [15] as T was increased from 13 to 65 K. In
addition, thermal fluctuations reduce the irreversibility field in
thinner films, which is another fingerprint of the 2D collective
pinning scenario.

The manifestations of the 2D pinning and thermal
fluctuations in Jc(d) may occur only if a vortex line is
collectively pinned by many comparatively weak defects to
produce high Jc values. Stronger and larger pins like insulating
nanoprecipitates which turned out to be very effective in
increasing Jc of YBCO films at higher magnetic fields [4, 5]
can subdivide a vortex line into weakly coupled segments
pinned independently. In this case no strong thickness
dependence of Jc(d) is expected because the length of vortex

segments is of order of pin separation (∼10–102 nm), much
smaller than the film thicknesses. Such a situation may occur
in YBCO films produced by metal–organic deposition [7].
Yet, the 2D–3D pinning scenario predicts that the behaviour
of Jc(d) can be changed by varying T and B. This feature
enables one to experimentally distinguish it from the behaviour
of Jc(d) controlled by a thickness-dependent microstructure.

Since Jc increases as d decreases, one can pose the
question of what maximum Jcm can be reached by reducing
the pin spacing li in the extreme strong pinning limit. For a
sparse pinning structure, Jc always increases as the pin density
increases; however, as li becomes of the order of the core size,
insulating pinning nanoprecipitates start blocking the current
and Jc(li ) decreases. As a result, Jc reaches the maximum Jcm

at the optimum volume fraction of pins xm determined by the
competition between pinning and current-blocking effects. A
rough estimate of Jcm at low fields can be made by considering
pin breaking for a vortex segment between two very strong
pins spaced by L⊥ along the c-axis. At J = Jc such a
segment forms a critical elliptic loop of width L⊥ along the
c-axis and of length L‖ = L⊥� along the current flowing in
the ab plane [27]. The condition that this loop can squeeze
between pinning centres, L‖L⊥ ∼ l2

i , defines the critical length
of vortex segments L⊥ ∼ li/

√
� for randomly distributed pins.

Now Jc can be estimated using equation (2) in which d is
replaced with the loop width L⊥ ∼ li/

√
�:

Jc � cφ0 ln(li

√
�/ξ)

8π2λ2li

√
�

(
1 − 4πr 3

0

3l3
i xc

)
. (28)

Here the last factor in the parentheses accounts for the
reduction of the current-carrying cross section Aeff = (1 −
x/xc)A in the effective medium theory [7], x = 4πr 3

0/3l3
i

is the volume fraction of insulating pins of radius r0, and
xc is the percolation threshold. The function Jc(x) reaches
the maximum at xm � xc/4. If we take the 2D percolation
threshold xc = 0.5 for an anisotropic HTS and � = 7, the
numerical optimization of equation (28) gives lm = 3.75r0,
xm ≈ 8%, Jcm ≈ 0.5Jd for r0 = ξ , and lm ≈ 3.6r0, xm ≈ 9%,
Jcm ≈ 0.33Jd for r0 = 2ξ , and lm = 3.54r0, xm ≈ 9.5%,
Jcm ≈ 0.25Jd for r0 = 3ξ . Notice that r0 may exceed
the geometrical radius of the precipitate if superconductivity
at the interface is suppressed by strains, local hole depletion,
etc. These estimates show a clear trend for the limit to which
Jc can be increased by adding nanoprecipitates, giving the
optimum Jcm at ≈10% volume fraction of pins, consistent with
the observations by Haugan et al [4] on YBCO films. The
fundamental mechanisms, which control the limit of in-field
Jc, and the irreversibility field for strong pinning are still poorly
understood. However, the observed radical enhancement of in-
field Jc by insulating nanoparticles shows a very effective route
to this problem.
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Appendix A. Pinning by a pore

The superfluid velocity distribution v(r) = J/ne2 around a
sphere or radius r0 has the form [46]

v = [3n(Vn) − V]r 3
0 /2r 3. (A.1)

Here n = r/r , and V is the velocity of external uniform flow.
We assume that V results from the circulating current density
of a vortex line, J (ρ) = cφ0/8π2λ2ρ at the distance ρ < λ

from the pore, where the London screening is ineffective, and
J (r) varies weakly over lengths ∼r0. The magnetic interaction
force results from the Lorentz force caused by the pore-induced
disturbance of the velocity component perpendicular to the
vortex line. Since Vn = 0 for any r connecting the pore and the
vortex, the Lorentz force per unit length f = [J × z]φ0/c only
comes from the second term in the brackets in equation (A.1),
giving f (ρ, z) = φ2

0r 3
0/16π2λ2ρ(ρ2 + z2)3/2. For smaller

distances, ρ ∼ r0, the uniform flow approximation fails, but
a simple regularization ρ2 → ρ2 + r 2

0 provides a qualitative
interpolation between the asymptotic equation (19) for r0 

ρ 
 λ and the vortex sitting on the pore (ρ ∼ r0) for which
the pinning energy up ∼ r0ε0 [40].

Appendix B. Dynamic approach

For a rapidly moving vortex, ρ(t, z) = vt + u(z, t), where
v = [J × z]φ0/cη, and u(z, t) is a vortex distortion,

δr(z, t) =
∞∑

n=−∞
An(t) cos knz. (B.1)

Here the term with n = 0 describes the displacement
of the rigid vortex due to pinning, and the terms with
n > 0 correspond to elastic bending modes with the
wavevectors kn = πn/d, which ensure that the vortex ends
are perpendicular to the film surface. Equation (8) is solved in
perturbations in δv/v:

ηu̇(z, t) =
∫ ∞

−∞
G(z − z1)u(z1, t)dz1 − ∇U0(t, z), (B.2)

where U0(t, z) = U (x0 − vt, y0, z). From equations (B.1)
and (B.2), we obtain

u(z, t) = − 1

ηd

∞∑

n=−∞
cos knze−ωn t

×
∫ t

−∞
dt1

∫ d

0
eωn t1 cos knz1∇U0dz1, (B.3)

where ωn = G(kn)/η, and G(kn) is given by equation (9).
Next δv is calculated, expanding U in equation (8) in u,
integrating over z and averaging over the pinning disorder:

δv = 1

dη

∫ d

0
[〈ux∂

2
xx U 〉 + 〈u y∂

2
x yU 〉]dz, (B.4)

where x(t) = x0 − vt , and y = y0. Combining equation (B.3)
into (B.4) gives

δv = 1

d2η2

∞∑

n=−∞

∫ t

−∞
dt1eωn(t1−t)

∫ d

0
dz

∫ d

0
dz1

× cos knz cos knz1

[
∂3

xxx F + ∂3
x yy F

]

x=v(t1−t)

. (B.5)

Inserting F defined by equations (10)–(12) with x − x1 =
v(t − t1) and y − y1 → 0 into equation (B.5), and integrating
over z, z1 and t1, yields

v = Jφ0

ηc
− 8c

ηφ0 J

∞∑

n=0

[√
πr‖Fb0

dr 2⊥
e−k2

nr2
‖ /4 Q

(
cr⊥Gn

φ0 J

)

+ 2l2 Fs0[1 − (−1)ne−d/ l]2

d2r 2
s (1 + δn0)(1 + l2k2

n)
2

Q

(
crsGn

φ0 J

)]
, (B.6)

where Q(s) is defined by equation (21). The condition v(Jc) =
0 results in equation (20).
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