Maglab lectures

$$
J_{a_{n}} \quad 18
$$

Outline
O. Topirs + scope of lectures
I. Entuglent entopies in field ther-ies
A. Cansal domain
B. Rindler space in vacunm
C. 1 interal in CFT
D. I intual is geveal thy
E. 2 intuals in CFT
F. otler topics
II. EES in hologuphic themies
A. Hologaphy
B. Ryn-Talayanag; formula
C. Examples
D. Poopaties
E. other topics
0. The topic of these lectures is entanglement entopies in quantum field tholes. It has keen understood gradually over the lost 25 years that these quantities contain a wealth of physical info.

More specifically, gien a QFT on a space, if re dimile the spore into a region A and its complement A^{C}
A
A^{c}
then (modulo curtin subtleties that we'll
igwe) by locality (comuntation of separated olseralles) the Hilhot space fachorizes $\quad O d=O t_{A} \otimes O A_{A^{c}}$ bien a stale pie can then befie $\rho_{A}:=\operatorname{Tr}_{a_{A^{c}}} \rho$

$$
S(A):=-\rho_{A} \operatorname{Tr} \ln \rho_{A}
$$

(a otler quatities such as Réry: entopies + velative entopies)
Our hasiz aim will he to show ho- this quantity conelates wl
importat aspuets of the physirs, such as ariticulity, conelation leygts, RC flas, finite tenp, etc. I will then focus on thearies ont hologupher duals, epplaning the hasics of hologumply and shoury how entingleart is rupesuled georaticully in these thovies.
Thuybant these leenters I will mit myself to relutuistic QFTs in 1+1 divessions. This is hecause - it focuses the discussion + allons se to he wie conucte

- nost (hut notall) if the rp-bant physics is abraty capphed there
- uy draing skills are limited to $2 d$

Why is a high-engy theorist giving
lectures at a CMT school?
This is an onces of eny furtful interactios hetween the two fields.
In fact, one if the uns that eutangerant enhopies ecterad who CMT is from HET.
Originally this coe fon tying to nodertud hlack Loles

Key develupuerts
$\left.\begin{array}{ll}172 & \text { Bekastein } \\ 174 & \text { Howking }\end{array}\right\} \begin{array}{ll} & \end{array}$
175 Un-uh \quad Disugrono-Wichmann $\}$ Rindler
$\begin{array}{cl}186 & \text { Sorkin } \\ 193 & \text { Suedmelai }\end{array}\left\{\begin{array}{l}\text { BH enhory } \\ \text { area law }\end{array}\right.$
$\left.\begin{array}{ll}194 & \text { Holzly-Laser-Vilczek } \\ 103 & \text { Culahuse-Cordy }\end{array}\right\} E E$ in 2d CFT
106 Ryu-Taleayaraj; Holographic EE
I. Entroberant entopies in tield theories
A. Cacsal domain

Ve cosider a relatuistic QFT in $1+1$ d Minkonski space.

A spatial regura, say at $t=0$, is a set of interals.
comiler a siggle intual. The exp. wal. of op θ_{A} in A is determed hy ρ_{A} :

$$
\left\langle\theta_{A}\right\rangle=\operatorname{tr}_{O_{A}}\left(\sigma_{A} \rho_{A}\right)
$$

In fuct, hy Hewsentry EOCY, an op in cacsal donain of A can he expressed in tims of ops in A, therefer is also detensined hy fA.

Therefue, P_{A} and $S(A)$ are weally associated not with A hut r / its casesal domain.
B. Rindler space in vac.

Ex: $A=\{t=0, x \geqslant 0\}$

$$
\begin{aligned}
& \text { Domail }=\{x \geqslant \mid t 1\} \\
& \text { Suppore } \quad \rho=10\rangle\langle 0|
\end{aligned}
$$

Pure hat, hecause of eatayblerant, A_{A} is nised For an dherew who stays rithin Rindler space, culd appras nixal.
This cuse is simple enough that a can write lown a closed-fom erpussion for fA

Also, the denviation illustates a wey usetul technique using Eucliblear path ileguals.
Vork in "posithis husis" for fiuld, and let $\varphi_{0}(x)$ he a field config. Tlen

Euchilear pathint. on halt-plere

$$
\tau \leqslant 0 \quad w / \text { h.c. } \quad \varphi(x, t=0)=\varphi_{0}(x)
$$

Then $\left\langle\varphi_{0}(x) \mid 0\right\rangle\left(0\left|\varphi_{1}(x)\right\rangle \propto / 1 / 1 / \varphi_{1}(x)\right.$ $e_{0}(x)$

For contigs $\varphi_{0}^{A}(x), \varphi_{1}^{A(x)}$ on $x \geqslant 0$,

$$
\begin{aligned}
& \left\langle\varphi_{0}^{A}(x)\right| \rho_{A}\left|\varphi_{1}^{A}(x)\right\rangle \\
& =\int D \phi^{A^{c}}(x)\left\langle\varphi_{0}^{A}(x), \varphi^{A^{c}}(x)\right| \rho \mid \varphi_{1}^{A}(x) \varphi^{\left.A^{c}(x)\right)}
\end{aligned}
$$

α

$$
\Rightarrow O_{A} \alpha e^{-2 \pi K}
$$

when $k=$ gen. of Euclid. wot. about $x=\tau=0$

$$
\begin{align*}
& =\text { hoot gen. } \\
& =\int d x \times T_{t+}(t=0, x)
\end{align*}
$$

$\Rightarrow \int_{A}$ is thermal v.r.t. hoost gen! Observer at proper distance $l=\sqrt{\left(x^{\prime}\right)^{2}-\left(x^{\circ}\right)^{2}}$ from :' entangling surface sees temperature $\frac{1}{2 \pi l}$
\rightarrow Unruh effect
Close to entangling surface, fields are very hotUV modes are decohered Can use this to estivate $S(A)$ by adding up local entropies
Estimate of $S(A)$ for field of mas m int. density $s(T) \sim \begin{cases}T, & T>m \\ 0, & T<m\end{cases}$

$$
\begin{aligned}
& \Rightarrow S(A) \sim \int_{\varepsilon}^{\infty} d x \\
& s(T) \\
& \text { uv cutoff } \sim \int_{\varepsilon}^{1 / u} d x \frac{1}{x}
\end{aligned}
$$

$\sim \ln \frac{1}{m i} U V$ dieegent

Only fields out to distance

$$
\xi=\frac{1}{n}
$$

are entangled.
[Ever: Ceveralize this calculation bo higher dim's.]
C. 1 interal in CFT

If ve tale linit $n \rightarrow 0$ in previous result, ne get IR diegene in addition to uv siegeree. To cut it olf, consibler finite infrual of legth L :

Ent. density of CFT is $s(T)=\frac{2 \pi c}{6}{ }^{\hbar} T$
$\Rightarrow U V$ divergent part of $E E$ charge
is $\int_{\varepsilon} d x^{\prime} s\left(\frac{1}{2 \pi x^{\prime}}\right)=-\frac{c}{6} \ln \varepsilon$
2 endpoints $\rightarrow-\frac{c}{3} \ln \varepsilon$
Entropy divensionless $\Rightarrow S(A)=\frac{c}{3} \ln \frac{c}{\varepsilon}$

This result con he checked hy an houst calculcetion using Eucliclean path intequal + CFT techuigues.
(Holzhey-Larser-Vilozek 194, calubrese-Cady'03)
If full system is at teop T, then

- have instead

$$
\begin{aligned}
& S(A)=\frac{c}{3} \ln \frac{\sinh (\pi T L)}{\pi T \varepsilon} \\
& S(A) T \sim \frac{2 \pi c}{6} T L \quad \begin{array}{l}
\text { (extensice } \\
\text { theral ent.) }
\end{array}
\end{aligned}
$$

D. 1 interval in goral thy

Bused on Rindler discussion, expect entropy to saturate $S(A)$

(computed for free bosons + fermions
semi- analytically by (asini-Huerta '07)
In all examples so for, $S(A)$ is
concave fund. of L
Reason is SSA:

$$
\begin{aligned}
& 0 \geqslant(S(A B C)-S(B C))-(S(A B)-S(B)) \\
& \rightarrow \frac{d^{2} S(B)}{d L^{2}}
\end{aligned}
$$

Using relativity, we can make a stronger sta le vent
For any single interval, in vacuum, $S(A)$ is func. af proper distance between end points Consider this contig:

$$
L_{A B} L_{B C}=L_{B} L_{A B C}
$$

$S S A \Rightarrow S$ is concave func. of $\ln L$

$$
\Rightarrow \frac{d}{d L} C(L) \leqslant 0 \text { where } C(L):=3 L \frac{d S}{d L}
$$

If theory has $U V, \pm R$ fixed p ts, then

$$
C(L \rightarrow 0)=c_{n v}, \quad C(L \rightarrow \infty)=c_{I R} \Rightarrow c_{u v} \geqslant c_{I R}
$$

proof of Zamlodchicor C-theoren (Cusini-Hurfa' 04)
Ingredients are save as Zanolodahilcor's proof:
uniturity, locality relativity
But proof seems wa different
C-functions are different
$E .2$ inturals in CFT

Now consider 2 separated intervals

Can consider untal info:

$$
I(A: B):=S(A)+S(B)-S(A B)
$$

Quantifies correlations between A, B. Hoverer, wy hand to compute $S(A B)$
hard massless Dirac fermion:

$$
\begin{aligned}
I(A: B): & =S(A)+S(B)-S(A B) \\
& =\frac{1}{2} \ln \frac{\left(h_{2}-a_{2}\right)\left(h_{1}-a_{1}\right)}{\left(h_{2}-a_{1}\right)\left(b_{1}-a_{2}\right)}
\end{aligned}
$$

(Casini, Fosco, Huerta '05)
Only (non-topological) theory for which M.I. has keen computed exactly lincluding free scalar.')

However, its qualitative features hold for any $2 d$ CF:

- finite $(\leftarrow$ divergences are local on entangling surface)
- non-zero (else corvelators would vanish)
a conformally invariant (because indep. of ε)
\Rightarrow func. of cross-ratio
a increases as func. of sizes of A, B
(by SSA)
\Rightarrow decreases as func. of separation

$$
s:=b_{1}-a_{2}
$$

for fixed sizes $b_{2}-b_{1} \quad a_{2}-a_{1}$

- $\rightarrow \infty$ as $s \rightarrow 0$
$a \rightarrow 0$ as $s \rightarrow \infty$ like $s^{-4 \Delta}$
where $\Delta=\operatorname{din}$ of lightest non-trivial of (here $\Delta=\frac{1}{2}$)

F. Othe topics
$2+1 d$: topological $E E_{,} F$ for CFTS, F-thoren,

$$
3+1+\text { higker }
$$

tine deperdeme: queveles etc.
Mary otler Lepics
II. EEs in holographii QFTs

Usually it's very difficult to compute $E E_{s}$, even in free QFTs.

Hower, there is a cluss of theares cleae, in a certain linitg it hecomes easy herause it hecons a classical geonety problen. These ae the hologmphic theories?
A. Holography Scitch gears: Consiler GR in $2+1$ d (pussibly Ivelter fiells) with c.c. $1<0$. write

$$
\Lambda=-\frac{1}{R^{2}}
$$

Sioplest raccum sol'n is AdS_{3} :

$$
\begin{equation*}
d s^{2}=\frac{R^{2}}{z^{2}}\left(-d t^{2}+d x^{2}+d z^{2}\right) \tag{z>0}
\end{equation*}
$$

sputal section is hymbholic plane

Ads, has an asymptotic body at $z=0$. Grave. pot. $\rightarrow \infty$ there, so massive particles cannot reach it. Massless particles reach it in finite file; can impose hic. so they reflect.

In CR, metic is dynamical, hut we can impose a l.c. that it approach AdS wear $z=0$. Well-defiled closed classical system.
For simple h.c. in natter, ground state is AdS_{3}.

An excited state is BTZ black haves:

$$
\begin{aligned}
& d s^{2}=\frac{R^{2}}{z^{2}}\left(-f(z) d t^{2}+\frac{d z^{2}}{f(z)}+d x^{2}\right) \\
& f(z)=1-\frac{z^{2}}{z_{h}^{2}} \\
& z=0 \\
& z=z_{h} / / / / / / / / / \ \text { horizon }
\end{aligned}
$$

Suppose ow CRtualtur system is the classical approx. to a quanta grouty theory, with $l_{p l}=G_{M} k \lll$. Then, with AdS 3 b.c., we han a closed quantum system. It can he shoe that this system is a $2 d$ EFT $w / \quad c=\frac{3 R}{2 l_{p l}}>1$
If is easy to see that it is strongly coupled. The classical $C R+$ natter is a collective description of the la ge \# if stongly-interactilg fields. The rap between the CFT $+C R$ is
nou-local, hut it is hest to identily the spacetio whe the CFT ines as the cortinal haly $z=0$ of the asyant. AlS; spactme. Roughly speraking, the region near the laly represents the MV of the CFT, regius for uepresent the IR

To ingose a WV cutolf C in the CFT, e would cat ouff the AdS_{3}
at $z=\varepsilon$.

The BIZ black hase repusats the thoual stute of th CFT -1

$$
T=\frac{1}{2 \pi z_{h}}
$$

The CFT wy hae a releant ov leadigh to an RC flan eitle to anotler CET ar
" gapped thy. This is eppesatal hy closigg the hice for a scabr s.t. the groud state is no lacga A/s, hat, at some z, eitler ther is a domin a.ll to and $\mathrm{AdS}_{3} \quad 1$ a ditteat c.c. or space caps off:

RG flow - /w...triel IR tixel pt

RC flow to tivial thy:
\qquad

$$
\begin{array}{r}
\text { at } z \sim \mathcal{\sim} \text { end of spee } \\
\text { = cor. legth }
\end{array}
$$

B. Ryü - Takayaragi furula

The Belarshin- Hasking Kunla give the eatopy of a black hole in tems of the and of ts eunt hoizon:

$$
S_{B H}=\frac{1}{4 G_{N 1}} \text { anal harizon) }
$$

Iuppred hy this, RT'O cojectal that the EE of a negion A ir a lologoplic thy is gien hy the aed of the nivial sulue w(A) in halle houdlogus to A:

$$
S(A)=\frac{1}{4 h_{n}} \text { and }(n(A))
$$

In our case, $G_{M}: l_{P l}$, the nihied "su-fuce" (A) is a seodesic crecting the eappoints of A, and its "wa " is its leyth:

$$
S(A)=\frac{1}{4 l_{p l}} \operatorname{leyth}(n(A))
$$

As ve'll see, this finda geowehizes all of the a treatures of EES that e're discusseel, asd ipplies a for un ous that an special te lologapty

Since the charactastic scale of the gouty is R, the RT eatopy is of coder

$$
\frac{R}{l_{p l}} \sim c
$$

In addition there ac s-blealiy tows in $\frac{1}{c}$ that ae not strictly geometrical
C. Exaples

$$
S(A)=\frac{1}{4 l_{p l}} \operatorname{leyth}(\sim(A))
$$

1) For 1 intinal is gioul stave of CFT, easy L Fiod geoderic in $\mathrm{AdS}_{3}+$ calwbte leyth, reproding $S(A)=\frac{c}{3} \ln \frac{C}{2}$

[Enci's]
2) At fimile temp, fov $L\rangle\rangle z_{h} \sim \frac{1}{T}$, A
~ (A)
$s(A)$ extericie therwl eat.
[Ererisic]
3) In gaphad thy

Hore the saturation hecoes shap.
There is a phase tansition, because c.>0 is a thaodymie linit.
4) Mutaval into

2 candidale nin. surt. for $A B$:

$$
n(A B)=n(A) \quad v n(B)
$$

Both honologas to AB. Ore -lshater tutal leyth gies $S(A B)$
$I(A: D)$
Aguin, plase transition [Exncise]
D. Prourtes

1) In a pue shate, $S(A)=S\left(A^{c}\right)$

In a nized stubte, not recessanily
oheyal hy RT:

nixed:

2) Suhadditivity $\quad S(A B) \leqslant S(A)+S(B)$

As ve san hefre, $n(A) \cup \sim(B)$ is aloays a candidate sufrice f-AB, hence $S(A B) \leqslant$ crea $(-(A) \operatorname{un}(B))$

$$
\begin{aligned}
& =\operatorname{ara}(n(A))+\operatorname{cac}(-(B)) \\
& =S(A)+S(B)
\end{aligned}
$$

3) Stey ruculdituty $S(A B C)+S(D) \leqslant S(A B)+S(B C)$

In fucty all koon geaual propution of EE re oleyed by RT.

Thee we also son that are special to hologuphir $7^{\text {stews, }}$ e.g.
4) Supraddituity of authal into

$$
\begin{aligned}
& I(A: B C) \geqslant I(A: B)+I(A: C) \\
\text { i.e. } & S(A)+S(B)+S(C)+S(A B C) \\
& \leqslant S(A B)+S(A C)+S(B C) \\
E x: & \quad\left[P_{\text {roof }}: \text { Exercise }\right]
\end{aligned}
$$

\qquad
Can hae $I(A: D)=I(A: C)=0$
hat $I(A: B C) \neq 0$
This inquality is not true in geand quarton syslens la een Leed tharies)

$$
\text { E-9. } \rho_{A B C}=\frac{1}{2}(1000)\langle 000|+1(4)(\text { (11) })
$$

E. May other dicetions rapp licatios

- Bit thads
- tie depedence (HRT)
- Leviriy Einstar eq.
- vecoushutioy hulk
- Als (CMT, AdS/QCD
- Cinackrus
- Ringis, whate entenies...

