

Defects in topologically ordered states

Xiao-Liang Qi *Stanford University* Mag Lab, Tallahassee, 01/09/2014 References

Maissam Barkeshli & XLQ, PRX, **2**, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ, PRB 87 045130 (2013) Maissam Barkeshli, XLQ, arxiv:1302.2673 (2013) Maissam Barkeshli, Chaoming Jian, XLQ, PRB 88, 241103(R), PRB 88, 235103 (2013)

Collaborators

Maissam Barkeshli

Chaoming Jian

Outline

Lecture 1

- Defects in conventional states
- Topologically ordered states, symmetries and twist defects
- The simplest twist defects---genons
- Properties of genons, "projective" non-Abelian statistics and parafermion zero modes
- Generalization to generic defects: A unified framework of defects in Abelian topological states

Lecture 2

- Realizations of genons and more general defects
 - 1. Bilayer FQH states with staircases
 - 2. Fractional Chern Insulators
 - 4. A spin model realization: generalized Kitaev model

Lecture 1 General properties of defects in topologically ordered states

Why are we interested in defects?

- Defects provide ways to probe the state of matter.
- New interesting properties may be carried by defects.

 $e^{i\theta}$

- Example 1: Superfluid vortex. Superfluid phase θ is not detectable. Global U(1) symmetry $\psi = \sqrt{\rho}e^{i\theta} \rightarrow \psi e^{i(\theta + \theta_0)}$,
- The existence of vortex with quantized vorticity tells us that θ is a U(1) phase periodic in 2π .
- Vortex is a *twist defect* obtained by twisting the U(1) symmetry
- A superfluid vortex has log *L* divergent energy. It's an *extrinsic defect* that has to be introduced by external force.

Why are we interested in defects?

- Example 2: Superconductor vortex at a corner junction
- A superconductor vortex is not a defect, but an excitation with finite energy. A magnetic flux $\Phi = \int d^2 x B = \frac{hc}{2e}$ localized in a vortex core with size ξ
- A corner junction between *s*-wave and *d*-wave superconductors traps a half vortex $\Phi = \frac{hc}{4e'}$, which is an extrinsic defect.
- Order parameter phase θ d-wave changes by π .
- An example of a defect at interface between two phases.

Topological states of matter

- Quantum Hall effect occurs in 2d electron system with strong perpendicular magnetic field
- Integer quantum Hall (IQH) state: Filling integer number of Landau levels. Momentum space Chern number (Thouless et al 1982) Chiral edge states
- Quantum Hall state is an example of topological states of matter: New states that are classified by topological properties, such as robust edge states, topological response

Topologically ordered states

 Topologically ordered states such as fractional quantum Hall (FQH) states have topological ground state degeneracy, and topological quasiparticles with fractional charge and fractional statistics.

R

Key properties of topologically ordered states

- Quasiparticles have no knowledge about distance. Only topology matters.
- Fusion $a \times b = N_{ab}^c c$
- Braiding c

С

• Braiding *a*, *b* and spinning *a*, *b* is equivalent to spinning *c*. **Topological spin** of particles *h*_a

^a =
$$e^{i2\pi h_a}$$
 $R^c_{ab}R^c_{ba} = e^{i2\pi(h_a+h_b-h_c)}$

Key properties of topologically ordered states

 Spin also determines the transformation of the torus ground states under modular transformations

Symmetries in topologically ordered states

- Topologically ordered states are robust without requiring any symmetry. However, symmetries may exist in topologically ordered states
- **Example 1**: Bilayer FQH states with the symmetry of exchanging two layers (Z_2 symmetry)
- E.g. (mnl) Halperin state with m = n: $\prod_{i < j} (z_i - z_j)^m \prod_{i < j} (w_i - w_j)^m \prod_{i,j} (z_i - w_j)^l \cdot e^{-\sum_i |z_i|^2 - \sum_i |w_i|^2}$

Symmetries in topologically ordered states

- Example 2: particle-hole symmetry of Laughlin 1/m state.
- Quasiparticle charge $q = \frac{n}{m}, n = 0, 1, ..., m - 1,$ mn' n + n' n + n'n + n'
- Braiding $\theta_{nn'} = 2\pi \frac{nn'}{m}$
- Fusion $a_n \times a_{n'} = a_{n+n' \pmod{m}}$
- Braiding and fusion are invariant under the particle-hole transformation $n \to -n$

n n'

n'

 \boldsymbol{n}

- In a generic state, the particle-hole symmetry is not an exact symmetry, but a topological symmetry:
- $|\Psi\rangle \rightarrow |\Psi'\rangle$ topologically equivalent to $|\Psi\rangle$

Twist defects and genons

- A discrete global symmetry can be twisted.
- A topological particle is acted by the symmetry while crossing a "branch-cut" line.

- The branch-cut line is in-visible and each end point of the branch-cut is a point-like twist defect. (Kitaev&Kong, '11)
- For bilayer FQH, the branch-cut line has a simple geometrical meaning
- The two layers are connected and become a Riemann surface

Barkeshli&XLQ PRX '12

Genons--genus generators

 In bilayer FQH states, a pair of defect creates a "worm hole" between the two layers. The defect is called a genon---genus generator

Quantum dimension of genons

• Every pair of defects add genus 1 to the manifold

- Ground state degeneracy (GSD) is $m^{n-1} = \frac{1}{m} (\sqrt{m})^{2n}$
- On comparison, 2n spins each with d local states have total degeneracy d^{2n} .
- A genon has the *quantum dimension* $d = \sqrt{m}$
- The non-integer quantum dimension indicates that genons are non-Abelian

Quantum dimension of genons

- For the Halperin (mml) state, the genon quantum dimension is $d = \sqrt{m-l}$. For example (220) and (331) states both give $d = \sqrt{2}$ the same as Majorana fermion.
- For a more generic topological state at each layer with quasiparticles of quantum dimension d_i , the ground state degeneracy grows like $GSD \sim D^{2g}$ with

 $D = \sqrt{\sum_i d_i^2}$ the total quantum dimension of the single layer theory. Therefore genon quantum dimension is $d_X = D$.

Understanding the genon quantum dimension: parafermion zero modes

- First, Consider (220) state, i.e. two layers of Laughlin $\frac{1}{2}$
- Each layer has a q = 1/2 semion (statistical angle $\theta_1 = \pi/2$)

• The ``exciton"
$$\left(\frac{1}{2}, -\frac{1}{2}\right)$$
 is a fermion

The branchcut line as an exciton superconductor

- Two excitons can annihilate at the branchcut. A "geometric" exciton superconductor
- A genon is the end of the branchcut line, which is the end of the 1d p-wave superconductor (Kitaev '01)
- Majorana zero mode at the genon, consistent with quantum dimension $\sqrt{2}$

- The existence of Majorana zero mode means that a fermion can be emitted or absorbed by the zero mode, with no energy cost
- The same happens for the genon in (220) state: Emission or annihilation of the exciton fermion $\left(\frac{1}{2}, -\frac{1}{2}\right)$ can only occur at the genon Hereitian the genon

From Majorana zero modes to parafermion zero modes

- In more general (mml) states, the genon can emit exciton with charge (1, -1), spin $\theta = \exp\left[i\frac{2\pi}{m-l}\right]$
- A Majorana zero mode is sqrt of a fermion. $d = \sqrt{2}$
- A parafermion zero mode is sqrt of an anyon. $d = \sqrt{m-l}$
- m l states are shared by a pair of genons, which are not locally detectable.

Edge theory description of twist defects

• "Cut and glue" scheme

- Genons are domain walls along 1D cuts in the system
- Chiral Luttinger liquid theory (Wen) with backscattering terms
- $\mathcal{L} = \mathcal{L}_L + \mathcal{L}_R + \mathcal{L}_{int}$
- $\mathcal{L}_L = \frac{m}{4\pi} K^{IJ} \partial_t \phi_{IL} \partial_x \phi_{JL} V^{IJ} \partial_x \phi_{IL} \partial_x \phi_{JL}$

•
$$\mathcal{L}_R = -\frac{m}{4\pi} K^{IJ} \partial_t \phi_{IR} \partial_x \phi_{JR} - V^{IJ} \partial_x \phi_{IR} \partial_x \phi_{JR}$$

• $\mathcal{L}_{int} = \begin{cases} \sum_{I} J \cos(K^{IJ}(\phi_{JR} - \phi_{JL})), A \text{ region} \\ \sum_{I} J \cos(K^{IJ}(\phi_{JR} - \phi_{J'L})), B \text{ region} \end{cases}$

Edge theory description of twist defects

- For example, for l = 0
- $\mathcal{L}_{int} =$ $\begin{cases} J \cos(m(\phi_{1R} - \phi_{1L})) + J \cos(m(\phi_{2R} - \phi_{2L})), A \text{ region} \\ J \cos(m(\phi_{1R} - \phi_{2L})) + J \cos(m(\phi_{2R} - \phi_{1L})), B \text{ region} \end{cases}$
- Decompose $\phi_{\pm IR} = \phi_{1R} \pm \phi_{2R}$, $\phi_{\pm IL} = \phi_{1L} \pm \phi_{2L}$, the mass term for ϕ_+ is the same in both regions. Only ϕ_- see the twist defect.
- Focus on the $\phi_{-} = \phi_{1} - \phi_{2} \qquad \phi_{1R} \qquad A \qquad B \qquad A$ sector $\phi_{2R} \qquad \phi_{2R} \qquad \phi_{2R} \qquad \phi_{2L} \qquad \phi_{2L$

Relation with other twist defects

- The twist defect is a domain wall between particle-hole and particle-particle mass term for the exciton created by $e^{i(\phi_{-L}-\phi_{-R})}$
- The same defects can be realized in FQH or FQSH in proximity with SC (Linder et al, Clarke et al, Cheng, Vaezi, 2012)
- Quasiparticle ϕ replaces exciton ϕ_-

Braiding statistics of genons

- When two genons are braided, the corresponding genus g = n 1 surface carries a nontrivial large coordinate transformation---a Dehn twist
- This can be seen by tracking the change of nontrivial loops

Braiding statistics of genons

- Braiding genons 1, 2 \rightarrow Dehn twist around the orange loop T_x
- Braiding genons 2,3→ Dehn twist around the red-yellow loop T_y
- T_x , T_y non-commuting. Genons have non-Abelian statistics.

Properties of genons: braiding statistics

• Example: (220) state. 2 ground states for 4 defects. The braiding matrices are

•
$$U_{12} = e^{i\theta} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$
, $U_{23} = e^{i\phi} \frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$

- Abelian phases are undetermined.
- The non-Abelian statistics is identical to Ising anyon! (Barkeshli, Jian & XLQ PRB '13)
- Related to intrinsic topological particles in orbifolding of topologically ordered states (Barkeshli-Wen '10)

Summary of general properties of genons

- Twist defects can be defined in a topological state with a global symmetry.
- In bilayer (or multilayer) states with the symmetry of permuting different layers, genons are defined around which particles move to different layers.
- Genons have non-Abelian projective statistics, and nontrivial quantum dimensions.
- Genons are different from topological quasiparticles: they have long range interaction.
 Statistics is only defined projectively.

Other twist defects

- By twisting other symmetries, one can define other types of twist defects.
- Many twist defects can be understood as genons.

Topological order	Symmetries	Transformation of QP	References
Z_N toric code	Electromagnetic duality Z_2	$(e,m) \rightarrow (m,e)$	Bombin; You&Wen
	Particle-hole Z_2	$(e,m) \rightarrow (-e,-m)$	You&Jian&Wen
N-layer FQH	Layer permutation S_N	$(a_1, a_2, \dots, a_N) \\\rightarrow (a_{P_1}, a_{P_2}, \dots, a_{P_N})$	(Z ₃ subgroup) Barkeshli&Jian&Qi
1/k Laughlin	Particle-hole Z_2	$a \rightarrow -a$	Lindner et al; Clarke et al; Cheng, Vaezi
bilayer Z_k toric code	S_3 symmetry	"Hidden" S_3 permutation of QP	Teo&Roy&Chen
bilayer toric code (2d <mark>&3d</mark>)	Layer permutation Z_2	$(a_1,a_2) \rightarrow (a_2,a_1)$	Ran

A unified view to defects in Abelian states

- Different types of defects discussed here can all be mapped to gapped boundaries and domain wall between different boundary conditions
- Genons → boundary in 4-layer systems

 Most general case, line defect between two phases → boundary of bilayer system

Generic line defects are equivalent to boundary defects

- Point defects are mapped to domain wall points between different line defects/boundary conditions
- Even the corner defect connecting three phases can still be viewed in this way

Boson condensation and Lagrangian subgroups

 In the folded picture, a boundary condition is determined by the particle that can annihilate (condense) at the boundary

A region: (1,0, -1,0) and (0,1,0, -1) B region: (1,0,0, -1) and (0,1, -1,0)

- The condensed particles must be boson, and mutually bosonic.
- Edge is completely gapped → No particle is left after the boson condensation (Levin '13)

Boson condensation and Lagrangian subgroups

- A maximal set of condensed bosons form a Lagrangian subgroup (Levin '13, Barkeshli et al '13)
- Two conditions of Lagrangian subgroup M: i) $m_i^T K^{-1} m_j \in Z$. ii) No other particle α satisfies $\alpha^T K^{-1} m_j \in Z$.

 One-to-one correspondence between boundary conditions and Lagrangian subgroups (Barkeshli, et al '13, Levin '13)

A unified view to defects in Abelian states

- Point defect carries nontrivial degeneracy, due to nontrivial braiding between different groups of bosons: $m_i \in M, m'_i \in M', m_i^T K^{-1} m'_i \notin Z$
- Wilson loop algebra

 $W_m(a)W_{m'}(b) = W_{m'}(b)W_m(a)e^{i2\pi m^T K^{-1}m'}$ determines the (minimal) ground state degeneracy

- Defect quantum dimension $d = 1/\sqrt{\det |L|}$ with $L_{ij} = m_i^T K^{-1} m_j'$.
- m_i and m'_i are minimal basis sets for lattices M and M'.

Parafermion zero modes and non-Abelian "statistics"

- Topological zero modes can be understood as pairs of particles l = m + m'
- Two bosons with nontrivial mutual statistics fuse into a nontrivial particle
- Generalization of the parafermion zero modes (Linder et al, Clarke et al, Fendley, '12)
- Effective "braiding" can be defined by coupling defects.

Summary of the first lecture

- Defects can be used to probe topologically ordered states
- Genons are simplest defects for multi-layer systems
- Non-Abelian defects can be realized in Abelian theories
- Generic point-like and line-like defects in Abelian theories can be understood based on the intuition from genons. General classification given by Lagrangian subgroups.
- Open question: Defects in non-Abelian theories?